The New Horizons Pluto Kuiper Belt Mission: an Overview with Historical Context
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hayabusa2 and the Formation of the Solar System PPS02-25
PPS02-25 JpGU-AGU Joint Meeting 2017 Hayabusa2 and the formation of the Solar System *Sei-ichiro WATANABE1,2, Hayabusa2 Science Team2 1. Division of Earth and Planetary Sciences, Graduate School of Science, Nagoya University, 2. JAXA/ISAS Explorations of small solar system bodies bring us direct and unique information about the formation and evolution of the Solar system. Asteroids may preserve accretion processes of planetesimals or pebbles, a sequence of destructive events induced by the gas-driven migration of giant planets, and hydrothermal processes on the parent bodies. After successful small-body missions like Rosetta to comet 67P/Churyumov-Gerasimenko, Dawn to Vesta and Ceres, and New Horizons to Pluto, two spacecraft Hayabusa2 and OSIRIS-REx are now traveling to dark primitive asteroids.The Hayabusa2 spacecraft journeys to a C-type near-earth asteroid (162173) Ryugu (1999 JU3) to conduct detailed remote sensing observations and return samples from the surface. The Haybusa2 spacecraft developed by Japan Aerospace Exploration Agency (JAXA) was successfully launched on 3 Dec. 2014 by the H-IIA Launch Vehicle and performed an Earth swing-by on 3 Dec. 2015 to set it on a course toward its target. The spacecraft will reach Ryugu in the summer of 2018, observe the asteroid for 18 months, and sample surface materials from up to three different locations. The samples will be delivered to the Earth in Nov.-Dec. 2020. Ground-based observations have obtained a variety of optical reflectance spectra for Ryugu. Some reported the 0.7 μm absorption feature and steep slope in the short wavelength region, suggesting hydrated minerals. -
The Messenger
10th anniversary of VLT First Light The Messenger The ground layer seeing on Paranal HAWK-I Science Verification The emission nebula around Antares No. 132 – June 2008 –June 132 No. The Organisation The Perfect Machine Tim de Zeeuw a groundbased spectroscopic comple thousand each semester, 800 of which (ESO Director General) ment to the Hubble Space Telescope. are for Paranal. The User Portal has Italy and Switzerland had joined ESO in about 4 000 registered users and 1981, enabling the construction of the the archive contains 74 TB of data and This issue of the Messenger marks the 3.5m New Technology Telescope with advanced data products. tenth anniversary of first light of the Very pioneering advances in active optics, Large Telescope. It is an excellent occa crucial for the next step: the construction sion to look at the broader implications of the Very Large Telescope, which Winning strategy of the VLT’s success and to consider the received the green light from Council in next steps. 1987 and was built on Cerro Paranal in The VLT opened for business some five the Atacama desert between Antofagasta years after the Keck telescopes, but the and Taltal in Northern Chile. The 8.1m decision to take the time to build a fully Mission Gemini telescopes and the 8.3m Subaru integrated system, consisting of four telescope were constructed on a similar 8.2m telescopes and providing a dozen ESO’s mission is to enable scientific dis time scale, while the Large Binocular Tele foci for a carefully thoughtout comple coveries by constructing and operating scope and the Gran Telescopio Canarias ment of instruments together with four powerful observational facilities that are now starting operations. -
New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1. -
Planetary Science Division Status Report
Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine. -
Selection of the Insight Landing Site M. Golombek1, D. Kipp1, N
Manuscript Click here to download Manuscript InSight Landing Site Paper v9 Rev.docx Click here to view linked References Selection of the InSight Landing Site M. Golombek1, D. Kipp1, N. Warner1,2, I. J. Daubar1, R. Fergason3, R. Kirk3, R. Beyer4, A. Huertas1, S. Piqueux1, N. E. Putzig5, B. A. Campbell6, G. A. Morgan6, C. Charalambous7, W. T. Pike7, K. Gwinner8, F. Calef1, D. Kass1, M. Mischna1, J. Ashley1, C. Bloom1,9, N. Wigton1,10, T. Hare3, C. Schwartz1, H. Gengl1, L. Redmond1,11, M. Trautman1,12, J. Sweeney2, C. Grima11, I. B. Smith5, E. Sklyanskiy1, M. Lisano1, J. Benardino1, S. Smrekar1, P. Lognonné13, W. B. Banerdt1 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 2State University of New York at Geneseo, Department of Geological Sciences, 1 College Circle, Geneseo, NY 14454 3Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Dr., Flagstaff, AZ 86001 4Sagan Center at the SETI Institute and NASA Ames Research Center, Moffett Field, CA 94035 5Southwest Research Institute, Boulder, CO 80302; Now at Planetary Science Institute, Lakewood, CO 80401 6Smithsonian Institution, NASM CEPS, 6th at Independence SW, Washington, DC, 20560 7Department of Electrical and Electronic Engineering, Imperial College, South Kensington Campus, London 8German Aerospace Center (DLR), Institute of Planetary Research, 12489 Berlin, Germany 9Occidental College, Los Angeles, CA; Now at Central Washington University, Ellensburg, WA 98926 10Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 11Institute for Geophysics, University of Texas, Austin, TX 78712 12MS GIS Program, University of Redlands, 1200 E. Colton Ave., Redlands, CA 92373-0999 13Institut Physique du Globe de Paris, Paris Cité, Université Paris Sorbonne, France Diderot Submitted to Space Science Reviews, Special InSight Issue v. -
Mars Express Orbiter Radio Science
MaRS: Mars Express Orbiter Radio Science M. Pätzold1, F.M. Neubauer1, L. Carone1, A. Hagermann1, C. Stanzel1, B. Häusler2, S. Remus2, J. Selle2, D. Hagl2, D.P. Hinson3, R.A. Simpson3, G.L. Tyler3, S.W. Asmar4, W.I. Axford5, T. Hagfors5, J.-P. Barriot6, J.-C. Cerisier7, T. Imamura8, K.-I. Oyama8, P. Janle9, G. Kirchengast10 & V. Dehant11 1Institut für Geophysik und Meteorologie, Universität zu Köln, D-50923 Köln, Germany Email: [email protected] 2Institut für Raumfahrttechnik, Universität der Bundeswehr München, D-85577 Neubiberg, Germany 3Space, Telecommunication and Radio Science Laboratory, Dept. of Electrical Engineering, Stanford University, Stanford, CA 95305, USA 4Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91009, USA 5Max-Planck-Instuitut für Aeronomie, D-37189 Katlenburg-Lindau, Germany 6Observatoire Midi Pyrenees, F-31401 Toulouse, France 7Centre d’etude des Environnements Terrestre et Planetaires (CETP), F-94107 Saint-Maur, France 8Institute of Space & Astronautical Science (ISAS), Sagamihara, Japan 9Institut für Geowissenschaften, Abteilung Geophysik, Universität zu Kiel, D-24118 Kiel, Germany 10Institut für Meteorologie und Geophysik, Karl-Franzens-Universität Graz, A-8010 Graz, Austria 11Observatoire Royal de Belgique, B-1180 Bruxelles, Belgium The Mars Express Orbiter Radio Science (MaRS) experiment will employ radio occultation to (i) sound the neutral martian atmosphere to derive vertical density, pressure and temperature profiles as functions of height to resolutions better than 100 m, (ii) sound -
JUICE Red Book
ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat. -
Visit the National Academies Press Online, the Authoritative Source
Assessment of the CRAF and Cassini Science Missions: Letter Report Committee on Planetary and Lunar Exploration, Space Science Board, Commission on Physical Sciences, Mathematics, and Resources, National Research Council ISBN: 0-309-12299-6, 7 pages, 8 1/2 x 11, (1988) This free PDF was downloaded from: http://www.nap.edu/catalog/12334.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online, free • Sign up to be notified when new books are published • Purchase printed books • Purchase PDFs • Explore with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll-free at 888-624-8373, visit us online, or send an email to [email protected]. This free book plus thousands more books are available at http://www.nap.edu. Copyright © National Academy of Sciences. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the Web address of the online, full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the National Academies Press. Space Studies Board Jump to Search: Top NewsJump to Science in the Subscribe to our FREE e- Headlines newsletter! NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL June 18, 2004 Current Operating Status Assessment of the CRAF and Cassini Science Missions: Letter Report http://www.nap.edu/catalog/12334.html On September 1, 1988, Dr. -
Solar System Exploration
Theme: Solar System Exploration Cassini, a robotic spacecraft launched in 1997 by NASA, is close enough now to resolve many rings and moons of its destination planet: Saturn. The spacecraft has now closed to within a single Earth-Sun separation from the ringed giant. In November 2003, Cassini snapped the contrast-enhanced color composite pictured above. Many features of Saturn's rings and cloud-tops now show considerable detail. When arriving at Saturn in July 2004, the Cassini orbiter will begin to circle and study the Saturnian system. Several months later, a probe named Huygens will separate and attempt to land on the surface of Titan. Solar System Exploration MAJOR EVENTS IN FY 2005 Deep Impact will launch in December 2004. The spacecraft will release a small (820 lbs.) Impactor directly into the path of comet Tempel 1 in July 2005. The resulting collision is expected to produce a small impact crater on the surface of the comet's nucleus, enabling scientists to investigate the composition of the comet's interior. Onboard the Cassini orbiter is a 703-pound scientific probe called Huygens that will be released in December 2004, beginning a 22-day coast phase toward Titan, Saturn's largest moon; Huygens will reach Titan's surface in January 2005. ESA 2-1 Theme: Solar System Exploration OVERVIEW The exploration of the solar system is a major component of the President's vision of NASA's future. Our cosmic "neighborhood" will first be scouted by robotic trailblazers pursuing answers to key questions about the diverse environments of the planets, comets, asteroids, and other bodies in our solar system. -
A Deep Search for Additional Satellites Around the Dwarf Planet
Search for Additional Satellites around Haumea A Preprint typeset using LTEX style emulateapj v. 01/23/15 A DEEP SEARCH FOR ADDITIONAL SATELLITES AROUND THE DWARF PLANET HAUMEA Luke D. Burkhart1,2, Darin Ragozzine1,3,4, Michael E. Brown5 Search for Additional Satellites around Haumea ABSTRACT Haumea is a dwarf planet with two known satellites, an unusually high spin rate, and a large collisional family, making it one of the most interesting objects in the outer solar system. A fully self-consistent formation scenario responsible for the satellite and family formation is still elusive, but some processes predict the initial formation of many small moons, similar to the small moons recently discovered around Pluto. Deep searches for regular satellites around KBOs are difficult due to observational limitations, but Haumea is one of the few for which sufficient data exist. We analyze Hubble Space Telescope (HST) observations, focusing on a ten-consecutive-orbit sequence obtained in July 2010, to search for new very small satellites. To maximize the search depth, we implement and validate a non-linear shift-and-stack method. No additional satellites of Haumea are found, but by implanting and recovering artificial sources, we characterize our sensitivity. At distances between 10,000 km and 350,000 km from Haumea, satellites with radii as small as 10 km are ruled out, assuming∼ an albedo∼ (p 0.7) similar to Haumea. We also rule out satellites larger∼ than &40 km in most of the Hill sphere using≃ other HST data. This search method rules out objects similar in size to the small moons of Pluto. -
New Horizons: Reconnaissance of the Pluto-Charon System and The
C.T. Russell Editor New Horizons Reconnaissance of the Pluto-Charon System and the Kuiper Belt Previously published in Space Science Reviews Volume 140, Issues 1–4, 2008 C.T. Russell Institute of Geophysics & Planetary Physics University of California Los Angeles, CA, USA Cover illustration: NASA’s New Horizons spacecraft was launched on 2006 January 19, received a grav- ity assist during a close approach to Jupiter on 2007 February 28, and is now headed for a flyby with closest approach 12,500 km from the center of Pluto on 2015 July 14. This artist’s depiction shows the spacecraft shortly after passing above Pluto’s highly variegated surface, which may have black-streaked surface deposits produced from cryogenic geyser activity, and just before passing into Pluto’s shadow when solar and earth occultation experiments will probe Pluto’s tenuous, and possibly hazy, atmosphere. Sunlit crescents of Pluto’s moons Charon, Nix, and Hydra are visible in the background. After flying through the Pluto system, the New Horizons spacecraft could be re-targeted towards other Kuiper Belt Objects in an extended mission phase. This image is based on an original painting by Dan Durda. © Dan Durda 2001 All rights reserved. Back cover illustration: The New Horizons spacecraft was launched aboard an Atlas 551 rocket from the NASA Kennedy Space Center on 2008 January 19 at 19:00 UT. Library of Congress Control Number: 2008944238 DOI: 10.1007/978-0-387-89518-5 ISBN-978-0-387-89517-8 e-ISBN-978-0-387-89518-5 Printed on acid-free paper. -
CHORUS: Let's Go Meet the Dwarf Planets There Are Five in Our Solar
Meet the Dwarf Planet Lyrics: CHORUS: Let’s go meet the dwarf planets There are five in our solar system Let’s go meet the dwarf planets Now I’ll go ahead and list them I’ll name them again in case you missed one There’s Pluto, Ceres, Eris, Makemake and Haumea They haven’t broken free from all the space debris There’s Pluto, Ceres, Eris, Makemake and Haumea They’re smaller than Earth’s moon and they like to roam free I’m the famous Pluto – as many of you know My orbit’s on a different path in the shape of an oval I used to be planet number 9, But I break the rules; I’m one of a kind I take my time orbiting the sun It’s a long, long trip, but I’m having fun! Five moons keep me company On our epic journey Charon’s the biggest, and then there’s Nix Kerberos, Hydra and the last one’s Styx 248 years we travel out Beyond the other planet’s regular rout We hang out in the Kuiper Belt Where the ice debris will never melt CHORUS My name is Ceres, and I’m closest to the sun They found me in the Asteroid Belt in 1801 I’m the only known dwarf planet between Jupiter and Mars They thought I was an asteroid, but I’m too round and large! I’m Eris the biggest dwarf planet, and the slowest one… It takes me 557 years to travel around the sun I have one moon, Dysnomia, to orbit along with me We go way out past the Kuiper Belt, there’s so much more to see! CHORUS My name is Makemake, and everyone thought I was alone But my tiny moon, MK2, has been with me all along It takes 310 years for us to orbit ‘round the sun But out here in the Kuiper Belt… our adventures just begun Hello my name’s Haumea, I’m not round shaped like my friends I rotate fast, every 4 hours, which stretched out both my ends! Namaka and Hi’iaka are my moons, I have just 2 And we live way out past Neptune in the Kuiper Belt it’s true! CHORUS Now you’ve met the dwarf planets, there are 5 of them it’s true But the Solar System is a great big place, with more exploring left to do Keep watching the skies above us with a telescope you look through Because the next person to discover one… could be me or you… .