An Extension to Endoreversible Thermodynamics for Multi-Extensity Fluxes and Chemical Reaction Processes

Total Page:16

File Type:pdf, Size:1020Kb

An Extension to Endoreversible Thermodynamics for Multi-Extensity Fluxes and Chemical Reaction Processes An Extension to Endoreversible Thermodynamics for Multi-Extensity Fluxes and Chemical Reaction Processes Von der Fakult¨at fur¨ Naturwissenschaften der Technischen Universit¨at Chemnitz genehmigte Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt von Katharina Wagner, M. Sc. geboren am 25.10.1984 in Frankenberg eingereicht am 30. April 2014 Gutachter: Prof. Dr. Karl Heinz Hoffmann Prof. Dr. Bjarne Andresen Tag der Verteidigung: 20. Juni 2014 2 Bibliographische Beschreibung Wagner, Katharina Extensions to Endoreversible Thermodynamics for Multi-Extensity Fluxes and Chemical Reaction Processes Technische Universit¨at Chemnitz, Fakult¨at fur¨ Naturwissenschaften Dissertation (in englischer Sprache), 2014 102 Seiten, 28 Abbildungen, 82 Literaturzitate Referat In dieser Arbeit erweitere ich den Formalismus der endoreversiblen Thermodynamik, um Flusse¨ mit mehr als einer extensiven Gr¨oße sowie chemische Reaktionsprozesse modellieren zu k¨onnen. Mit Hilfe dieser Erweiterungen er¨offnen sich zahlreiche neue Anwendungsm¨oglichkeiten fur¨ endoreversible Modelle. Flusse¨ mit mehreren extensi- ven Gr¨oßen sind fur¨ die Betrachtung von Massestr¨omen ebenso n¨otig wie fur¨ Prozesse, bei denen sowohl Volumen als auch Entropie zwischen zwei Teilsystem ausgetauscht werden. Fur¨ sowohl reversibel wie auch irreversibel gefuhrte¨ chemische Reaktions- prozesse wird ein neues Teilsystem { der Reaktor\ { vorgestellt, welches sich ¨ahnlich " wie endoreversible Maschinen durch Bilanzgleichungen auszeichnet. Der Unterschied zu den Maschinen besteht in den Produktions- bzw. Vernichtungstermen in den Teil- chenzahlbilanzen sowie der m¨oglichen Entropieproduktion innerhalb des Reaktors. Beide Erweiterungen finden dann in einem endoreversiblen Modell einer Brennstoff- zelle Anwendung. Dabei werden Flusse¨ mehrerer gekoppelter Extensit¨aten fur¨ den Zustrom von Wasserstoff und Sauerstoff sowie fur¨ den Protonentransport durch die Elektrolytmembran ben¨otigt. Chemische Reaktionen treten in der Anode und Katho- de der Brennstoffzelle auf. Diese werden mit dem neu eingefuhrten¨ Teilsystem, dem Reaktor, eingebunden. Mit Hilfe des Modells werden dann Wirkungsgrad, Zellspan- nung und Leistung einer Brennstoffzelle unter Berucksichtigung¨ der Partialdrucke¨ der Substanzen, der Temperatur sowie der Dissipation beim Protonentransport be- rechnet. Dabei zeigt sich, dass experimentelle Daten fur¨ die Zellspannung sowohl qualitativ als auch n¨aherungsweise quantitativ durch das Modell abgebildet werden k¨onnen. Der Vorteil des endoreversiblen Modells liegt dabei in der M¨oglichkeit, mit nur einem Modell neben den genannten Kenngr¨oßen auch die abgegebene W¨arme sowie die Entropieproduktion zu quantifizieren und den einzelnen Teilprozessen zu- zuordnen. Schlagworte Endoreversible Thermodynamik, Nichtgleichgewichtsthermodynamik, Ideales Gas, van der Waals Gas, Brennstoffzelle, Modellierung, Kreisprozesse, Chemische Reak- tionen, Wirkungsgrad Abstract In this thesis extensions to the formalism of endoreversible thermodynamics for multi- extensity fluxes and chemical reactions are introduced. These extensions make it possible to model a great variety of systems which could not be investigated with standard endoreversible thermodynamics. Multi-extensity fluxes are important when studying processes with matter fluxes or processes in which volume and entropy are exchanged between subsystems. For including reversible as well as irreversible chemical reaction processes a new type of subsystems is introduced { the so called reactor. It is similar to endoreversible engines, because the fluxes connected to it are balanced. The difference appears in the balance equations for particle numbers, which contain production or destruction terms, and in the possible entropy production in the reactor. Both extensions are then applied to an endoreversible fuel cell model. The chemical reactions in the anode and cathode of the fuel cell are included with the newly introduced subsystem { the reactor. For the transport of the reactants and products as well as the proton transport through the electrolyte membrane, the multi-extensity fluxes are used. This fuel cell model is then used to calculate power output, efficiency and cell voltage of a fuel cell with irreversibilities in the proton and electron transport. It directly connects the pressure and temperature dependencies of the cell voltage with the dissipation due to membrane resistance. Additionally, beside the listed performance measures it is possible to quantify and localize the entropy production and dissipated heat with only this one model. Contents 1 Introduction 9 1.1 Document Structure . 11 2 Endoreversible Thermodynamics 13 2.1 General Formalism . 13 2.1.1 Subsystems . 14 Reservoirs . 15 Engines .............................. 15 2.1.2 Interactions . 16 2.2 Extension for Multi-Extensity Fluxes . 17 2.3 Ideal Gas . 21 2.3.1 Gibbs Equation and Principal Equation of State . 21 2.3.2 Infinite Reservoirs . 23 2.3.3 Finite Reservoirs . 24 Finite Reservoirs with Constant Pressure . 24 Finite Reservoirs with Constant Volume . 27 2.3.4 Reversible Engines . 30 Combining Gas Fluxes . 33 2.3.5 Interactions . 35 Interactions with Volume, Particle and Entropy Flux . 35 Interactions with Volume and Entropy Flux . 36 Interactions with Particle and Entropy Flux . 40 2.3.6 Example: Pressure Regulator . 42 2.4 Van der Waals Gas . 45 2.4.1 Gibbs Equation and Principal Equation of State . 48 2.4.2 Interactions . 49 Interactions with Volume and Entropy Flux . 49 2.4.3 Example: Pressure Regulator . 51 2.5 Summary ................................. 53 3 Chemical Reactions 55 3.1 Chemical Engines Without Reactions . 56 3.2 Chemical Engines with Reactions . 58 3.2.1 Reversible Reactions vs. Reversible Thermodynamic Processes 59 7 Contents 3.2.2 A New Subsystem { the Reactor . 60 3.2.3 Reversible Reaction Processes . 63 Reaction at Constant Volume . 64 Reaction at Constant Pressure . 65 3.2.4 Irreversible Reaction Processes . 67 Reaction at Constant Volume . 68 Reaction at Constant Pressure . 69 3.3 Summary ................................. 70 4 Fuel Cells 73 4.1 Structure of a PEM Fuel Cell . 73 4.2 Cell Voltage and Fuel Cell Efficiency . 74 4.3 Endoreversible Modeling of PEM Fuel Cells . 76 4.3.1 Reversible Fuel Cell Model . 76 4.3.2 Endoreversible Fuel Cell Model . 79 4.4 Summary ................................. 87 5 Conclusion 89 Nomenclature 91 Bibliography 93 8 1 Introduction Classical equilibrium thermodynamics has been developed in the 19th century. It offers a macroscopic theory for the description of thermodynamic systems in equi- librium. It concentrates on states of thermodynamic systems rather than processes. Thermodynamic processes are usually understood as a quasi-static sequences of equi- libria. Within the classical theory, processes are completely reversible, which for real systems would require infinitely slow execution. This leads to infinitely small rates, e.g. for energy conversion. The Carnot process [17] is an example for a completely reversible process. The Carnot efficiency ηC = 1 TL=TH gives the fraction of the heat, which is taken from a high temperature reservoir,− that is converted into work. The rest of the heat is released to a lower temperature reservoir. Since the Carnot process is completely reversible and there does not occur any dissipation, this is the highest efficiency reachable in a heat engine which operates between temperatures TL and TH. In real processes, however, finite rates are desired. Therefore, finite and thus ir- reversible fluxes are required. Over the years there have been various attempts in engineering and physics to include irreversibilities in thermodynamic descriptions, for instance under labels like finite-time thermodynamics, Onsager theory, extended thermodynamics and so on. A great number of publications was focused on irre- versibilities in heat engines (e.g. [6, 7]). In [57], Muller¨ et al. give an extensive overview of \Thermodynamics of irreversible processes { past and present", including the work of Cattaneo, Prigogine and Onsager. In 1979 one of the fields in finite-time thermodynamics was labeled \endoreversible" thermodynamics by Rubin [68, 69]. He defined an \endoreversible engine to be an engine such that during its operation its working fluid undergoes reversible transfor- mations." This definition includes all the reversible engines in classical equilibrium thermodynamics, such as the Carnot engine. \More importantly [. ], the subclass of engines which are coupled to the external world via irreversible processes" [68] is included in the definition of endoreversible engines. The most important and most investigated examples of such endoreversible engines are the Novikov heat en- gine [59, 60] and the Curzon-Ahlborn (CA) heat engine [25]. Fischer et al. [33] found that a simple Novikov model can accurately render an Otto engine if the parameters are adjusted appropriately. The CA engine has been discussed in great detail in literature. In its original form, 9 1 Introduction it consists of a Carnot heat engine that is coupled irreversibly to the high and low temperature reservoirs. The operating point of maximum efficiency for such an en- doreversible heat engine is not desirable, since the power output at this point goes to zero. However, the power over efficiency curve shows an operating point of maximum p power at the CA efficiency, ηCA = 1 TL=TH. This efficiency is a good approxima- tion of real power plant efficiencies (comparisons− can be found in [14] and [25]). Various
Recommended publications
  • Thermodynamics of Metal Extraction
    THERMODYNAMICS OF METAL EXTRACTION By Rohit Kumar 2019UGMMO21 Ritu Singh 2019UGMM049 Dhiraj Kumar 2019UGMM077 INTRODUCTION In general, a process or extraction of metals has two components: 1. Severance:produces, through chemical reaction, two or more new phases, one of which is much richer in the valuable content than others. 2. Separation : involves physical separation of one phase from the others Three types of processes are used for accomplishing severance : 1. Pyrometallurgical: Chemical reactions take place at high temperatures. 2. Hydrometallurgical: Chemical reactions carried out in aqueous media. 3. Electrometallurgical: Involves electrochemical reactions. Advantages of Pyrometallurgical processes 1. Option of using a cheap reducing agent, (such as C, CO). As a result, the unit cost is 5-10 times lower than that of the reductants used in electrolytic processes where electric power often is the reductant. 2. Enhanced reaction rates at high temperature . 3. Simplified separation of (molten) product phase at high temperature. 4. Simplified recovery of precious metals ( Au,Ag,Cu) at high temperature. 5. Ability to shift reaction equilibria by changing temperatures. THERMODYNAMICS The Gibbs free energy(G) , of the system is the energy available in the system to do work . It is relevant to us here, because at constant temperature and pressure it considers only variables contained within the system . 퐺 = 퐻 − 푇푆 Here, T is the temperature of the system S is the entropy, or disorder, of the system. H is the enthalpy of the system, defined as: 퐻 = 푈 + 푃푉 Where U is the intern energy , P is the pressure and V is the volume. If the system is changed by a small amount , we can differentiate the above functions: 푑퐺 = 푑퐻 − 푇푑푆 − 푆푑푇 And 푑퐻 = 푑푈 − 푃푑푉 + 푉푑푃 From the first law, 푑푈 = 푑푞 − 푑푤 And from second law, 푑푆 = 푑푞/푇 We see that, 푑퐺 = 푑푞 − 푑푤 + 푃푑푉 + 푉푑푃 − 푇푑푆 − 푆푑푇 푑퐺 = −푑푤 + 푃푑푉 + 푉푑푃 − 푆푑푇 (푑푤 = 푃푑푉) 푑퐺 = 푉푑푃 − 푆푑푇 The above equations show that if the temperature and pressure are kept constant, the free energy does not change.
    [Show full text]
  • Thermodynamic and Kinetic Investigation of a Chemical Reaction-Based Miniature Heat Pump Scott M
    Purdue University Purdue e-Pubs CTRC Research Publications Cooling Technologies Research Center 2012 Thermodynamic and Kinetic Investigation of a Chemical Reaction-Based Miniature Heat Pump Scott M. Flueckiger Purdue University Fabien Volle Laboratoire des Sciences des Procédés et des Matériaux S V. Garimella Purdue University, [email protected] Rajiv K. Mongia Intel Corporation Follow this and additional works at: http://docs.lib.purdue.edu/coolingpubs Flueckiger, Scott M.; Volle, Fabien; Garimella, S V.; and Mongia, Rajiv K., "Thermodynamic and Kinetic Investigation of a Chemical Reaction-Based Miniature Heat Pump" (2012). CTRC Research Publications. Paper 182. http://dx.doi.org/http://dx.doi.org/10.1016/j.enconman.2012.04.015 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Thermodynamic and Kinetic Investigation of a Chemical Reaction-Based Miniature Heat Pump* Scott M. Flueckiger1, Fabien Volle2, Suresh V. Garimella1**, Rajiv K. Mongia3 1 Cooling Technologies Research Center, an NSF I/UCRC School of Mechanical Engineering and Birck Nanotechnology Center 585 Purdue Mall, Purdue University West Lafayette, Indiana 47907-2088 USA 2 Laboratoire des Sciences des Procédés et des Matériaux (LSPM, UPR 3407 CNRS), Université Paris XIII, 99 avenue J. B. Clément, 93430 Villetaneuse, France 3 Intel Corporation Santa Clara, California 95054 USA * Submitted for publication in Energy Conversion and Management ** Author to who correspondence should be addressed: (765) 494-5621, [email protected] Abstract Representative reversible endothermic chemical reactions (paraldehyde depolymerization and 2-proponal dehydrogenation) are theoretically assessed for their use in a chemical heat pump design for compact thermal management applications.
    [Show full text]
  • Reaction Kinetics
    CHAPTER 17 Reaction Kinetics Chemists can determine the rates at which chemical reactions occur. The Thermite Reaction The Reaction Process SECTION 1 OBJECTIVES Explain the concept of B y studying many types of experiments, chemists have found that reaction mechanism. chemical reactions occur at widely differing rates. For example, in the presence of air, iron rusts very slowly, whereas the methane in natural Use the collision theory to gas burns rapidly. The speed of a chemical reaction depends on the interpret chemical reactions. energy pathway that a reaction follows and the changes that take place on the molecular level when substances interact. In this chapter, you will study the factors that affect how fast chemical reactions take place. Define activated complex. Relate activation energy to enthalpy of reaction. Reaction Mechanisms If you mix aqueous solutions of HCl and NaOH, an extremely rapid neutralization reaction occurs, as shown in Figure 1. + + − + + + − ⎯→ + + + − H3O (aq) Cl (aq) Na (aq) OH (aq) 2H2O(l) Na (aq) Cl (aq) The reaction is practically instantaneous; the rate is limited only by the + − speed with which the H3O and OH ions can diffuse through the water to meet each other. On the other hand, reactions between ions of the same charge and between molecular substances are not instantaneous. Negative ions repel each other, as do positive ions. The electron clouds of molecules also repel each other strongly at very short distances. Therefore, only ions or molecules with very high kinetic energy can overcome repulsive forces and get close enough to react. In this section, we will limit our discussion to reactions between molecules.
    [Show full text]
  • The Chemical Reaction Engineering Module User's Guide
    Chemical Reaction Engineering Module User’s Guide Chemical Reaction Engineering Module User’s Guide © 1998–2019 COMSOL Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991; 8,219,373; 8,457,932; 8,954,302; 9,098,106; 9,146,652; 9,323,503; 9,372,673; 9,454,625; and 10,019,544. Patents pending. This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the license agreement. COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Compiler, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks. Version: COMSOL 5.5 Contact Information Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact Technical Support, or search for an address and phone number. You can also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for address and contact information. If you need to contact Support, an online request form is located at the COMSOL Access page at www.comsol.com/support/case. Other useful links include: • Support Center: www.comsol.com/support • Product Download: www.comsol.com/product-download • Product Updates: www.comsol.com/support/updates • COMSOL Blog: www.comsol.com/blogs • Discussion Forum: www.comsol.com/community • Events: www.comsol.com/events • COMSOL Video Gallery: www.comsol.com/video • Support Knowledge Base: www.comsol.com/support/knowledgebase Part number: CM021601 Contents Chapter 1: User’s Guide Introduction About the Chemical Reaction Engineering Module 14 The Scope of the Chemical Reaction Engineering Module .
    [Show full text]
  • Steady State, Quasi-Equilibrium, and Transition State Theory
    Manuscript ID: ed-2016-00957b.R2 (Revised) Some Considerations on the Fundamentals of Chemical Kinetics: Steady State, Quasi-Equilibrium, and Transition State Theory Joaquin F. Perez-Benito* Departamento de Ciencia de Materiales y Quimica Fisica, Seccion de Quimica Fisica, Facultad de Quimica, Universidad de Barcelona, Marti i Franques 1, 08028 Barcelona, Spain 1 ___________________________________________________________________________ ABSTRACT: The elementary reaction sequence A I Products is the simplest mechanism for which the steady-state and quasi-equilibrium kinetic approximations can be applied. The exact integrated solutions for this chemical system allow inferring the conditions that must fulfil the rate constants for the different approximations to hold. A graphical approach showing the behavior of the exact and approximate intermediate concentrations might help to clarify the use of these methods in the teaching of chemical kinetics. Finally, the previously acquired ideas on the approximate kinetic methods lead to the proposal that activated complexes in steady state rather than in quasi-equilibrium with the reactants might be a closer to reality alternative in the mathematical development of Transition State Theory (TST), leading to an expression for the rate constant of an elementary irreversible reaction that differs only in the factor 1 ( being the transmission coefficient) with respect to that given by conventional TST, and to an expression for the equilibrium constant of an elementary reversible reaction more compatible
    [Show full text]
  • Biodiesel Fundamentals for High School Chemistry Classes
    Biodiesel Fundamentals for High School Chemistry Classes Laboratory 4: Chemical Equilibrium in Biodiesel Production Topics Covered x Forward chemical reactions vs. reverse reactions x Chemical reactions in equilibrium x Ways to stimulate a reaction to proceed towards completion x Chemical reactions involved in biodiesel production Equipment Needed (per pair or group) 250 mL flask and small watch glass or stopper 125 mL Erlenmeyer flask and stopper Separatory funnel, 250 mL Stirring hot plate and magnetic stir bar Thermometer Aluminum foil Weighing scale (accurate to 0.001g) Reagents Needed (per pair or group) 20 grams methanol (anhydrous, reagent grade) 1 gram potassium hydroxide (as catalyst) 100 grams soybean oil (representative molecular weight = 877 g/mol) (can be replaced by canola oil, or other types of virgin vegetable oil) Background: Introduction to Chemical Equilibrium Chemical reactions can go forwards and backwards at the same time. Substances in a closed container can react with each other to produce new substances (referred to as the “forward reaction”); these new substances can also react with each other to form the original substances (referred to as the “reverse reaction”). As a chemical change starts, the quantities of the components on the left side of the reaction equation will decrease, and those on the right side will increase. The eventual results depend on the nature of the overall reaction. A reversible reaction is a reaction in which both the forward and reverse reactions are significant. An example is sodium chloride (NaCl) reacting with sulfuric acid (H2SO4) to produce sodium sulfate (Na2SO4) and hydrochloric acid (HCl): 25 Biodiesel Education Program | Biological and Agricultural Engineering | University of Idaho Biodiesel Fundamentals for High School Chemistry Classes 2NaCl + H2SO4 Na2SO4 + 2HCl eq.
    [Show full text]
  • Does an Irreversible Chemical Cycle Support Equilibrium?
    Does an irreversible chemical cycle support equilibrium? Kinshuk Banerjee and Kamal Bhattacharyya1 Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India. Abstract The impossibility of attaining equilibrium for cyclic chemical reac- tion networks with irreversible steps is apparently due to a divergent entropy production rate. A deeper reason seems to be the violation of the detailed balance condition. In this work, we discuss how the standard theoretical framework can be adapted to include irreversible cycles, avoiding the divergence. With properly redefined force terms, such systems are also seen to reach and sustain equilibria that are characterized by the vanishing of the entropy production rate, though detailed balance is not maintained. Equivalence of the present for- mulation with Onsager’s original prescription is established for both reversible and irreversible cycles, with a few adjustments in the lat- ter case. Further justification of the attainment of true equilibrium is provided with the help of the minimum entropy production principle. All the results are generalized for an irreversible cycle comprising of N number of species. 1 Introduction Chemical reactions play a very important and interesting part in the theory and applications of non-equilibrium thermodynamics since inception [1, 2, 3, 4, 5]. The irreversibility of processes in real systems [6, 7, 8, 9] all around us and inside our bodies are almost always connected to chemical reactions [10]. Thus, as was the case with equilibrium thermodynamics, major attention is paid towards chemical systems throughout the development of this discipline arXiv:1309.0960v1 [physics.chem-ph] 4 Sep 2013 [11, 12, 13, 14, 15].
    [Show full text]
  • Gibbs Free Energy - Wikipedia, the Free Encyclopedia 頁 1 / 6
    Gibbs free energy - Wikipedia, the free encyclopedia 頁 1 / 6 Gibbs free energy From Wikipedia, the free encyclopedia In thermodynamics, the Gibbs free energy (IUPAC recommended name: Gibbs energy or Gibbs Thermodynamics function; also known as free enthalpy[1] to distinguish it from Helmholtz free energy) is a thermodynamic potential that measures the "useful" or process-initiating work obtainable from a thermodynamic system at a constant temperature and pressure (isothermal, isobaric). Just as in mechanics, where potential energy is defined as capacity to do work, similarly different potentials have different meanings. Gibbs energy is the capacity of a system to do non-mechanical work and ΔG measures the non- mechanical work done on it. The Gibbs free energy is the maximum amount of non-expansion work that can be extracted from a closed system; this maximum can be attained only in a completely reversible Branches process. When a system changes from a well-defined initial state to a well-defined final state, the Gibbs free energy ΔG equals the work exchanged by the system with its surroundings, minus the work of the Classical · Statistical · Chemical pressure forces, during a reversible transformation of the system from the same initial state to the same Equilibrium / Non-equilibrium final state.[2] Thermofluids Laws Gibbs energy (also referred to as ∆G) is also the chemical potential that is minimized when a system reaches equilibrium at constant pressure and temperature. Its derivative with respect to the reaction Zeroth · First · Second · Third coordinate of the system vanishes at the equilibrium point. As such, it is a convenient criterion of Systems spontaneity for processes with constant pressure and temperature.
    [Show full text]
  • Thermodynamics, Chemical Equilibrium, and Gibbs Free Energy
    1/21/14 OCN 623: Thermodynamics, Chemical Equilibrium, and Gibbs Free Energy or how to predict chemical reactions without doing experiments Introduction • We want to answer these questions: • Will this reaction go? • If so, how far can it proceed? We will do this by using thermodynamics. • This lecture will be restricted to a small subset of thermodynamics... 1 1/21/14 Outline • Definitions • Thermodynamics basics • Chemical Equilibrium • Free Energy • Aquatic redox reactions in the environment Definitions • Extensive properties -depend on the amount of material – e.g. # of moles, mass or volume of material – examples in chemical thermodynamics: – G -- Gibbs free energy – H -- enthalpy • Intensive properties - do not depend on quantity or mass e.g. – temperature – pressure – density – refractive index 2 1/21/14 Reversible and irreversible processes • Reversible process occurs under equilibrium conditions e.g. gas expanding against a piston Net result - system & surroundings back to initial state P p p = P + ∂p reversible p = P + ∆p irreversible Reversible Process • No friction or other energy dissipation • System can return to its original state • Very few processes are really reversible in practice – e.g. Daniell Cell Zn + CuSO4 = ZnS04 + Cu with balancing external emf 3 1/21/14 Daniell Cell Zn oxidation, Cu reduction Zn + CuSO4 = ZnS04 + Cu 2+ - with balancing external emf Zn(s) = Zn (aq) + 2e Cu2+ +2e- = Cu -cell voltage is a measure of: (aq) (s) ability of oxidant to gain electrons, ability of reductant to lose electrons. Compression of gases Vaporization of liquids Reversibility is a concept used for comparison Will get more of this next lecture, covering redox potential Spontaneous processes • Occur without external assistance – e.g.
    [Show full text]
  • Affinity’: Historical Development in Chemistry and Pharmacology
    Bull. Hist. Chem., VOLUME 35, Number 1 (2010) 7 ‘AFFINITY’: HISTORICAL DEVELOPMENT IN CHEMISTRY AND PHARMACOLOGY R B Raffa and R .J. Tallarida, Temple University School of Pharmacy (RBR) and Temple University Medical School (RJT) ‘Affinity’ is a word familiar to chemists and pharma- Affinity as Proximity cologists. It is used to indicate the qualitative concept of ‘attraction’ between a drug molecule and its receptor From the derivation of the word from the Latin, it can molecule without specification of the mechanism (as be seen that affinity originally referred to the proximity in, drug A has affinity for receptor R) and to indicate of two things (6): a relative measure of the concept (as in, drug A by the Affinity [L. affinitas, from affinis, adjacent, related by following measure has greater affinity than does drug B marriage (as opposed to related by blood, consanguin- for receptor R). It also is used to quantify the concept ity); ad, to, and finis, end] (as in, the affinity of drug A for receptor R is some nM This use is purely descriptive in that it refers to a situa- value). Unfortunately, the meaning and use of affinity tion that already exists, i.e., the marriage has taken place have diverged historically such that a pharmacologist already. No predisposing or mechanistic explanation was would likely be puzzled by the recent statement in Kho- explicit––that is, although the state of being ‘related by ruzhii et al. (1) “… the binding affinity, or equivalently marriage’ is recognized as being attributable to emotional binding free energy [emphasis added]…”, whereas a or social driving forces, the final state (the marriage) is chemist would not (2).
    [Show full text]
  • EXAM III Material PART 1 CHEMICAL EQUILIBRIUM Chapter 14 I Dynamic Equilibrium I
    CHEMISTRY 111 LECTURE EXAM III Material PART 1 CHEMICAL EQUILIBRIUM Chapter 14 I Dynamic Equilibrium I. In a closed system a liquid obtains a dynamic equilibrium with its vapor state Dynamic equilibrium: rate of evaporation = rate of condensation II. In a closed system a solid obtains a dynamic equilibrium with its dissolved state Dynamic equilibrium: rate of dissolving = rate of crystallization II Chemical Equilibrium I. EQUILIBRIUM A. BACKGROUND Consider the following reversible reaction: a A + b B ⇌ c C + d D 1. The forward reaction (⇀) and reverse (↽) reactions are occurring simultaneously. 2. The rate for the forward reaction is equal to the rate of the reverse reaction and a dynamic equilibrium is achieved. 3. The ratio of the concentrations of the products to reactants is constant. B. THE EQUILIBRIUM CONSTANT - Types of K's Solutions Kc Gases Kc & Kp Acids Ka Bases Kb Solubility Ksp Ionization of water Kw Hydrolysis Kh Complex ions βη General Keq Page 1 C. EQUILIBRIUM CONSTANT For the reaction, aA + bB ⇌ cC + dD The equilibrium constant ,K, has the form: [C]c [D]d K = c [A]a [B]b D. WRITING K’s 1. N2(g) + 3 H2(g) ⇌ 2 NH3(g) 2. 2 NH3(g) ⇌ N2(g) + 3 H2(g) E. MEANING OF K 1. If K > 1, equilibrium favors the products 2. If K < 1, equilibrium favors the reactants 3. If K = 1, neither is favored F. ACHIEVEMENT OF EQUILIBRIUM Chemical equilibrium is established when the rates of the forward and reverse reactions are equal. CO(g) + 3 H2(g) ⇌ CH4 + H2O(g) Page 2 G.
    [Show full text]
  • Thermodynamics & Acidity
    3 Thermodynamics & Acidity To understand how a cell Metabolism is a defining characteristic of living systems. All living things Goal drives unfavorable reactions. carry out metabolic processes, many of which are unfavorable and require energy to proceed. Indeed, energy is required for the maintenance of life. Why does life require energy, how is it obtained, and where does it go? These Objectives questions can be addressed using thermodynamics. Thermodynamics is After this chapter, you should be able to the study of energy flow within a system. Thermodynamics can be used to predict how systems will behave under different circumstances and whether • explain the concept of Gibbs free energy. reactions are energetically favorable. • explain the relationship of ΔG° to the rxn Energy cannot be created or destroyed favorability of a reaction. The first law of thermodynamics states that energy cannot be created or • relate ΔG°rxn to Keq. destroyed; it can only be converted from one form to another or used to do • apply Le Châtelier’s Principle to chemical equilibria. work. For example, when energy is added to solid water (ice) by heating, the energy of the molecules within the solid ice increases, causing them • predict protonation state from the pH to vibrate more rapidly. As the heating continues, some water molecules of a solution and pK . a gain enough energy to break away from the other water molecules. Because water molecules interact through hydrogen bonding and because energy is needed to break those interactions, the water molecules are converting thermal energy into chemical energy when water is heated. Chemical reactions either release or absorb energy Cells require energy to carry out metabolic reactions, including the synthesis and breakdown of molecules.
    [Show full text]