A Deep Search for Additional Satellites Around the Dwarf Planet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Horizons Pluto/KBO Mission Impact Hazard
New Horizons Pluto/KBO Mission Impact Hazard Hal Weaver NH Project Scientist The Johns Hopkins University Applied Physics Laboratory Outline • Background on New Horizons mission • Description of Impact Hazard problem • Impact Hazard mitigation – Hubble Space Telescope plays a key role New Horizons: To Pluto and Beyond The Initial Reconnaissance of The Solar System’s “Third Zone” KBOs Pluto-Charon Jupiter System 2016-2020 July 2015 Feb-March 2007 Launch Jan 2006 PI: Alan Stern (SwRI) PM: JHU Applied Physics Lab New Horizons is NASA’s first New Frontiers Mission Frontier of Planetary Science Explore a whole new region of the Solar System we didn’t even know existed until the 1990s Pluto is no longer an outlier! Pluto System is prototype of KBOs New Horizons gives the first close-up view of these newly discovered worlds New Horizons Now (overhead view) NH Spacecraft & Instruments 2.1 meters Science Team: PI: Alan Stern Fran Bagenal Rick Binzel Bonnie Buratti Andy Cheng Dale Cruikshank Randy Gladstone Will Grundy Dave Hinson Mihaly Horanyi Don Jennings Ivan Linscott Jeff Moore Dave McComas Bill McKinnon Ralph McNutt Scott Murchie Cathy Olkin Carolyn Porco Harold Reitsema Dennis Reuter Dave Slater John Spencer Darrell Strobel Mike Summers Len Tyler Hal Weaver Leslie Young Pluto System Science Goals Specified by NASA or Added by New Horizons New Horizons Resolution on Pluto (Simulations of MVIC context imaging vs LORRI high-resolution "noodles”) 0.1 km/pix The Best We Can Do Now 0.6 km/pix HST/ACS-PC: 540 km/pix New Horizons Science Status • -
CHORUS: Let's Go Meet the Dwarf Planets There Are Five in Our Solar
Meet the Dwarf Planet Lyrics: CHORUS: Let’s go meet the dwarf planets There are five in our solar system Let’s go meet the dwarf planets Now I’ll go ahead and list them I’ll name them again in case you missed one There’s Pluto, Ceres, Eris, Makemake and Haumea They haven’t broken free from all the space debris There’s Pluto, Ceres, Eris, Makemake and Haumea They’re smaller than Earth’s moon and they like to roam free I’m the famous Pluto – as many of you know My orbit’s on a different path in the shape of an oval I used to be planet number 9, But I break the rules; I’m one of a kind I take my time orbiting the sun It’s a long, long trip, but I’m having fun! Five moons keep me company On our epic journey Charon’s the biggest, and then there’s Nix Kerberos, Hydra and the last one’s Styx 248 years we travel out Beyond the other planet’s regular rout We hang out in the Kuiper Belt Where the ice debris will never melt CHORUS My name is Ceres, and I’m closest to the sun They found me in the Asteroid Belt in 1801 I’m the only known dwarf planet between Jupiter and Mars They thought I was an asteroid, but I’m too round and large! I’m Eris the biggest dwarf planet, and the slowest one… It takes me 557 years to travel around the sun I have one moon, Dysnomia, to orbit along with me We go way out past the Kuiper Belt, there’s so much more to see! CHORUS My name is Makemake, and everyone thought I was alone But my tiny moon, MK2, has been with me all along It takes 310 years for us to orbit ‘round the sun But out here in the Kuiper Belt… our adventures just begun Hello my name’s Haumea, I’m not round shaped like my friends I rotate fast, every 4 hours, which stretched out both my ends! Namaka and Hi’iaka are my moons, I have just 2 And we live way out past Neptune in the Kuiper Belt it’s true! CHORUS Now you’ve met the dwarf planets, there are 5 of them it’s true But the Solar System is a great big place, with more exploring left to do Keep watching the skies above us with a telescope you look through Because the next person to discover one… could be me or you… . -
Anticipated Scientific Investigations at the Pluto System
Space Sci Rev (2008) 140: 93–127 DOI 10.1007/s11214-008-9462-9 New Horizons: Anticipated Scientific Investigations at the Pluto System Leslie A. Young · S. Alan Stern · Harold A. Weaver · Fran Bagenal · Richard P. Binzel · Bonnie Buratti · Andrew F. Cheng · Dale Cruikshank · G. Randall Gladstone · William M. Grundy · David P. Hinson · Mihaly Horanyi · Donald E. Jennings · Ivan R. Linscott · David J. McComas · William B. McKinnon · Ralph McNutt · Jeffery M. Moore · Scott Murchie · Catherine B. Olkin · Carolyn C. Porco · Harold Reitsema · Dennis C. Reuter · John R. Spencer · David C. Slater · Darrell Strobel · Michael E. Summers · G. Leonard Tyler Received: 5 January 2007 / Accepted: 28 October 2008 / Published online: 3 December 2008 © Springer Science+Business Media B.V. 2008 L.A. Young () · S.A. Stern · C.B. Olkin · J.R. Spencer Southwest Research Institute, Boulder, CO, USA e-mail: [email protected] H.A. Weaver · A.F. Cheng · R. McNutt · S. Murchie Johns Hopkins University Applied Physics Lab., Laurel, MD, USA F. Bagenal · M. Horanyi University of Colorado, Boulder, CO, USA R.P. Binzel Massachusetts Institute of Technology, Cambridge, MA, USA B. Buratti Jet Propulsion Laboratory, Pasadena, CA, USA D. Cruikshank · J.M. Moore NASA Ames Research Center, Moffett Field, CA, USA G.R. Gladstone · D.J. McComas · D.C. Slater Southwest Research Institute, San Antonio, TX, USA W.M. Grundy Lowell Observatory, Flagstaff, AZ, USA D.P. Hinson · I.R. Linscott · G.L. Tyler Stanford University, Stanford, CA, USA D.E. Jennings · D.C. Reuter NASA Goddard Space Flight Center, Greenbelt, MD, USA 94 L.A. Young et al. -
Curriculum Vitae: Dr
Curriculum Vitae: Dr. Yanga R. “Yan” Fernandez´ UniversityofCentralFlorida Ph: +1-407-8232325 Department of Physics Fax: +1-407-8235112 4000 Central Florida Blvd. Email: [email protected] Orlando, FL 32816-2385 U.S.A. Website: physics.ucf.edu/∼yfernandez/ Education University of Maryland, College Park, Ph.D. Astronomy, 1999 Dissertation: Physical Properties of Cometary Nuclei University of Maryland, College Park, M.S. Astronomy, 1995 California Institute of Technology, B.S. with Honors, Astronomy, 1993 Professional Experience and Appointments 2019 - present Professor, Department of Physics, University of Central Florida 2016 - present Associate Scientist, Florida Space Institute, University of Central Florida 2011 - 2019 Associate Professor, Department of Physics, University of Central Florida 2005 - 2011 Assistant Professor, Department of Physics, University of Central Florida 2002 - 2005 SIRTF/Spitzer Fellow, Institute for Astronomy, University of Hawai‘i 1999 - 2002 Scientific Researcher, Institute for Astronomy, University of Hawai‘i Honors and Awards • Asteroid (12225) Yanfernandez named in honor. • International Astronomical Union membership, awarded 2012. • SIRTF/Spitzer Fellowship, 2002-2005. • UCF Scroll & Quill Society membership, awarded 2017. External Funding • As PI, 16 grants totalling $1,337K. • As Co-PI or Co-I, 14 grants totalling $531K to YRF. Impact Indicators (as of April 22, 2021) • Google Scholar lists nearly 5500 citations all-time of refereed and unrefereed work. https://scholar.google.com/citations?user=wPjufFkAAAAJ&hl=en. • Astrophysics Data System has recorded about 3600 citations all-time of refereed and unrefereed work. https://tinyurl.com/mufdrktx. Y.R.Fern´andez CV April 2021 1 • Web of Science (WoS) has recorded over 3000 citations all-time of refereed work that is included in WoS. -
Sha'áłchíní Welcome to Science Class! What If… My Teacher Gets Kicked August 27, 2020 out of Zoom?
April 26, 2021 Yá’át’ééh! sha'áłchíní Welcome to science class! What if… My teacher gets kicked August 27, 2020 out of Zoom? Then.. 1. If you get assigned as the host end the meeting. 2. Everyone immediately log out of Zoom. 3. Re-enter the class in 5 minutes. 4. If you do not get back into the meeting after continuous tries, class is cancelled. 5. Refer to agenda slides from website. In case Mrs. Yazzie loses internet connection: ● someone becomes host ● host monitors class until Mrs. Yazzie returns or four minutes have passed ● after 4 minutes host ends class ● everyone tries to re-enter class ● if Mrs. Yazzie doesn’t return after another 4 minutes, class is ended for the day Sun. Mon. Tues. Wed. Thurs. Fri. Sat. 1 Intervention 2 3 Science Project PTC 4-7PM Check-In 4 5 6 7 8 9 10 No school Intervention Science Project Check-In 11 12 13 14 15 16 17 Intervention Science Project Due 40 points 18 19 20 21 22 23 24 Intervention 25 26 27 28 29 30 Community Forum Last Intervention NO SCHOOL 5:30pm No School Sun. Mon. Tues. Wed. Thurs. Fri. Sat. 25 26 27 28 29 30 1 Community Forum Last Day of Intervention 5:30PM No School 2 3 4 5 6 7 8 Last Day of Science Zoom No School 9 10 11 12 13 14 15 Mother’s No Zoom No Zoom No Zoom Return school laptops Day NWEA- Math NWEA-RDG NWEA-LANG No School 16 17 18 19 20 21 22 ALL WORK DUE No School 23 24 25 26 27 28 29 30 31 Last Day of School 8th Grade Promotion Announcements ● April 28th-Community Forum ● Friday, April 30th-NO SCHOOL ● Thurs., May 27th- 8th Grade Promotion ● Thurs., May 27th - Last Day of School Agenda -Announcements and Calendar -Student Objective & Essential Question -Intro to Vocabulary -Dwarf Planets -Kahoot! On a scale from 1-10 with 10 being excellent, how was your weekend? UPDATE! ● INGENUITY-2nd Flight Success! ● Perseverance makes oxygen! Student Objective Day 1, Monday: I can describe the relationship of objects in the solar system. -
Exploring Connections Between Neos and Meteoroid Streams
Observers Meeting NEOCC observations with the ESA OGS, VLT, and LBT Marco Micheli ([email protected]) NEO Statistics ~ 13 700 known NEOs …of which… ~ 510 (4 %) have impact solutions (VIs) in the next century (according to NEODyS and Sentry) However… of those VIs: Only ~2 % have more than one apparition ~90 % are lost! We need to find a way to improve these numbers by: Prevent the new ones from being lost “Recover” some of the lost ones How to do it There are basically three ways to deal with this problem: Extend the observed arc at the discovery apparition Attempt wide-field recoveries at the next apparition Try to locate precovery observations in existing archives These goals can be achieved using: Large aperture telescopes Wide-field imagers Large repositories of astronomical images The observational network ~ 100 collaborators worldwide Plus all of you who More than a dozen telescopes with helped us over the various apertures years with your A wide range of observing techniques observations (astrometry, lightcurves, visual and IR Thank you! colors, spectroscopy, polarimetry, …) ESA Optical Ground Station (OGS) A 1.0 meter ESA telescope in Tenerife, Canary Islands. Originally designed for satellite optical communication experiments. We have 4 to 8 nights per month, around new Moon. ESA Optical Ground Station (OGS) Follow-up activities The OGS is one of the few follow-up facilities that can reach magnitude 22. In 2015 we have: Observed ~250 NEO observed (~20 per run) ~10-15 NEO candidates targeted every night (>50 % turn out to be -
Pluto and Charon
National Aeronautics and Space Administration 0 300,000,000 900,000,000 1,500,000,000 2,100,000,000 2,700,000,000 3,300,000,000 3,900,000,000 4,500,000,000 5,100,000,000 5,700,000,000 kilometers Pluto and Charon www.nasa.gov Pluto is classified as a dwarf planet and is also a member of a Charon’s orbit around Pluto takes 6.4 Earth days, and one Pluto SIGNIFICANT DATES group of objects that orbit in a disc-like zone beyond the orbit of rotation (a Pluto day) takes 6.4 Earth days. Charon neither rises 1930 — Clyde Tombaugh discovers Pluto. Neptune called the Kuiper Belt. This distant realm is populated nor sets but “hovers” over the same spot on Pluto’s surface, 1977–1999 — Pluto’s lopsided orbit brings it slightly closer to with thousands of miniature icy worlds, which formed early in the and the same side of Charon always faces Pluto — this is called the Sun than Neptune. It will be at least 230 years before Pluto history of the solar system. These icy, rocky bodies are called tidal locking. Compared with most of the planets and moons, the moves inward of Neptune’s orbit for 20 years. Kuiper Belt objects or transneptunian objects. Pluto–Charon system is tipped on its side, like Uranus. Pluto’s 1978 — American astronomers James Christy and Robert Har- rotation is retrograde: it rotates “backwards,” from east to west Pluto’s 248-year-long elliptical orbit can take it as far as 49.3 as- rington discover Pluto’s unusually large moon, Charon. -
Instrumental Methods for Professional and Amateur
Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A. -
Results from the New Horizons Encounter with Pluto
EPSC Abstracts Vol. 11, EPSC2017-140, 2017 European Planetary Science Congress 2017 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2017 Results from the New Horizons encounter with Pluto C. B. Olkin (1), S. A. Stern (1), J. R. Spencer (1), H. A. Weaver (2), L. A. Young (1), K. Ennico (3) and the New Horizons Team (1) Southwest Research Institute, Colorado, USA, (2) Johns Hopkins University Applied Physics Laboratory, Maryland, USA (3) NASA Ames Research Center, California, USA ([email protected]) Abstract Hydra) and the various processes that would darken those surfaces over time [5]. In July 2015, the New Horizons spacecraft flew through the Pluto system providing high spatial resolution panchromatic and color visible light imaging, near-infrared composition mapping spectroscopy, UV airglow measurements, UV solar and radio uplink occultations for atmospheric sounding, and in situ plasma and dust measurements that have transformed our understanding of Pluto and its moons [1]. Results from the science investigations focusing on geology, surface composition and atmospheric studies of Pluto and its largest satellite Charon will be presented. We also describe the New Horizons extended mission. 1. Geology and Size Highlights from the geology investigation of Pluto Figure 1: The glacial ices of Sputnik Planitia. The include the discovery of a unexpected diversity of cellular pattern is a surface expression of mobile lid geomorpholgies across the surface, the discovery of a convection. The boundaries of the cells are troughs. deep basin (informally known as Sputnik Planitia) Despite it’s size of ~900,000 km2, there are no containing glacial ices undergoing mobile-lid identified craters across Sputnik Planitia. -
Asteroid Precovery. a Citizen-Science Project Using the Virtual Observatory
Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9 - 13, 2012, in Valencia, Spain. J. C. Guirado, L.M. Lara, V. Quilis, and J. Gorgas (eds.) Asteroid precovery. A citizen-science project using the Virtual Observatory Carlos Rodrigo1;2, Enrique Solano1;2, and Rebeca Pulido1;2 1 Dpt. Astrofisica, CAB (INTA-CSIC), ESAC Campus. P.O. Box 78. 28691 Villanueva de la Ca~nada,Madrid, Spain 2 Spanish Virtual Observatory (SVO) Abstract Precovery is the process of finding an astronomical object in archive data taken before the discovery of the object. The Virtual Observatory project makes it much easier to access large collection of images in astronomical archives and, thus, opens the possibility to explore them to find more information about certain objects, for instance, Near Earth Asteroids. We have started a citizen-science project that combines some automatic algorithms, Virtual Observatory techniques and the participation of many people that, not being professional astronomers, help to find professional results and make a significant contribution to the accurate knowledge of the orbits of NEAs. The project started in July 2011 and during its first year more than 3000 registered users have collaborated to make more than 164.000 measurements corresponding to around 7600 archive images and 1000 different NEAs. As a result of this work, around 2300 new data, for more than 500 objects, have been submitted to the Minor Planet Center for publication. The great reception of the system as well as the results obtained makes it a valuable and reliable tool for improving the orbital parameters of Near Earth Asteroids. -
2015 October
TTSIQ #13 page 1 OCTOBER 2015 www.nasa.gov/press-release/nasa-confirms-evidence-that-liquid-water-flows-on-today-s-mars Flash! Sept. 28, 2015: www.space.com/30674-flowing-water-on-mars-discovery-pictures.html www.space.com/30673-water-flows-on-mars-discovery.html - “boosting odds for life!” These dark, narrow, 100 meter~yards long streaks called “recurring slope lineae” flowing downhill on Mars are inferred to have been formed by contemporary flowing water www.space.com/30683-mars-liquid-water-astronaut-exploration.html INDEX 2 Co-sponsoring Organizations NEWS SECTION pp. 3-56 3-13 Earth Orbit and Mission to Planet Earth 13-14 Space Tourism 15-20 Cislunar Space and the Moon 20-28 Mars 29-33 Asteroids & Comets 34-47 Other Planets & their moons 48-56 Starbound ARTICLES & ESSAY SECTION pp 56-84 56 Replace "Pluto the Dwarf Planet" with "Pluto-Charon Binary Planet" 61 Kepler Shipyards: an Innovative force that could reshape the future 64 Moon Fans + Mars Fans => Collaboration on Joint Project Areas 65 Editor’s List of Needed Science Missions 66 Skyfields 68 Alan Bean: from “Moonwalker” to Artist 69 Economic Assessment and Systems Analysis of an Evolvable Lunar Architecture that Leverages Commercial Space Capabilities and Public-Private-Partnerships 71 An Evolved Commercialized International Space Station 74 Remembrance of Dr. APJ Abdul Kalam 75 The Problem of Rational Investment of Capital in Sustainable Futures on Earth and in Space 75 Recommendations to Overcome Non-Technical Challenges to Cleaning Up Orbital Debris STUDENTS & TEACHERS pp 85-96 Past TTSIQ issues are online at: www.moonsociety.org/international/ttsiq/ and at: www.nss.org/tothestarsOO TTSIQ #13 page 2 OCTOBER 2015 TTSIQ Sponsor Organizations 1. -
New Horizons Explores the Pluto System 2015
The Everest of Planetary Exploration: New Horizons Explores The Pluto System 2015 July 2015 Be There! New Horizons: Science At The Pluto System Total System Characterization • New satellites? Dust rings? • Measure satellite masses, orbits, colors, compositions Total System Characterization Outcome of Giant Impact • Goal: Understand formation of Pluto Pluto system and the Kuiper Belt – and transformation of icy debris early solar system Charon Model: R. Canup (SwRI) Distance (103 km) Global Geology Best “synthetic Pluto” from Hubble 2,300 km Resolution ~500 km Map: M. Buie (SwRI) • High-Res mapping of Pluto and satellites Charon, Nix and Hydra New Horizons: 90 meters/pixel • Search for changes on approach to Pluto, surface-atmosphere interactions, mobile frosts, clouds and hazes • Goal: Understand how dwarf planets evolve; compare and contrast with icy satellites Atmospheric Structure & Escape • Goal: Understand dwarf-planet atmospheres and climates Atmospheric Structure & Escape • Goal: Understand how planets lose their atmospheres Model: D McComas (SwRI) Composition & Temperature Maps • Surface-ice distribution; search for complex organic molecules • Relation of ices to sunlight, topography, atmosphere; evidence for cryovolcanism or geysers • Goal: understand Pluto and Charon as planet and major moon Archetype Kuiper Belt Planet • New Horizons will revolutionize our understanding of icy planets of the Kuiper belt and broader trans-Neptunian population • Pluto “saw” early cataclysmic events, including wholesale reorganization of the solar