Cloning, Expression and Characterisation of the Starter Module from Indanomycin Biosynthesis

Total Page:16

File Type:pdf, Size:1020Kb

Cloning, Expression and Characterisation of the Starter Module from Indanomycin Biosynthesis Cloning, expression and characterisation of the starter module from indanomycin biosynthesis Sasha Rebecca Derrington Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Astbury Centre for Structural Molecular Biology September 2014 The candidate confirms that the submitted work is her own and that the appropriate credit has been given within the thesis where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from this thesis may be published without proper acknowledgement. © 2014 The University of Leeds and Sasha Rebecca Derrington Acknowledgements Firstly, I would like to thank Professor Alan Berry for giving me the opportunity to work in this lab, allowing me to start something completely new, and for the support that he has provided me throughout the project, especially during the thesis dark days. I would also like to thank my second supervisor, Professor Adam Nelson for his supervision, guidance and encouragement. I don’t want to spoil the ending, but a big part of the results includes all of the work I have completed in the NMR spectroscopy facility. None of this would have been possible without the help and support of Dr Gary Thompson and also Dr Arnout Kalverda as well. I would like to thank my friend Dr Theo Karamanos, who has kept me calm and also helped me in NMR spectroscopy. Next I would like to thank my friend Dr James Ault, who not only carried out the awesome mass spectrometry work but for our chats and being supportive, and I would like to thank Dr Chi Trinh for all his help with the crystallography. I would also like to thank Prof. Arwen Pearson and Prof. Sheena Radford for all their support and advice. I have thoroughly enjoyed my four years working in the Astbury centre and have an amazing group of friends who have supported me, made me laugh and above everything made me happy. To Oli, Claire, Rachel, Lydia, Sophia, Jan, Hazel, Rob, Chris, Laura, Tom, Patrick, Paul and everyone else on level 10 (and mass spec), thanks for an amazing four years and putting up with me! And let’s not forget the past Berry members and friends, whom I miss, Lucy Woods, Nicole Timms, Adam Daniels and Sophie Forrest. Finally, I would like to thank my family, my Mum, Dad, Sister and Brother. To my Sister and Brother, thanks for putting up with me and the late phone calls because “I’m scared” and for supporting me. To my Mum and Dad, thank you for everything you have done and continue to do for me, you really are amazing parents and this would have been impossible without you. I really hope I’ve made you proud! i ii I would like to dedicate this thesis work to my Bubbe, Zayde, Grandma, Grandpa and the rest of my wonderful family for all of the love, support and encouragement they have always given me. I am so thankful for everything you have done for me and I hope I have made you proud. iii iv Abstract Nonribosomal peptides and polyketides form important classes of pharmaceutical agents. Several architectures of biosynthetic machinery exist for the construction of these structurally diverse molecules. Many attempts to engineer these proteins have concentrated on the multimodular type I polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). Here, work was carried out to express the NRPS module responsible for starter unit formation from indanomycin biosynthesis in E. coli. Three synthetic genes, for IdmI, IdmJ and IdmK, were cloned and subsequently used in expression trials. Despite multiple attempts, IdmI was always expressed as an insoluble protein. IdmJ was expressed as a soluble protein, and an unexpected post-translational modification was found and investigated. Mutagenesis studies suggested that the unknown post-translational modification was occurring at a cysteine 127. IdmK, the carrier protein, was expressed in a soluble form with good yield. Analysis by mass spectrometry showed that, surprisingly, E. coli was able to phosphopantetheinylate IdmK, which is required for a functional module. Preliminary structure determination was carried out by X-ray crystallography. A complete 3D structure was obtained using NMR spectroscopy of the [15N] and [13C, 15N] labelled protein. Structure determination was performed using CS-ROSETTA, which only uses chemical shift data, and ARIA, which assigns ambiguous NOE distance restraints. Both structure calculations produced comparable structures for IdmK. The structure showed a 3 α-helix bundle, with the same topology, lengths and locations of helices as other carrier proteins. Initial investigations into holo-IdmK suggest that the phosphopantetheine co-factor is directed into the hydrophobic core of the protein. This research has set up the system for future studies to engineer the pathway for novel product biosynthesis. v vi Contents Acknowledgments…………………………………………………..……i Abstract………………………………………………………………..…v Table of contents…………………………………………………...…….vii List of figures…………………………………………………………….xiii Abbreviations…………………………………………………………….xvii 1. Introduction ........................................................................................................ 1 1.1 The Golden Age of Antibiotics ..................................................................... 1 1.2 Natural products as antibiotics ...................................................................... 3 1.2.1 Polyketides ............................................................................................. 4 1.2.2 Nonribosomal peptides........................................................................... 6 1.2.3 Polyketide-nonribosomal peptide hybrid products ................................ 8 1.3 Polyketide synthases ...................................................................................... 9 1.3.1 PKS biosynthetic gene clusters ............................................................ 10 1.3.2 PKS module organisation ..................................................................... 11 1.3.2.1 Acyltransferase (AT) domain ....................................................... 12 1.3.2.2 Ketosynthase (KS) domain ........................................................... 13 1.3.2.3 Acyl carrier protein ....................................................................... 13 1.3.2.4 Chain initiation and termination ................................................... 14 1.3.2.5 Linker regions ............................................................................... 15 1.3.2.6 Accessory domains: KR, DH and ER ........................................... 15 1.3.2.7 Biosynthetic pathways of polyketide synthases and fatty acid synthases 15 1.3.2.8 A model system ............................................................................ 17 1.3.3 Structure determination of PKSs .......................................................... 19 1.3.4 Engineering of PKSs ............................................................................ 24 1.4 Nonribosomal peptide synthetases .............................................................. 28 1.4.1 NRPS biosynthetic gene clusters ......................................................... 28 1.4.2 Biosynthesis of nonribosomal peptides and module organisation ....... 29 1.4.2.1 Adenylation domain ...................................................................... 30 1.4.2.2 Condensation domain ................................................................... 32 1.4.2.3 Peptidyl carrier protein ................................................................. 32 1.4.2.4 Chain termination and macrocyclisation ...................................... 33 1.4.2.5 Epimerase domain......................................................................... 33 vii 1.4.2.6 Cyclisation domain ....................................................................... 34 1.4.2.7 Additional NRP chain modifications ............................................ 36 1.4.2.8 Linking modules in NRPS ............................................................ 36 1.4.2.9 A model system ............................................................................ 36 1.4.3 Structural and mechanistic studies of NRPSs ...................................... 38 1.4.4 Engineering NRPSs ............................................................................. 41 1.5 NRPS-PKS hybrid enzymes ........................................................................ 42 1.5.1 The hybrid NRP/PK indanomycin ....................................................... 43 1.5.1.1 Biosynthetic gene cluster and structure of indanomycin .............. 43 1.5.1.2 Starter unit biosynthesis................................................................ 44 1.6 Project outlines ............................................................................................ 46 2 Materials and methods ..................................................................................... 47 2.1 Materials ...................................................................................................... 47 2.1.1 Chemicals ............................................................................................. 47 2.1.2 Bacterial strains and plasmids .............................................................. 47 2.1.3 Enzymes ............................................................................................... 48 2.1.4 Antibodies ...........................................................................................
Recommended publications
  • Molecular and Immunological Sd0100025 Characterization of Mycobacteria Associated with Bovine Farcy
    MOLECULAR AND IMMUNOLOGICAL SD0100025 CHARACTERIZATION OF MYCOBACTERIA ASSOCIATED WITH BOVINE FARCY. Thesis submitted in accordance with requirements of the University of Khartoum for the Degree of Doctor of Philosophy (Ph.D). By Victor Loku Kwajok B.V.Med. 1978, University of Cairo/Egypt. M.V.Sc.1992, University of Khartoum/Sudan. Supervisor: Dr. Maowia M. Mukhtar. Institute of Endemic Diseases, University of Khartoum. Department of Preventive Medicine and Veterinary Public Health. Faculty of Veterinary Science, University of Khartoum. 2000. 32/27 SOME PAGES ARE MISSING IN THE ORIGINAL DOCUMENT LIST OF CONTENTS DEDICATION. * ii v ACKNOWLEDGEMENTS vi ABBREVIATIONS viii ABSTRACT. xi CHAPTER ONE. REVIEW OF LITERATURE. 1. General Introduction. 1. 1.1. Molecular Systematics of genus Mycobacterium. 2. 1.2. Molecular taxonomy of M. farcinogenese and M. senegalense 11. 1.3. Immunology of bovine farcy agents. 36. CHAPTER TWO. MATERIALS AND METHODOLOGY 41. Isolation, identification and characterization of M. farcinogenes. 2.1 Phenotypic characterization. 41. 2.1.1. Morphological and biochemical tests. 2.1.2. Degradation tests. 2.1.3. Rapid fluorogenic enzyme tests. 2.1.4. Nutritional tests. 2.1.5. Physiological tests. 2.2. Molecular characterization. 52. 2.2.1. DNA extraction and purification 2.2.2. PCR amplification and application. 2.2.3. DNA sequencing of 16SrDNA. 2.2.4. PCR-based restriction fragment length polymorphism. 2.3 Imrmmological analyses of bovine farcy agents. 71. 2.3.1 .EL1SA technique for sera diagnosis. 2.3.2 Animal pathogenicity Tests. 2.3.3 Protein antigen profiles determination using. CHAPTER THREE: RESULTS. 78. CHAPTER. FOUR: DISCUSSION. 124. REFERENCES. 133.
    [Show full text]
  • Science & Policy Meeting Jennifer Lippincott-Schwartz Science in The
    SUMMER 2014 ISSUE 27 encounters page 9 Science in the desert EMBO | EMBL Anniversary Science & Policy Meeting pageS 2 – 3 ANNIVERSARY TH page 8 Interview Jennifer E M B O 50 Lippincott-Schwartz H ©NI Membership expansion EMBO News New funding for senior postdoctoral In perspective Georgina Ferry’s enlarges its membership into evolution, researchers. EMBO Advanced Fellowships book tells the story of the growth and ecology and neurosciences on the offer an additional two years of financial expansion of EMBO since 1964. occasion of its 50th anniversary. support to former and current EMBO Fellows. PAGES 4 – 6 PAGE 11 PAGES 16 www.embo.org HIGHLIGHTS FROM THE EMBO|EMBL ANNIVERSARY SCIENCE AND POLICY MEETING transmissible cancer: the Tasmanian devil facial Science meets policy and politics tumour disease and the canine transmissible venereal tumour. After a ceremony to unveil the 2014 marks the 50th anniversary of EMBO, the 45th anniversary of the ScienceTree (see box), an oak tree planted in soil European Molecular Biology Conference (EMBC), the organization of obtained from countries throughout the European member states who fund EMBO, and the 40th anniversary of the European Union to symbolize the importance of European integration, representatives from the govern- Molecular Biology Laboratory (EMBL). EMBO, EMBC, and EMBL recently ments of France, Luxembourg, Malta, Spain combined their efforts to put together a joint event at the EMBL Advanced and Switzerland took part in a panel discussion Training Centre in Heidelberg, Germany, on 2 and 3 July 2014. The moderated by Marja Makarow, Vice President for Research of the Academy of Finland.
    [Show full text]
  • Antibiotic Sensitivity of Bacterial Pathogens Isolated from Bovine Mastitis Milk
    Content of Research Report A. Project title: Antibiotic Sensitivity of Bacterial Pathogens Isolated From Bovine Mastitis Milk B. Abstract: Antibiotic sensitivity of bacteria isolated from bovine milk samples was investigated. The 18 antibiotics that were evaluated (e.g., penicillin, novobiocin, gentamicin) are commonly used to treat various diseases in cattle, including mastitis, an inflammation of the udder of dairy cows. A common concern in using antibiotics is the increase in drug resistance with time. This project studies if antibiotic resistance is a threat to consumers of raw milk products and if these antibiotics are still effective against mastitis pathogens. The study included isolating and culturing bacteria from quarter milk samples (n=205) collected from mastitic dairy cows from farms in Chino and Ontario, CA. The isolated bacteria were tested for sensitivity to antibiotics using the Kirby Bauer disk diffusion method. The prevalence (%) of resistance to the individual antibiotics was reported. Resistance to penicillin was 45% which may support previous data on penicillin-resistant bacteria, especially Staphylococcus and Streptococcus. Resistance rates (%) for oxytetracycline (26.8%) and tetracycline (22.9%) were low compared to previous studies but a trend was seen in our results that may support concerns of emerging resistance to tetracyclines in both gram- positive and gram-negative bacteria. Similarly, 31.9% of bacterial isolates showed resistance to erythromycin which is at least 30% less than in reported literature concerning emerging resistance to macrolides. More numbers (%) that should be noted are cefazolin (26.3%), ampicillin (29.7%), novobiocin (33.0%), polymyxin B (31.5%), and resistance ranging from 9­ 18% for the other antibiotics.
    [Show full text]
  • The Astbury Centre for Structural Molecular Biology Annual Report
    Front cover illustration Comparison of joint FRET efficiency and fluorescence lifetime histograms for closed SecYEG:SecA:ADP (left) and translocating complex in the presence of proSpy1 substrate and ATP (right). Top and right sides of each histogram show distribution of lifetimes and FRET efficiencies, respectively. This investigation was a collaboration between Roman Tuma, Joel Crossley, Matthew Watson, Sheena Radford (University of Leeds), and Ian Collinson, Dan Watkins (University of Bristol) and Tomas Fessl (University of South Bohemia).More details can be found on pg 93 of this report. i Mission Statement The Astbury Centre for Structural Molecular Biology will promote interdisciplinary research of the highest standard on the structure and function of biological molecules, biomolecular assemblies and complexes using physico-chemical, molecular biological and computational approaches. ii Introduction Welcome to the Annual Report of the Astbury Centre for Structural Molecular Biology 2018. I hope you enjoy reading its contents. It has been yet another busy and successful year for the Centre. The reports in the pages that follow highlight just some of our scientific successes of the last year of our members. We are proud of the strength of our community and our collaborations both locally within the Astbury Centre and University as well as with colleagues from across the globe. I would like to thank every member of the Centre for their hard work over the year: our Support staff, Technicians, Facility Managers, Students, Post-docs, Fellows and Academic staff and, of course, Lucy Gray for her excellent organisation and administrative support. Thank you all. During 2018 the Astbury Centre continued in its mission to “Understand Life in Molecular Detail” through multiple different activities, including some exciting research discoveries.
    [Show full text]
  • Unexpected Drug Residuals in Human Milk in Ankara, Capital of Turkey Ayşe Meltem Ergen1 and Sıddıka Songül Yalçın2*
    Ergen and Yalçın BMC Pregnancy and Childbirth (2019) 19:348 https://doi.org/10.1186/s12884-019-2506-1 RESEARCH ARTICLE Open Access Unexpected drug residuals in human milk in Ankara, capital of Turkey Ayşe Meltem Ergen1 and Sıddıka Songül Yalçın2* Abstract Background: Breast milk is a natural and unique nutrient for optimum growth and development of the newborn. The aim of this study was to investigate the presence of unpredictable drug residues in mothers’ milk and the relationship between drug residues and maternal-infant characteristics. Methods: In a descriptive study, breastfed infants under 3 months of age and their mothers who applied for child health monitoring were enrolled for the study. Information forms were completed for maternal-infant characteristics, breastfeeding problems, crying and sleep characteristics of infants. Maternal and infant anthropometric measurements and maternal milk sample were taken. Edinburgh Postpartum Depression Scale was applied to mothers. RANDOX Infiniplex kit for milk was used for residual analysis. Results: Overall, 90 volunteer mothers and their breastfed infants were taken into the study and the mean age of the mothers and their infants was 31.5 ± 4.2 years and 57.8 ± 18.1 days, respectively. Anti-inflammatory drug residues in breast milk were detected in 30.0% of mothers and all had tolfenamic acid. Overall, 94.4% had quinolone, 93.3% beta-lactam, 31.1% aminoglycoside and 13.3% polymycin residues. Drugs used during pregnancy or lactation period were not affected by the presence of residues. Edinburgh postpartum depression scores of mothers and crying and sleeping problems of infants were similar in cases with and without drug residues in breast milk.
    [Show full text]
  • Fostering Research Into Antimicrobial Resistance in India
    ANTIMICROBIAL RESISTANCE IN SOUTH EAST ASIA Fostering research into antimicrobial resistance BMJ: first published as 10.1136/bmj.j3535 on 6 September 2017. Downloaded from in India Bhabatosh Das and colleagues discuss research and development of new antimicrobials and rapid diagnostics, which are crucial for tackling antimicrobial resistance in India ndia is among the world’s largest Box 1: Examples of the impact of antimicrobial resistance research and interventions consumers of antibiotics.1 The efficacy globally of several antibiotics is threatened by the emergence of resistant microbial • In 2011, the Chinese Ministry of Health implemented a campaign for rational use of pathogens. Multiple factors, such antibiotics in healthcare, accompanied by supervision audits and inspections. Over a year, Ias a high burden of disease, poor public superfluous prescription of antimicrobials was reduced by 10-12% for patients in hospital 45 health infrastructure, rising incomes, and and for outpatients, as were drug sales for antimicrobials. unregulated sales of cheap antibiotics, • The Swedish Strategic Programme against Antibiotic Resistance (STRAMA) led to a decrease have amplified the crisis of antimicrobial in antibiotic use for outpatients from 15.7 to 12.6 daily doses per 1000 inhabitants and from resistance (AMR) in India.2 536 to 410 prescriptions per 1000 inhabitants per year from 1995 to 2004.6 The decrease The Global Action Plan on AMR was most evident for macrolides (65%) emphasises the need to increase • The effect of WHO essential medicines policies was studied in 55 countries. These policies knowledge through surveillance and were linked to reductions in antibiotic use of ≥20% in upper respiratory tract infections.
    [Show full text]
  • Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful.
    [Show full text]
  • Women Physiologists
    Women physiologists: Centenary celebrations and beyond physiologists: celebrations Centenary Women Hodgkin Huxley House 30 Farringdon Lane London EC1R 3AW T +44 (0)20 7269 5718 www.physoc.org • journals.physoc.org Women physiologists: Centenary celebrations and beyond Edited by Susan Wray and Tilli Tansey Forewords by Dame Julia Higgins DBE FRS FREng and Baroness Susan Greenfield CBE HonFRCP Published in 2015 by The Physiological Society At Hodgkin Huxley House, 30 Farringdon Lane, London EC1R 3AW Copyright © 2015 The Physiological Society Foreword copyright © 2015 by Dame Julia Higgins Foreword copyright © 2015 by Baroness Susan Greenfield All rights reserved ISBN 978-0-9933410-0-7 Contents Foreword 6 Centenary celebrations Women in physiology: Centenary celebrations and beyond 8 The landscape for women 25 years on 12 "To dine with ladies smelling of dog"? A brief history of women and The Physiological Society 16 Obituaries Alison Brading (1939-2011) 34 Gertrude Falk (1925-2008) 37 Marianne Fillenz (1924-2012) 39 Olga Hudlická (1926-2014) 42 Shelagh Morrissey (1916-1990) 46 Anne Warner (1940–2012) 48 Maureen Young (1915-2013) 51 Women physiologists Frances Mary Ashcroft 56 Heidi de Wet 58 Susan D Brain 60 Aisah A Aubdool 62 Andrea H. Brand 64 Irene Miguel-Aliaga 66 Barbara Casadei 68 Svetlana Reilly 70 Shamshad Cockcroft 72 Kathryn Garner 74 Dame Kay Davies 76 Lisa Heather 78 Annette Dolphin 80 Claudia Bauer 82 Kim Dora 84 Pooneh Bagher 86 Maria Fitzgerald 88 Stephanie Koch 90 Abigail L. Fowden 92 Amanda Sferruzzi-Perri 94 Christine Holt 96 Paloma T. Gonzalez-Bellido 98 Anne King 100 Ilona Obara 102 Bridget Lumb 104 Emma C Hart 106 Margaret (Mandy) R MacLean 108 Kirsty Mair 110 Eleanor A.
    [Show full text]
  • Australian Biochemist the Magazine of the Australian Society for Biochemistry and Molecular Biology Inc
    ISSN 1443-0193 Australian Biochemist The Magazine of the Australian Society for Biochemistry and Molecular Biology Inc. Volume 47 AUGUST 2016 No.2 SHOWCASE ON RESEARCH Protein Misfolding and Proteostasis THIS ISSUE INCLUDES Showcase on Research Regular Departments A Short History of Amyloid SDS (Students) Page Molecular Chaperones: The Cutting Edge Guardians of the Proteome Off the Beaten Track When Proteostasis Goes Bad: Intellectual Property Protein Aggregation in the Cell Our Sustaining Members Extracellular Chaperones and Forthcoming Meetings Proteostasis Directory INSIDE ComBio2016 International Speaker Profiles Vol 47 No 2 August 2016 AUSTRALIAN BIOCHEMIST Page 1 ‘OSE’ Fill-in Puzzle We have another competition for the readers of the Australian Biochemist. All correct entries received by the Editor (email [email protected]) before 3 October 2016 will enter the draw to receive a gift voucher. With thanks to Rebecca Lew. The purpOSE is to choOSE from thOSE words listed and transpOSE them into the grid. So, clOSE your door, repOSE in a chair, and diagnOSE the answers – you don’t want to lOSE! 6 letters 8 letters ALDOSE FRUCTOSE FUCOSE FURANOSE HEXOSE PYRANOSE KETOSE RIBOSE 9 letters XYLOSE CELLULOSE GALACTOSE 7 letters RAFFINOSE AMYLOSE TREHALOSE GLUCOSE LACTOSE 11 letters MALTOSE DEOXYRIBOSE PENTOSE Australian Biochemist – Editor Chu Kong Liew, Editorial Officer Liana Friedman © 2016 Australian Society for Biochemistry and Molecular Biology Inc. All rights reserved. Page 2 AUSTRALIAN BIOCHEMIST Vol 47 No 2 August 2016 SHOWCASE ON RESEARCH EDITORIAL Molecular Origami: the Importance of Managing Protein Folding In my humble opinion, the most important biological transcription, RNA processing and transport, translation, molecule is the protein.
    [Show full text]
  • Annual Report 2004
    Astbury Centre for Structural Molecular Biology University of Leeds Annual Report 2004 © The University of Leeds, 2005 Front cover illustration: A collage of pictures illustrating the work of the Astbury Centre. Upper left: The contribution of the charge state ions to the folded (red), partially folded (yellow) and unfolded (green) β2-microglobulin conformers determined by ESI-Mass Spectrometry (see page 9); Upper right: Mechanical unfolding of proteins: a contour plot showing the difference in distance between every pair of amino-acids in protein L after pulling the protein apart by extensions of 1.6 Å before, and 1.6 Å after, the mechanical unfolding event. Pairs of residues that move further apart from each other during unfolding are coloured purple to green (-10 to 0Å), those that become closer to one another are shown in green to red (0 to 10 Å) (see page 23); Lower right: Dynamics on the ps-ns timescales for the backbone of apo-MS2W82R as detected by {1H} -15N Heteronculear nOe experiments. The image shows a tubes representation of the backbone of MS2W82R [PDB code 1MSC] with {1H}-15N heteronuclear nOe intensity shown by shading from white to black. White indicates little mobility [nOe ~ 0.8-0.9] and black indicates significant mobility [minimum nOe = 0.13] (see page 107); Lower left: Ribbon diagram of an AB coat protein dimer from the MS2 phage (subunit A in blue, B in green) complexed with the wild-type MS2 RNA stem-loop operator (shown in stick format) (see page 95). Acknowledgement The Astbury Centre for Structural Molecular Biology thanks its many sponsors for support of the work and its members for writing these reports.
    [Show full text]
  • BIOLOGY 639 SCIENCE ONLINE the Unexpected Brains Behind Blood Vessel Growth 641 THIS WEEK in SCIENCE 668 U.K
    4 February 2005 Vol. 307 No. 5710 Pages 629–796 $10 07%.'+%#%+& 2416'+0(70%6+10 37#06+6#6+8' 51(69#4' #/2.+(+%#6+10 %'..$+1.1); %.10+0) /+%41#44#;5 #0#.;5+5 #0#.;5+5 2%4 51.76+105 Finish first with a superior species. 50% faster real-time results with FullVelocity™ QPCR Kits! Our FullVelocity™ master mixes use a novel enzyme species to deliver Superior Performance vs. Taq -Based Reagents FullVelocity™ Taq -Based real-time results faster than conventional reagents. With a simple change Reagent Kits Reagent Kits Enzyme species High-speed Thermus to the thermal profile on your existing real-time PCR system, the archaeal Fast time to results FullVelocity technology provides you high-speed amplification without Enzyme thermostability dUTP incorporation requiring any special equipment or re-optimization. SYBR® Green tolerance Price per reaction $$$ • Fast, economical • Efficient, specific and • Probe and SYBR® results sensitive Green chemistries Need More Information? Give Us A Call: Ask Us About These Great Products: Stratagene USA and Canada Stratagene Europe FullVelocity™ QPCR Master Mix* 600561 Order: (800) 424-5444 x3 Order: 00800-7000-7000 FullVelocity™ QRT-PCR Master Mix* 600562 Technical Services: (800) 894-1304 Technical Services: 00800-7400-7400 FullVelocity™ SYBR® Green QPCR Master Mix 600581 FullVelocity™ SYBR® Green QRT-PCR Master Mix 600582 Stratagene Japan K.K. *U.S. Patent Nos. 6,528,254, 6,548,250, and patents pending. Order: 03-5159-2060 Purchase of these products is accompanied by a license to use them in the Polymerase Chain Reaction (PCR) Technical Services: 03-5159-2070 process in conjunction with a thermal cycler whose use in the automated performance of the PCR process is YYYUVTCVCIGPGEQO covered by the up-front license fee, either by payment to Applied Biosystems or as purchased, i.e., an authorized thermal cycler.
    [Show full text]
  • Review on Plant Antimicrobials: a Mechanistic Viewpoint Bahman Khameneh1, Milad Iranshahy2,3, Vahid Soheili1 and Bibi Sedigheh Fazly Bazzaz3*
    Khameneh et al. Antimicrobial Resistance and Infection Control (2019) 8:118 https://doi.org/10.1186/s13756-019-0559-6 REVIEW Open Access Review on plant antimicrobials: a mechanistic viewpoint Bahman Khameneh1, Milad Iranshahy2,3, Vahid Soheili1 and Bibi Sedigheh Fazly Bazzaz3* Abstract Microbial resistance to classical antibiotics and its rapid progression have raised serious concern in the treatment of infectious diseases. Recently, many studies have been directed towards finding promising solutions to overcome these problems. Phytochemicals have exerted potential antibacterial activities against sensitive and resistant pathogens via different mechanisms of action. In this review, we have summarized the main antibiotic resistance mechanisms of bacteria and also discussed how phytochemicals belonging to different chemical classes could reverse the antibiotic resistance. Next to containing direct antimicrobial activities, some of them have exerted in vitro synergistic effects when being combined with conventional antibiotics. Considering these facts, it could be stated that phytochemicals represent a valuable source of bioactive compounds with potent antimicrobial activities. Keywords: Antibiotic-resistant, Antimicrobial activity, Combination therapy, Mechanism of action, Natural products, Phytochemicals Introduction bacteria [10, 12–14]. However, up to this date, the Today’s, microbial infections, resistance to antibiotic structure-activity relationships and mechanisms of action drugs, have been the biggest challenges, which threaten of natural compounds have largely remained elusive. In the health of societies. Microbial infections are responsible the present review, we have focused on describing the re- for millions of deaths every year worldwide. In 2013, 9.2 lationship between the structure of natural compounds million deaths have been reported because of infections and their possible mechanism of action.
    [Show full text]