Thermodynamics & Acidity

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamics & Acidity 3 Thermodynamics & Acidity To understand how a cell Metabolism is a defining characteristic of living systems. All living things Goal drives unfavorable reactions. carry out metabolic processes, many of which are unfavorable and require energy to proceed. Indeed, energy is required for the maintenance of life. Why does life require energy, how is it obtained, and where does it go? These Objectives questions can be addressed using thermodynamics. Thermodynamics is After this chapter, you should be able to the study of energy flow within a system. Thermodynamics can be used to predict how systems will behave under different circumstances and whether • explain the concept of Gibbs free energy. reactions are energetically favorable. • explain the relationship of ΔG° to the rxn Energy cannot be created or destroyed favorability of a reaction. The first law of thermodynamics states that energy cannot be created or • relate ΔG°rxn to Keq. destroyed; it can only be converted from one form to another or used to do • apply Le Châtelier’s Principle to chemical equilibria. work. For example, when energy is added to solid water (ice) by heating, the energy of the molecules within the solid ice increases, causing them • predict protonation state from the pH to vibrate more rapidly. As the heating continues, some water molecules of a solution and pK . a gain enough energy to break away from the other water molecules. Because water molecules interact through hydrogen bonding and because energy is needed to break those interactions, the water molecules are converting thermal energy into chemical energy when water is heated. Chemical reactions either release or absorb energy Cells require energy to carry out metabolic reactions, including the synthesis and breakdown of molecules. To obtain energy, living systems metabolize Chapter 3 Thermodynamics & Acidity 2 Glycolysis O O O O OH ATP ADP P O ATP ADP P HO P O OH O O O O HO O O O HO O O O O HO O O HO OH HO OH P OH OH OH O OH HO HO Glucose OH OH O O O OH O O O O O O O O O O P P P O O O HO O O + P P O O ATP ADP O O O NADH NAD , Pi O O + CoA-SH, NAD OH O O O O O O O O CO , NADH P P 2 ADP ATP O H2O O O O O O O Krebs Cycle O NADH, CoA O + + O OH NAD H O O FADH2 O O O O O O CoA-SH, H+ FAD O O O H2O OH O O O O O O O O O O O O GTP, CoA-SH OH O O O CoA O O GDP, Pi O CO , CoA-SH,O O NADH, NAD+ 2 + O O NADH NAD CO2 O O Figure 1 Glycolysis and the Krebs cycle are central reactions in metabolism Glycolysis and the Krebs cycle are metabolic reactions that release energy that is then used by the cell to synthesize ATP. The energy stored in ATP can be used later to do work. The cell uses this energy to grow, divide, move, and carry out metabolism. We will return to these energy-generating reactions and to how the molecules in these pathways are depicted in later chapters. nutrients, such as amino acids, fats, and sugars. One of the primary reactions that occurs during metabolism is the reaction of glucose (C6H12O6) with oxygen, which releases energy and produces carbon dioxide and water. The released energy is used in a multi-step process (the glycolytic pathway, Figure 1) to generate an energy store known as adenosine triphosphate (ATP), which can later be utilized by cellular machinery to help carry out important metabolic reactions. We will have much more to say about ATP and its myriad roles in the cell in later chapters. The reaction of glucose with oxygen depicted in Figure 2 shows glucose and oxygen (the reactants) at a higher energy level than carbon dioxide and Chapter 3 Thermodynamics & Acidity 3 Respiration an energetically favorable reaction Photosynthesis an energetically unfavorable reaction OH OH O O HO + 6 O 6 CO + 6 H O 6 CO + 6 H O HO 6 O HO OH 2 2 2 2 2 HO OH + 2 OH OH Glucose Oxygen Carbon dioxide Water Carbon dioxide Water Glucose Oxygen high energy high energy Glucose Glucose + Energy Energy + Oxygen Oxygen favorable unfavorable Carbon dioxide Carbon dioxide energy is released energy is required + + Water Water low energy low energy Figure 2 Respiration and photosynthesis interconvert glucose and O2 with CO2 and water as we will explain in more depth in a later chapter water (the products) to capture the idea that energy is released when the reaction occurs. Reactions that release energy are energetically favorable. Conversely, reactions in which the products are higher in energy than the reactants require an input of energy to proceed; such reactions are energetically unfavorable. It is important to note that the favorability of a reaction is largely unrelated to its rate; favorable reactions can be extremely slow. The determinants of reaction rates are the subject of the next chapter on kinetics. A full understanding of the reactions that drive living systems requires an appreciation of both thermodynamics and kinetics. Reactions can proceed in both directions. For example, the conversion of glucose and oxygen to carbon dioxide and water can take place in the reverse direction to synthesize glucose, as occurs during photosynthesis. Because glucose and oxygen (the products of photosynthesis) are higher in energy than carbon dioxide and water (the reactants in photosynthesis), photosynthesis requires an input of energy (Figure 2). In the case of photosynthesis, this energy comes directly from the sun, but other energy sources, such as ATP, are commonly used by cells to drive unfavorable processes. Reactions that occur in both directions are indicated with stacked arrows in which one arrow points to the left and the other points to the right. The concentrations of reactants and products do not change at equilibrium How do we determine whether the reactants or the products of a reaction are higher in energy? One way to do this is to measure the concentrations of the reactants and products when the reaction is at equilibrium, as we will explain. A reaction is at equilibrium when the concentrations of its reactants and products no longer change with time. The reaction does not stop at equilibrium; instead, the forward and reverse reactions occur at the same rate. As a consequence, reactants are consumed by the forward Chapter 3 Thermodynamics & Acidity 4 reaction as fast as they are generated by the reverse reaction, and products are consumed by the reverse reaction as fast as they are generated by the forward reaction. Consider the example of two hypothetical molecules, A and B, which interconvert as described in the following reaction: A B If a reaction begins with only molecule A present, the concentration of molecule A will decrease with time as the reaction proceeds, and the concentration of molecule B will increase. Because no molecules of B are present initially, the reverse reaction cannot occur at first. As time passes and molecule B accumulates, however, the rate of the reverse reaction increases, which leads to a slower net rate of molecule B accumulation because some molecules of B are being converted back into molecule A. Ultimately, the reaction reaches an equilibrium, in which the rates of the forward and reverse reactions are equal; at that point, there is no further net change in the concentration of either molecule A or molecule B. The equilibrium constant is the ratio of products to reactants at equilibrium All reactions have a characteristic equilibrium constant (Keq) under a given set of conditions. Keq is defined as the ratio of the mathematical product of the equilibrium concentrations of the species on the right (i.e., the concentrations of the chemical products multiplied together) divided by the mathematical product of the equilibrium concentrations of the species on the left (i.e., the reactants). A hypothetical reaction in which one molecule of A reacts with one molecule of B to reversibly yield one molecule of C and one molecule of D would have an equilibrium constant equal to ([C][D])/ ([A][B]), as shown below. The brackets (“[]”) surrounding each molecule signify the concentration for that reactant or product in units of molarity (i.e., moles per liter). [C] [D] A + B C + D K = eq [A] [B] If Keq is less than one, then the concentrations of the products are lower than the concentrations of the reactants at equilibrium. Conversely, if Keq is greater than one, then the concentrations of products are greater than the concentrations of the reactants at equilibrium. If Keq is exactly one, then there is an equal mixture of reactants and products at equilibrium. At one extreme, a Keq that approaches zero means that there will be almost no product at equilibrium. At the other extreme, a Keq that approaches infinity means that there will be nearly no reactant at equilibrium. Each chemical reaction has its own value of Keq that is constant and only changes with temperature. The value of the equilibrium constant indicates whether or not a reaction is favorable. Reactions for which Keq is greater than one are favorable, meaning that the reactants are higher in energy than the products and signifying that energy is released as the reaction proceeds. Similarly, reactions for which Keq is less than one are unfavorable, meaning that the reactants are lower in energy than the products and signifying that the reaction absorbs energy Chapter 3 Thermodynamics & Acidity 5 Example 1 Writing an equilibrium constant Write an equation that expresses the equilibrium constant for the reaction shown below in terms of reactant (water and pyrophosphate) and product (hydrogen phosphate) concentrations.
Recommended publications
  • Characteristics of Chemical Equilibrium
    Characteristics of Chemical Equilibrium Chapter 14: Chemical Equilibrium © 2008 Brooks/Cole 1 © 2008 Brooks/Cole 2 Equilibrium is Dynamic Equilibrium is Independent of Direction of Approach Reactants convert to products N2(g) + 3 H2(g) 2 NH3(g) a A + b B c C + d D Species do not stop forming OR being destroyed Rate of formation = rate of removal Concentrations are constant. © 2008 Brooks/Cole 3 © 2008 Brooks/Cole 4 Equilibrium and Catalysts The Equilibrium Constant For the 2-butene isomerization: H3C CH3 H3C H C=C C=C H H H CH3 At equilibrium: rate forward = rate in reverse An elementary reaction, so: kforward[cis] = kreverse[trans] © 2008 Brooks/Cole 5 © 2008 Brooks/Cole 6 1 The Equilibrium Constant The Equilibrium Constant At equilibrium the concentrations become constant. We had: kforward[cis] = kreverse[trans] kforward [trans] or = kreverse [cis] kforward [trans] Kc = = = 1.65 (at 500 K) kreverse [cis] “c” for concentration based © 2008 Brooks/Cole 7 © 2008 Brooks/Cole 8 The Equilibrium Constant The Equilibrium Constant For a general reaction: a A + b B c C + d D [NO]2 N2(g) + O2(g) 2 NO(g) Kc = Products raised to [N2] [O2] stoichiometric powers… k [C]c [D]d forward …divided by reactants Kc = = a b kreverse [A] [B] raised to their stoichiometric [SO ] 1 2 powers 8 S8(s) + O2(g) SO2(g) Kc = [O2] © 2008 Brooks/Cole 9 © 2008 Brooks/Cole 10 Equilibria Involving Pure Liquids and Solids Equilibria in Dilute Solutions [Solid] is constant throughout a reaction. density g / L • pure solid concentration = mol.
    [Show full text]
  • Laboratory 1: Chemical Equilibrium 1
    1 Laboratory 1: Chemical Equilibrium 1 Reading: Olmstead and Williams, Chemistry , Chapter 14 (all sections) Purpose: The shift in equilibrium position of a chemical reaction with applied stress is determined. Introduction Chemical Equilibrium No chemical reaction goes to completion. When a reaction stops, some amount of reactants remain. For example, although we write → ← 2 CO 2 (g) 2 CO (g) + O 2 (g) (1) as though it goes entirely to products, at 2000K only 2% of the CO 2 decomposes. A chemical reaction reaches equilibrium when the concentrations of the reactants and products no longer change with time. The position of equilibrium describes the relative amounts of reactants and products that remain at the end of a chemical reaction. The position of equilibrium for reaction (1) is said to lie with the reactants, or to the left, because at equilibrium very little of the carbon dioxide has reacted. On the other hand, in the reaction → ← H2 (g) + ½ O2 (g) H2O (g) (2) the equilibrium position lies very far to the right since only very small amounts of H 2 and O 2 remain after the reaction reaches equilibrium. Since chemists often wish to maximize the yield of a reaction, it is vital to determine how to control the position of the equilibrium. The equilibrium position of a reaction may shift if an external stress is applied. The stress may be in the form of a change in temperature, pressure, or the concentration of one of the reactants or products. For example, consider a flask with an equilibrium mixture of CO 2, CO, and O 2, as in reaction (1).
    [Show full text]
  • Thermodynamics of Metal Extraction
    THERMODYNAMICS OF METAL EXTRACTION By Rohit Kumar 2019UGMMO21 Ritu Singh 2019UGMM049 Dhiraj Kumar 2019UGMM077 INTRODUCTION In general, a process or extraction of metals has two components: 1. Severance:produces, through chemical reaction, two or more new phases, one of which is much richer in the valuable content than others. 2. Separation : involves physical separation of one phase from the others Three types of processes are used for accomplishing severance : 1. Pyrometallurgical: Chemical reactions take place at high temperatures. 2. Hydrometallurgical: Chemical reactions carried out in aqueous media. 3. Electrometallurgical: Involves electrochemical reactions. Advantages of Pyrometallurgical processes 1. Option of using a cheap reducing agent, (such as C, CO). As a result, the unit cost is 5-10 times lower than that of the reductants used in electrolytic processes where electric power often is the reductant. 2. Enhanced reaction rates at high temperature . 3. Simplified separation of (molten) product phase at high temperature. 4. Simplified recovery of precious metals ( Au,Ag,Cu) at high temperature. 5. Ability to shift reaction equilibria by changing temperatures. THERMODYNAMICS The Gibbs free energy(G) , of the system is the energy available in the system to do work . It is relevant to us here, because at constant temperature and pressure it considers only variables contained within the system . 퐺 = 퐻 − 푇푆 Here, T is the temperature of the system S is the entropy, or disorder, of the system. H is the enthalpy of the system, defined as: 퐻 = 푈 + 푃푉 Where U is the intern energy , P is the pressure and V is the volume. If the system is changed by a small amount , we can differentiate the above functions: 푑퐺 = 푑퐻 − 푇푑푆 − 푆푑푇 And 푑퐻 = 푑푈 − 푃푑푉 + 푉푑푃 From the first law, 푑푈 = 푑푞 − 푑푤 And from second law, 푑푆 = 푑푞/푇 We see that, 푑퐺 = 푑푞 − 푑푤 + 푃푑푉 + 푉푑푃 − 푇푑푆 − 푆푑푇 푑퐺 = −푑푤 + 푃푑푉 + 푉푑푃 − 푆푑푇 (푑푤 = 푃푑푉) 푑퐺 = 푉푑푃 − 푆푑푇 The above equations show that if the temperature and pressure are kept constant, the free energy does not change.
    [Show full text]
  • Thermodynamic and Kinetic Investigation of a Chemical Reaction-Based Miniature Heat Pump Scott M
    Purdue University Purdue e-Pubs CTRC Research Publications Cooling Technologies Research Center 2012 Thermodynamic and Kinetic Investigation of a Chemical Reaction-Based Miniature Heat Pump Scott M. Flueckiger Purdue University Fabien Volle Laboratoire des Sciences des Procédés et des Matériaux S V. Garimella Purdue University, [email protected] Rajiv K. Mongia Intel Corporation Follow this and additional works at: http://docs.lib.purdue.edu/coolingpubs Flueckiger, Scott M.; Volle, Fabien; Garimella, S V.; and Mongia, Rajiv K., "Thermodynamic and Kinetic Investigation of a Chemical Reaction-Based Miniature Heat Pump" (2012). CTRC Research Publications. Paper 182. http://dx.doi.org/http://dx.doi.org/10.1016/j.enconman.2012.04.015 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Thermodynamic and Kinetic Investigation of a Chemical Reaction-Based Miniature Heat Pump* Scott M. Flueckiger1, Fabien Volle2, Suresh V. Garimella1**, Rajiv K. Mongia3 1 Cooling Technologies Research Center, an NSF I/UCRC School of Mechanical Engineering and Birck Nanotechnology Center 585 Purdue Mall, Purdue University West Lafayette, Indiana 47907-2088 USA 2 Laboratoire des Sciences des Procédés et des Matériaux (LSPM, UPR 3407 CNRS), Université Paris XIII, 99 avenue J. B. Clément, 93430 Villetaneuse, France 3 Intel Corporation Santa Clara, California 95054 USA * Submitted for publication in Energy Conversion and Management ** Author to who correspondence should be addressed: (765) 494-5621, [email protected] Abstract Representative reversible endothermic chemical reactions (paraldehyde depolymerization and 2-proponal dehydrogenation) are theoretically assessed for their use in a chemical heat pump design for compact thermal management applications.
    [Show full text]
  • Chapter 15 Chemical Equilibrium
    Chapter 15 Chemical Equilibrium Learning goals and key skills: Explain what is meant by chemical equilibrium and how it relates to reaction rates Write the equilibrium-constant expression for any reaction Convert Kc to Kp and vice versa Relate the magnitude of an equilibrium constant to the relative amounts of reactants and products present in an equilibrium mixture. Manipulate the equilibrium constant to reflect changes in the chemical equation Write the equilibrium-constant expression for a heterogeneous reaction Calculate an equilibrium constant from concentration measurements Predict the direction of a reaction given the equilibrium constant and the concentrations of reactants and products Calculate equilibrium concentrations given the equilibrium constant and all but one equilibrium concentration Calculate equilibrium concentrations given the equilibrium constant and the starting concentrations Use Le Chatelier’s principle to predict how changing the concentrations, volume, or temperature of a system at equilibrium affects the equilibrium position. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. 1 Concept of Equilibrium • As a system approaches equilibrium, both the forward and reverse reactions are occurring. • At equilibrium, the forward and reverse reactions are proceeding at the same rate. • Once equilibrium is achieved, the amount of each reactant and product remains constant. The same equilibrium is reached whether we start with only reactants (N2 and H2) or with only product (NH3). Equilibrium is reached from either direction. 2 The Equilibrium Constant • Consider the generalized reaction aA + bB cC + dD The equilibrium expression for this reaction would be [C]c[D]d K = c [A]a[B]b Since pressure is proportional to concentration for gases in a closed system, the equilibrium expression can also be written c d (PC) (PD) Kp = a b (PA) (PB) Chemical equilibrium occurs when opposing reactions are proceeding at equal rates.
    [Show full text]
  • Acid Dissociation Constant - Wikipedia, the Free Encyclopedia Page 1
    Acid dissociation constant - Wikipedia, the free encyclopedia Page 1 Help us provide free content to the world by donating today ! Acid dissociation constant From Wikipedia, the free encyclopedia An acid dissociation constant (aka acidity constant, acid-ionization constant) is an equilibrium constant for the dissociation of an acid. It is denoted by Ka. For an equilibrium between a generic acid, HA, and − its conjugate base, A , The weak acid acetic acid donates a proton to water in an equilibrium reaction to give the acetate ion and − + HA A + H the hydronium ion. Key: Hydrogen is white, oxygen is red, carbon is gray. Lines are chemical bonds. K is defined, subject to certain conditions, as a where [HA], [A−] and [H+] are equilibrium concentrations of the reactants. The term acid dissociation constant is also used for pKa, which is equal to −log 10 Ka. The term pKb is used in relation to bases, though pKb has faded from modern use due to the easy relationship available between the strength of an acid and the strength of its conjugate base. Though discussions of this topic typically assume water as the solvent, particularly at introductory levels, the Brønsted–Lowry acid-base theory is versatile enough that acidic behavior can now be characterized even in non-aqueous solutions. The value of pK indicates the strength of an acid: the larger the value the weaker the acid. In aqueous a solution, simple acids are partially dissociated to an appreciable extent in in the pH range pK ± 2. The a actual extent of the dissociation can be calculated if the acid concentration and pH are known.
    [Show full text]
  • Chemical Engineering Thermodynamics
    CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY | 1 TABLE OF CONTENTS Symbol Dictionary ........................................................................................................................ 3 1. Measured Thermodynamic Properties and Other Basic Concepts .................................. 5 1.1 Preliminary Concepts – The Language of Thermodynamics ........................................................ 5 1.2 Measured Thermodynamic Properties .......................................................................................... 5 1.2.1 Volume .................................................................................................................................................... 5 1.2.2 Temperature ............................................................................................................................................. 5 1.2.3 Pressure .................................................................................................................................................... 6 1.3 Equilibrium ................................................................................................................................... 7 1.3.1 Fundamental Definitions .......................................................................................................................... 7 1.3.2 Independent and Dependent Thermodynamic Properties ........................................................................ 7 1.3.3 Phases .....................................................................................................................................................
    [Show full text]
  • An Intuitive Approach to Chemical Equilibrium Second Edition
    An Intuitive Approach to Chemical Equilibrium Second Edition Sahand Rabbani Copyright c 2006 Sahand Rabbani All Rights Reserved Preface I wrote this instructional text over the course of several months during Mr. James Shannon’s AP Chem- istry class at Pittsford-Mendon High School (2002-2003). In an attempt to help my fellow students better understand the analysis of buffered systems, I decided to write out a few example problems and walk them through it, making sure to emphasize some of what I considered to be the more subtle points. I had always been warned by former AP Chemistry students of the mystical topic of “buffers.” For some reason, calculations involving buffered systems had always been a challenging topic in AP Chemistry. Mr. Shannon always insisted that practice made perfect and allowed us to recognize the critical patterns that would help us solve problems. Indeed, after many calculations and examples, the mystic aura of buffers dissolved away. Here, I endeavor to implement Mr. Shannon’s unparalleled teaching philosophy. I have tried to provide a short collection of problems dealing with a variety of equilibrium systems. This piece is not meant to stand on its own as an introduction to chemical equilibrium; rather, it is meant to help the student further develop the skills and intuition that are needed to form a strong fundamental understanding of the quantitative analysis of equilibrium systems. This text should always be freely available to motivated students who wish to supplement their learning. It would be my greatest reward if even one student picked up this text and could say that he or she found a better grasp of chemical equilibrium because of it.
    [Show full text]
  • Chemical Engineering Vocabulary
    Chemical Engineering Vocabulary Maximilian Lackner Download free books at MAXIMILIAN LACKNER CHEMICAL ENGINEERING VOCABULARY Download free eBooks at bookboon.com 2 Chemical Engineering Vocabulary 1st edition © 2016 Maximilian Lackner & bookboon.com ISBN 978-87-403-1427-4 Download free eBooks at bookboon.com 3 CHEMICAL ENGINEERING VOCABULARY a.u. (sci.) Acronym/Abbreviation referral: see arbitrary units A/P (econ.) Acronym/Abbreviation referral: see accounts payable A/R (econ.) Acronym/Abbreviation referral: see accounts receivable abrasive (eng.) Calcium carbonate can be used as abrasive, for example as “polishing agent” in toothpaste. absorbance (chem.) In contrast to absorption, the absorbance A is directly proportional to the concentration of the absorbing species. A is calculated as ln (l0/l) with l0 being the initial and l the transmitted light intensity, respectively. absorption (chem.) The absorption of light is often called attenuation and must not be mixed up with adsorption, an effect at the surface of a solid or liquid. Absorption of liquids and gases means that they diffuse into a liquid or solid. abstract (sci.) An abstract is a summary of a scientific piece of work. AC (eng.) Acronym/Abbreviation referral: see alternating current academic (sci.) The Royal Society, which was founded in 1660, was the first academic society. acceleration (eng.) In SI units, acceleration is measured in meters/second Download free eBooks at bookboon.com 4 CHEMICAL ENGINEERING VOCABULARY accompanying element (chem.) After precipitation, the thallium had to be separated from the accompanying elements. TI (atomic number 81) is highly toxic and can be found in rat poisons and insecticides. accounting (econ.) Working in accounting requires paying attention to details.
    [Show full text]
  • Reaction Kinetics
    CHAPTER 17 Reaction Kinetics Chemists can determine the rates at which chemical reactions occur. The Thermite Reaction The Reaction Process SECTION 1 OBJECTIVES Explain the concept of B y studying many types of experiments, chemists have found that reaction mechanism. chemical reactions occur at widely differing rates. For example, in the presence of air, iron rusts very slowly, whereas the methane in natural Use the collision theory to gas burns rapidly. The speed of a chemical reaction depends on the interpret chemical reactions. energy pathway that a reaction follows and the changes that take place on the molecular level when substances interact. In this chapter, you will study the factors that affect how fast chemical reactions take place. Define activated complex. Relate activation energy to enthalpy of reaction. Reaction Mechanisms If you mix aqueous solutions of HCl and NaOH, an extremely rapid neutralization reaction occurs, as shown in Figure 1. + + − + + + − ⎯→ + + + − H3O (aq) Cl (aq) Na (aq) OH (aq) 2H2O(l) Na (aq) Cl (aq) The reaction is practically instantaneous; the rate is limited only by the + − speed with which the H3O and OH ions can diffuse through the water to meet each other. On the other hand, reactions between ions of the same charge and between molecular substances are not instantaneous. Negative ions repel each other, as do positive ions. The electron clouds of molecules also repel each other strongly at very short distances. Therefore, only ions or molecules with very high kinetic energy can overcome repulsive forces and get close enough to react. In this section, we will limit our discussion to reactions between molecules.
    [Show full text]
  • Lecture 20: Solubility and Acid-Base Equilibrium
    5.111 Lecture Summary #20 Monday October 27, 2014 th Reading for Today: Sections 9.8 - 9.13 (8.8-8.13 same in 4 ed.) on solubility; Sections 11.1 th – 11.2, 11.4-11.6 (10.1-10.2, 10.4-10.6 in 4 ed.) on acids and bases. th Reading for Lecture #21: Sections 11.7-11.9, 11.11-11.13 (10.7 -10.9, 10.11 – 10.13 in 4 ed). Topics: I. Solutions and Solubility II. Classification of Acids and Bases I. SOLUTIONS AND SOLUBILITY So far, we’ve been discussing pure compounds. However, most substances are . Solutions are homogeneous mixtures. Solvent: the substance that does the dissolving (i.e. water) Solute: any dissolved substance in a solution MOLAR SOLUBILITY Ionic solids. Consider NaCl dissolving in water. Polar water molecules ions at the surface of the salt’s crystal lattice, prying some of the Na+ and Cl- ions away. Stirring can the process by bringing more free water molecules to the surface of the solid, and taking more hydrated ions away. Solubility equilibrium: NaCl (s) Na+ (aq) + Cl- (aq) + - Ksp = [Na ][Cl ] where sp stands for “solubility product” is a measure of the dissolution of an ionic solid in water. Note NaCl does not appear in the expression since it is a solid. Organic solids. Consider glucose dissolving in water. Water molecules form hydrogen bonds to the glucose molecules near the surface of a glucose crystal. Some glucose molecules are pulled away by the surrounding water (are solubilized), other molecules are not.
    [Show full text]
  • Chapter 14. CHEMICAL EQUILIBRIUM
    Chapter 14. CHEMICAL EQUILIBRIUM 14.1 THE CONCEPT OF EQUILIBRIUM AND THE EQUILIBRIUM CONSTANT Many chemical reactions do not go to completion but instead attain a state of chemical equilibrium. Chemical equilibrium: A state in which the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products remain constant. ⇒ Equilibrium is a dynamic process – the conversions of reactants to products and products to reactants are still going on, although there is no net change in the number of reactant and product molecules. For the reaction: N2O4(g) 2NO2(g) N 2O4 Forward rate concentration NO Rate 2 Reverse rate time time The Equilibrium Constant For a reaction: aA + bB cC + dD [C]c [D]d equilibrium constant: Kc = [A]a [B]b The equilibrium constant, Kc, is the ratio of the equilibrium concentrations of products over the equilibrium concentrations of reactants each raised to the power of their stoichiometric coefficients. Example. Write the equilibrium constant, Kc, for N2O4(g) 2NO2(g) Law of mass action - The value of the equilibrium constant expression, Kc, is constant for a given reaction at equilibrium and at a constant temperature. ⇒ The equilibrium concentrations of reactants and products may vary, but the value for Kc remains the same. Other Characteristics of Kc 1) Equilibrium can be approached from either direction. 2) Kc does not depend on the initial concentrations of reactants and products. 3) Kc does depend on temperature. Magnitude of Kc ⇒ If the Kc value is large (Kc >> 1), the equilibrium lies to the right and the reaction mixture contains mostly products.
    [Show full text]