The Chemical Reaction Engineering Module User's Guide

Total Page:16

File Type:pdf, Size:1020Kb

The Chemical Reaction Engineering Module User's Guide Chemical Reaction Engineering Module User’s Guide Chemical Reaction Engineering Module User’s Guide © 1998–2019 COMSOL Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991; 8,219,373; 8,457,932; 8,954,302; 9,098,106; 9,146,652; 9,323,503; 9,372,673; 9,454,625; and 10,019,544. Patents pending. This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the license agreement. COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Compiler, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks. Version: COMSOL 5.5 Contact Information Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact Technical Support, or search for an address and phone number. You can also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for address and contact information. If you need to contact Support, an online request form is located at the COMSOL Access page at www.comsol.com/support/case. Other useful links include: • Support Center: www.comsol.com/support • Product Download: www.comsol.com/product-download • Product Updates: www.comsol.com/support/updates • COMSOL Blog: www.comsol.com/blogs • Discussion Forum: www.comsol.com/community • Events: www.comsol.com/events • COMSOL Video Gallery: www.comsol.com/video • Support Knowledge Base: www.comsol.com/support/knowledgebase Part number: CM021601 Contents Chapter 1: User’s Guide Introduction About the Chemical Reaction Engineering Module 14 The Scope of the Chemical Reaction Engineering Module . 14 The Chemical Reaction Engineering Module Physics Interface Guide . 15 The Material Database. 19 Common Physics Interface and Feature Settings and Nodes . 19 Where Do I Access the Documentation and Application Libraries? . 19 Overview of the User’s Guide 23 Chapter 2: The Chemistry and Reaction Engineering Interfaces Overview of the Reaction Engineering and Chemistry Interfaces 26 Using the Reaction Node. 27 Using the Species Node . 30 Using the Equation View Node — Reactions and Species . 32 Theory for the Reaction Engineering and Chemistry Interfaces 34 Reaction Kinetics and Rate Expressions . 34 The Equilibrium Constant . 35 Handling of Equilibrium Reactions . 39 Reactor Types in the Reaction Engineering Interface . 42 Transport Properties . 49 CHEMKIN Data and NASA Polynomials . 53 Working with Predefined Expressions . 54 References for the Reaction Engineering Interface . 56 CONTENTS | 3 The Reaction Engineering Interface 58 Features Nodes Available for the Reaction Engineering Interface . 67 Initial Values . 67 Reaction . 68 Species . 72 Reversible Reaction Group . 76 Equilibrium Reaction Group. 78 Species Group . 79 Additional Source . 80 Reaction Thermodynamics . 81 Species Activity . 81 Species Thermodynamics. 81 Feed Inlet. 82 Generate Space-Dependent Model . 83 Parameter Estimation . 91 Experiment . 92 The Chemistry Interface 95 Feature Nodes Available for the Chemistry Interface . 100 Reaction . 100 Species . 105 Reversible Reaction Group . 108 Equilibrium Reaction Group. 109 Species Group . 111 Reaction Thermodynamics . 111 Species Activity . 112 Species Thermodynamics. 112 Study Steps for the Reaction Engineering Interface 113 Reactor Types and Solver Study Steps . 113 Solver Study Steps for Parameter Estimation . 113 Chapter 3: Chemical Species Transport Interfaces Overview of Chemical Species Transport Interfaces 117 Available Physics Interfaces . 117 4 | CONTENTS Coupling to Other Physics Interfaces . 119 Adding a Chemical Species Transport Interface and Specifying the Number of Species. 119 Theory for the Transport of Diluted Species Interface 122 Mass Balance Equation . 123 Equilibrium Reaction Theory . 124 Convective Term Formulation. 126 Solving a Diffusion Equation Only . 127 Mass Sources for Species Transport . 127 Adding Transport Through Migration . 129 Supporting Electrolytes . 130 Crosswind Diffusion . 131 Danckwerts Inflow Boundary Condition . 132 Mass Balance Equation for Transport of Diluted Species in Porous Media . 133 Convection in Porous Media . 134 Diffusion in Porous Media . 136 Dispersion . 137 Adsorption . 139 Reactions. 141 Mass Transport in Fractures . 142 Theory for the Reactive Pellet Bed . 143 References . 151 Theory for the Transport of Concentrated Species Interface 153 Multicomponent Mass Transport . 153 Multicomponent Gas Diffusion: Maxwell-Stefan Description . 154 Multicomponent Diffusivities . 156 Multicomponent Diffusion: Mixture-Averaged Approximation . 158 Multispecies Diffusion: Fick’s Law Approximation . 160 Multicomponent Thermal Diffusion . 161 Regularization of Reaction Rate Expression . 161 References for the Transport of Concentrated Species Interface. 162 CONTENTS | 5 Theory for the Electrophoretic Transport Interface 163 Theory for the Surface Reactions Interface 169 Governing Equations for the Surface Concentrations . 169 Governing Equations for the Bulk Concentrations . 170 ODE Formulations for Surface Concentrations . 172 Surface Reaction Equations on Deforming Geometries . 173 Reference for the Surface Reactions Interface . 174 Theory for the Nernst-Planck Equations Interface 175 Governing Equations for the Nernst-Planck Formulation . 175 Convective Term Formulation. 177 Theory for the Reacting Laminar Flow Interface 178 Pseudo Time Stepping for Mass Transport . 178 The Stefan Velocity . 178 The Chemical Reaction Rate . 180 The Transport of Diluted Species Interface 182 The Transport of Diluted Species in Porous Media Interface . 186 Domain, Boundary, and Pair Nodes for the Transport of Diluted Species Interface. 187 Transport Properties . 189 Turbulent Mixing . 191 Initial Values . 191 Mass-Based Concentrations. 192 Reactions. 192 No Flux . 193 Inflow . 194 Outflow . 195 Concentration . 195 Flux . 196 Symmetry . 197 Flux Discontinuity . 197 Partition Condition . 197 Periodic Condition . 198 Line Mass Source. 199 Point Mass Source . 200 6 | CONTENTS Open Boundary . 200 Thin Diffusion Barrier . 201 Thin Impermeable Barrier . 201 Equilibrium Reaction . 201 Surface Reactions . 202 Surface Equilibrium Reaction . 203 Fast Irreversible Surface Reaction . 203 Porous Electrode Coupling . 204 Reaction Coefficients . 204 Electrode Surface Coupling . 205 Porous Media Transport Properties. 205 Adsorption . 207 Partially Saturated Porous Media . 209 Volatilization . 211 Reactive Pellet Bed . 212 Reactions (Reactive Pellet Bed) . 215 Species Source. 216 Hygroscopic Swelling . 217 Fracture . 217 The Transport of Diluted Species in Fractures Interface 219 Boundary, Edge, Point, and Pair Nodes for the Transport of Diluted Species in Fractures Interface . 221 Adsorption . 222 Concentration . 223 Flux . 224 Fracture . 224 Inflow . 225 No Flux . 226 Outflow . 226 Reactions. 226 Species Source. 227 The Transport of Concentrated Species Interface 228 Domain, Boundary, and Pair Nodes for the Transport of Concentrated Species Interface . 234 Transport Properties . 235 Porous Media Transport Properties. 239 CONTENTS | 7 Electrode Surface Coupling . 242 Turbulent Mixing . 243 Reaction . 244 Reaction Sources. 245 Initial Values . 246 Mass Fraction . 247 Flux . 248 Inflow . 249 No Flux . 250 Outflow . ..
Recommended publications
  • Thermodynamics of Metal Extraction
    THERMODYNAMICS OF METAL EXTRACTION By Rohit Kumar 2019UGMMO21 Ritu Singh 2019UGMM049 Dhiraj Kumar 2019UGMM077 INTRODUCTION In general, a process or extraction of metals has two components: 1. Severance:produces, through chemical reaction, two or more new phases, one of which is much richer in the valuable content than others. 2. Separation : involves physical separation of one phase from the others Three types of processes are used for accomplishing severance : 1. Pyrometallurgical: Chemical reactions take place at high temperatures. 2. Hydrometallurgical: Chemical reactions carried out in aqueous media. 3. Electrometallurgical: Involves electrochemical reactions. Advantages of Pyrometallurgical processes 1. Option of using a cheap reducing agent, (such as C, CO). As a result, the unit cost is 5-10 times lower than that of the reductants used in electrolytic processes where electric power often is the reductant. 2. Enhanced reaction rates at high temperature . 3. Simplified separation of (molten) product phase at high temperature. 4. Simplified recovery of precious metals ( Au,Ag,Cu) at high temperature. 5. Ability to shift reaction equilibria by changing temperatures. THERMODYNAMICS The Gibbs free energy(G) , of the system is the energy available in the system to do work . It is relevant to us here, because at constant temperature and pressure it considers only variables contained within the system . 퐺 = 퐻 − 푇푆 Here, T is the temperature of the system S is the entropy, or disorder, of the system. H is the enthalpy of the system, defined as: 퐻 = 푈 + 푃푉 Where U is the intern energy , P is the pressure and V is the volume. If the system is changed by a small amount , we can differentiate the above functions: 푑퐺 = 푑퐻 − 푇푑푆 − 푆푑푇 And 푑퐻 = 푑푈 − 푃푑푉 + 푉푑푃 From the first law, 푑푈 = 푑푞 − 푑푤 And from second law, 푑푆 = 푑푞/푇 We see that, 푑퐺 = 푑푞 − 푑푤 + 푃푑푉 + 푉푑푃 − 푇푑푆 − 푆푑푇 푑퐺 = −푑푤 + 푃푑푉 + 푉푑푃 − 푆푑푇 (푑푤 = 푃푑푉) 푑퐺 = 푉푑푃 − 푆푑푇 The above equations show that if the temperature and pressure are kept constant, the free energy does not change.
    [Show full text]
  • Thermodynamic and Kinetic Investigation of a Chemical Reaction-Based Miniature Heat Pump Scott M
    Purdue University Purdue e-Pubs CTRC Research Publications Cooling Technologies Research Center 2012 Thermodynamic and Kinetic Investigation of a Chemical Reaction-Based Miniature Heat Pump Scott M. Flueckiger Purdue University Fabien Volle Laboratoire des Sciences des Procédés et des Matériaux S V. Garimella Purdue University, [email protected] Rajiv K. Mongia Intel Corporation Follow this and additional works at: http://docs.lib.purdue.edu/coolingpubs Flueckiger, Scott M.; Volle, Fabien; Garimella, S V.; and Mongia, Rajiv K., "Thermodynamic and Kinetic Investigation of a Chemical Reaction-Based Miniature Heat Pump" (2012). CTRC Research Publications. Paper 182. http://dx.doi.org/http://dx.doi.org/10.1016/j.enconman.2012.04.015 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Thermodynamic and Kinetic Investigation of a Chemical Reaction-Based Miniature Heat Pump* Scott M. Flueckiger1, Fabien Volle2, Suresh V. Garimella1**, Rajiv K. Mongia3 1 Cooling Technologies Research Center, an NSF I/UCRC School of Mechanical Engineering and Birck Nanotechnology Center 585 Purdue Mall, Purdue University West Lafayette, Indiana 47907-2088 USA 2 Laboratoire des Sciences des Procédés et des Matériaux (LSPM, UPR 3407 CNRS), Université Paris XIII, 99 avenue J. B. Clément, 93430 Villetaneuse, France 3 Intel Corporation Santa Clara, California 95054 USA * Submitted for publication in Energy Conversion and Management ** Author to who correspondence should be addressed: (765) 494-5621, [email protected] Abstract Representative reversible endothermic chemical reactions (paraldehyde depolymerization and 2-proponal dehydrogenation) are theoretically assessed for their use in a chemical heat pump design for compact thermal management applications.
    [Show full text]
  • Answer Key Chapter 16: Standard Review Worksheet – + 1
    Answer Key Chapter 16: Standard Review Worksheet – + 1. H3PO4(aq) + H2O(l) H2PO4 (aq) + H3O (aq) + + NH4 (aq) + H2O(l) NH3(aq) + H3O (aq) 2. When we say that acetic acid is a weak acid, we can take either of two points of view. Usually we say that acetic acid is a weak acid because it doesn’t ionize very much when dissolved in water. We say that not very many acetic acid molecules dissociate. However, we can describe this situation from another point of view. We could say that the reason acetic acid doesn’t dissociate much when we dissolve it in water is because the acetate ion (the conjugate base of acetic acid) is extremely effective at holding onto protons and specifically is better at holding onto protons than water is in attracting them. + – HC2H3O2 + H2O H3O + C2H3O2 Now what would happen if we had a source of free acetate ions (for example, sodium acetate) and placed them into water? Since acetate ion is better at attracting protons than is water, the acetate ions would pull protons out of water molecules, leaving hydroxide ions. That is, – – C2H3O2 + H2O HC2H3O2 + OH Since an increase in hydroxide ion concentration would take place in the solution, the solution would be basic. Because acetic acid is a weak acid, the acetate ion is a base in aqueous solution. – – 3. Since HCl, HNO3, and HClO4 are all strong acids, we know that their anions (Cl , NO3 , – and ClO4 ) must be very weak bases and that solutions of the sodium salts of these anions would not be basic.
    [Show full text]
  • Drugs and Acid Dissociation Constants Ionisation of Drug Molecules Most Drugs Ionise in Aqueous Solution.1 They Are Weak Acids Or Weak Bases
    Drugs and acid dissociation constants Ionisation of drug molecules Most drugs ionise in aqueous solution.1 They are weak acids or weak bases. Those that are weak acids ionise in water to give acidic solutions while those that are weak bases ionise to give basic solutions. Drug molecules that are weak acids Drug molecules that are weak bases where, HA = acid (the drug molecule) where, B = base (the drug molecule) H2O = base H2O = acid A− = conjugate base (the drug anion) OH− = conjugate base (the drug anion) + + H3O = conjugate acid BH = conjugate acid Acid dissociation constant, Ka For a drug molecule that is a weak acid The equilibrium constant for this ionisation is given by the equation + − where [H3O ], [A ], [HA] and [H2O] are the concentrations at equilibrium. In a dilute solution the concentration of water is to all intents and purposes constant. So the equation is simplified to: where Ka is the acid dissociation constant for the weak acid + + Also, H3O is often written simply as H and the equation for Ka is usually written as: Values for Ka are extremely small and, therefore, pKa values are given (similar to the reason pH is used rather than [H+]. The relationship between pKa and pH is given by the Henderson–Hasselbalch equation: or This relationship is important when determining pKa values from pH measurements. Base dissociation constant, Kb For a drug molecule that is a weak base: 1 Ionisation of drug molecules. 1 Following the same logic as for deriving Ka, base dissociation constant, Kb, is given by: and Ionisation of water Water ionises very slightly.
    [Show full text]
  • Electrochemistry –An Oxidizing Agent Is a Species That Oxidizes Another Species; It Is Itself Reduced
    Oxidation-Reduction Reactions Chapter 17 • Describing Oxidation-Reduction Reactions Electrochemistry –An oxidizing agent is a species that oxidizes another species; it is itself reduced. –A reducing agent is a species that reduces another species; it is itself oxidized. Loss of 2 e-1 oxidation reducing agent +2 +2 Fe( s) + Cu (aq) → Fe (aq) + Cu( s) oxidizing agent Gain of 2 e-1 reduction Skeleton Oxidation-Reduction Equations Electrochemistry ! Identify what species is being oxidized (this will be the “reducing agent”) ! Identify what species is being •The study of the interchange of reduced (this will be the “oxidizing agent”) chemical and electrical energy. ! What species result from the oxidation and reduction? ! Does the reaction occur in acidic or basic solution? 2+ - 3+ 2+ Fe (aq) + MnO4 (aq) 6 Fe (aq) + Mn (aq) Steps in Balancing Oxidation-Reduction Review of Terms Equations in Acidic solutions 1. Assign oxidation numbers to • oxidation-reduction (redox) each atom so that you know reaction: involves a transfer of what is oxidized and what is electrons from the reducing agent to reduced 2. Split the skeleton equation into the oxidizing agent. two half-reactions-one for the oxidation reaction (element • oxidation: loss of electrons increases in oxidation number) and one for the reduction (element decreases in oxidation • reduction: gain of electrons number) 2+ 3+ - 2+ Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) 1 3. Complete and balance each half reaction Galvanic Cell a. Balance all atoms except O and H 2+ 3+ - 2+ (Voltaic Cell) Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) b.
    [Show full text]
  • Chapter 15 Chemical Equilibrium
    Chapter 15 Chemical Equilibrium Learning goals and key skills: Explain what is meant by chemical equilibrium and how it relates to reaction rates Write the equilibrium-constant expression for any reaction Convert Kc to Kp and vice versa Relate the magnitude of an equilibrium constant to the relative amounts of reactants and products present in an equilibrium mixture. Manipulate the equilibrium constant to reflect changes in the chemical equation Write the equilibrium-constant expression for a heterogeneous reaction Calculate an equilibrium constant from concentration measurements Predict the direction of a reaction given the equilibrium constant and the concentrations of reactants and products Calculate equilibrium concentrations given the equilibrium constant and all but one equilibrium concentration Calculate equilibrium concentrations given the equilibrium constant and the starting concentrations Use Le Chatelier’s principle to predict how changing the concentrations, volume, or temperature of a system at equilibrium affects the equilibrium position. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. 1 Concept of Equilibrium • As a system approaches equilibrium, both the forward and reverse reactions are occurring. • At equilibrium, the forward and reverse reactions are proceeding at the same rate. • Once equilibrium is achieved, the amount of each reactant and product remains constant. The same equilibrium is reached whether we start with only reactants (N2 and H2) or with only product (NH3). Equilibrium is reached from either direction. 2 The Equilibrium Constant • Consider the generalized reaction aA + bB cC + dD The equilibrium expression for this reaction would be [C]c[D]d K = c [A]a[B]b Since pressure is proportional to concentration for gases in a closed system, the equilibrium expression can also be written c d (PC) (PD) Kp = a b (PA) (PB) Chemical equilibrium occurs when opposing reactions are proceeding at equal rates.
    [Show full text]
  • Chapter 8:Chemical Reaction Equilibria 8.1 Introduction Reaction Chemistry Forms the Essence of Chemical Processes
    Chapter 8:Chemical Reaction Equilibria 8.1 Introduction Reaction chemistry forms the essence of chemical processes. The very distinctiveness of the chemical industry lies in its quest for transforming less useful substances to those which are useful to modern life. The perception of old art of ‘alchemy’ bordered on the magical; perhaps in today’s world its role in the form of modern chemistry is in no sense any less. Almost everything that is of use to humans is manufactured through the route of chemical synthesis. Such reactive processes need to be characterized in terms of the maximum possible yield of the desired product at any given conditions, starting from the raw materials (i.e., reactants). The theory of chemical reactions indicates that rates of reactions are generally enhanced by increase of temperature. However, experience shows that the maximum quantum of conversion of reactants to products does not increase monotonically. Indeed for a vast majority the maximum conversion reaches a maximum with respect to reaction temperature and subsequently diminishes. This is shown schematically in fig. 8.1. Fig. 8.1 Schematic of Equilibrium Reaction vs. Temperature The reason behind this phenomenon lies in the molecular processes that occur during a reaction. Consider a typical reaction of the following form occurring in gas phase: AgBgCgDg()+→+ () () (). The reaction typically begins with the reactants being brought together in a reactor. In the initial phases, molecules of A and B collide and form reactive complexes, which are eventually converted to the products C and D by means of molecular rearrangement. Clearly then the early phase of the reaction process is dominated by the presence and depletion of A and B.
    [Show full text]
  • Lab.10. Equilibrium. Determination of Dissociation Constant for a Weak Acid
    Lab.8. Equilibrium. Determination of dissociation constant for a weak acid Key words: Equilibrium, equilibrium constant, dissociation constant, electrolytes, non electrolyte, weak and strong acids (bases), dissociation, titration, buffer solutions, calculation the pH of buffer solution, the Henderson-Hasselbalch equation, the unique properties of buffer solution (effect of dilution, effect of added acids and bases, buffer capacity). Literature J. A. Beran; Laboratory Manual for Principles of General Chemistry, pp. 281-346. M. Hein and S. Arena: Introduction to Chemistry, 13th ed. Wiley 2011; pp. J. Crowe. T. Bradshaw, P. Monk, Chemistry for the Biosciences. The essential concepts., Oxford University Press, 2006; Chapter 16, 482 - 512. J. Brady, N. Jespersen, A. Hysop, Chemistry, International Student Version, 7thed. Wiley, 2015, Chapter 14, 686 – 709. P. Monk, Physical chemistry, Wiley 2004, Chapters, 5, 6, 177 – 229 and 233- 276, Theoretical background The Swedish chemist Arrhenius suggested that solutions that conduct electricity, so called electrolytes, do so because they dissociate into charged species called ions. Compounds of this type: acids, bases and salts may be classified as strong electrolytes dissociate in solution almost completely into ions, weak electrolytes dissociate only to a small extent in solution (only 10% or less ions are present in solution). Acids are compounds that ionize to release hydrogen ions, H+, to their surroundings. Bases are compounds that accept hydrogen ions, The equation for the ionization of a weak acid may be expressed as: HA ↔ H+ + A- (1) However, this suggests that protons exist free in solution. The reality is that protons are solvated in solution, that is they go around attached to a solvent (water) molecules.
    [Show full text]
  • Solubility Equilibria
    Chapter 16 – Cont. AQUEOUS IONIC EQUILIBRIA 1 SOLUBILITY EQUILIBRIA Carlsbad Caverns, NM. Limestone Big Gypsum, Thornhill Cave, Breckinridge County, KY (CaCO 3) formations inside the cave results from subtle shifts in carbonate equilibria acting over millions of years. http://www.darklightimagery.net/ gypsum.html http://www.traveleze.com/travel_planning/ carlsbad.html 2 1 The Black Widow (Lynn Turner Case) Image available at Matthew E. Johll, “ Investigating Chemistry: A Forensic Science Perspective.” 1st ed. W.H. Freeman, New York: 2007. 3 Kidney stone types : calcium oxalate, calcium phosphate, struvite (magnesium ammonium phosphate), uric acid, and cystine. Image available http://knol.google.com/k/kidney-stones 4 2 Solubility Product Solubility product is the equilibrium constant for a reaction in which a solid dissolves into its constituent ions in solution The corresponding equilibrium constant is called solubility product constant, Ksp Exercise: Write the Ksp expression for the reaction: 2+ - Hg 2Cl 2(s) Hg 2 (aq) + 2Cl (aq) Is this what you got? 2+ - 2 Ksp = [Hg 2 ][Cl ] Table 16.2 (p. 747) lists K sp values for various solids 5 Solubility Calculations Significance of solubility product: 2+ - 2 The equation Ksp = [Hg 2 ][Cl ] indicates that if solid Hg 2Cl 2 is placed in water, it will dissolve until the product of the ion concentrations (raised to a certain power) equals the solubility product for Hg 2Cl 2 When a solution contains excess undissolved solid, it is said to be saturated . 6 3 Solubility Calculations – Cont. Exercises: (Adapted from Silberberg’s “Chemistry: The Molecular Nature of Matter and Change.” 4th ed.) (1) Calculate the solubility of calcium hydroxide (also known as slaked lime , a major component of plaster and cement) -6 in water if the Ksp is 6.5 x 10 .
    [Show full text]
  • Chemical Engineering Thermodynamics
    CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY | 1 TABLE OF CONTENTS Symbol Dictionary ........................................................................................................................ 3 1. Measured Thermodynamic Properties and Other Basic Concepts .................................. 5 1.1 Preliminary Concepts – The Language of Thermodynamics ........................................................ 5 1.2 Measured Thermodynamic Properties .......................................................................................... 5 1.2.1 Volume .................................................................................................................................................... 5 1.2.2 Temperature ............................................................................................................................................. 5 1.2.3 Pressure .................................................................................................................................................... 6 1.3 Equilibrium ................................................................................................................................... 7 1.3.1 Fundamental Definitions .......................................................................................................................... 7 1.3.2 Independent and Dependent Thermodynamic Properties ........................................................................ 7 1.3.3 Phases .....................................................................................................................................................
    [Show full text]
  • The Equilibrium Constant
    Chapter 15: Chemical Equilibrium Key topics: Equilibrium Constant Calculating Equilibrium Concentrations The Concept of Equilibrium Consider the reaction k1 A ⌦ B k 1 − At equilibrium there is no net change in [A] or [B], namely d[A] d[B] =0= dt dt But A molecules can react to form B, and B molecules can react to form A, if the forwards and backwards rates are equal. k1[A] = k 1[B] − This is because d[A] = k1[A] + k 1[B] dt − − At the molecular level, typically the reactions do not stop. Initially there is net evaporation of liquid, but after dynamic equilibrium is established, the rate of evaporation = rate of condensation. (from chemtutorial.net) Consider the reaction N2O4(g) 2NO2(g) Begin with only N2O4 (colorless). Begin with only NO2 (brown). 2 The forward rate = kf [N2O4]; the reverse rate = kr [NO2] (the elementary reactions are the same as the overall reaction) In both cases equilibrium is established after some time. The Equilibrium Constant At equilibrium the forwards and reverse rates are equal 2 2 kf [NO2]eq kf [N2O4]eq = kr[NO2]eq = = Kc ) kr [N2O4]eq Kc is the equilibrium constant (the “c” here stands for concentration). In general, to write an equilibrium constant o products over reactants o exponents are the coefficients from the balanced reaction Magnitude of the Equilibrium Constant o If Kc >> 1, products are favored (rxn nearly complete). o If Kc << 1, reactants are favored (rxn hardly proceeds). o If Kc is close to 1, the system contains comparable amounts of products and reactants.
    [Show full text]
  • THE PENG-ROBINSON EQUATION of STATE Using Mathematica
    $5::j class and home problems ) The object of this column is to enhance our readers' collections of interesting and novel prob­ lems in chemical engineering. Problems of the type that can be used to motivate the student by presenting a particular principle in class, or in a new light, or that can be assigned as a novel home problem, are requested, as well as those that are more traditional in nature and that elucidate dif­ ficult concepts. Manuscripts should not exceed 14 double-spaced pages and should be accompanied by the originals of any figures or photographs. Please submit them to Professor James 0. Wilkes (e-mail: [email protected]), Chemical Engineering Department, University of Michigan, Ann Arbor, Ml 48109-2136. Applications of THE PENG-ROBINSON EQUATION OF STATE Using Mathematica HousAM Brnous National Institute ofApplied Sciences and Technology • Tunis, Tunisia onsider a single component characterized by its critical where pressure, temperature, acentric factor, Pc Tc, and w. The CPeng-Robinson equation of state[24J is given by: (7) P=~- a (1) (V-b) [v(v+b)+b(V-b)] (8) where (9) i=l i=l b = 0.07780 R Tc (2) P, p pc Ai= 0.45724ai T; and B = 0 07780_l.. (10) I • T (RT )2 2 ri ri (3) a= 0.45724----t"-[ 1 +m( I-Jr:)] For each component, we define the reduced pressure and C temperature using P,, = P / Pc, and T,, = T / Tc, , and ai is (4) identified by an equation similar to Eq. (3) - given for the pure component case. The binary interaction parameter, kii , and 2 m = 0.37464 + 1.54226w-0.26992w .
    [Show full text]