Chemical Equilibrium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characteristics of Chemical Equilibrium
Characteristics of Chemical Equilibrium Chapter 14: Chemical Equilibrium © 2008 Brooks/Cole 1 © 2008 Brooks/Cole 2 Equilibrium is Dynamic Equilibrium is Independent of Direction of Approach Reactants convert to products N2(g) + 3 H2(g) 2 NH3(g) a A + b B c C + d D Species do not stop forming OR being destroyed Rate of formation = rate of removal Concentrations are constant. © 2008 Brooks/Cole 3 © 2008 Brooks/Cole 4 Equilibrium and Catalysts The Equilibrium Constant For the 2-butene isomerization: H3C CH3 H3C H C=C C=C H H H CH3 At equilibrium: rate forward = rate in reverse An elementary reaction, so: kforward[cis] = kreverse[trans] © 2008 Brooks/Cole 5 © 2008 Brooks/Cole 6 1 The Equilibrium Constant The Equilibrium Constant At equilibrium the concentrations become constant. We had: kforward[cis] = kreverse[trans] kforward [trans] or = kreverse [cis] kforward [trans] Kc = = = 1.65 (at 500 K) kreverse [cis] “c” for concentration based © 2008 Brooks/Cole 7 © 2008 Brooks/Cole 8 The Equilibrium Constant The Equilibrium Constant For a general reaction: a A + b B c C + d D [NO]2 N2(g) + O2(g) 2 NO(g) Kc = Products raised to [N2] [O2] stoichiometric powers… k [C]c [D]d forward …divided by reactants Kc = = a b kreverse [A] [B] raised to their stoichiometric [SO ] 1 2 powers 8 S8(s) + O2(g) SO2(g) Kc = [O2] © 2008 Brooks/Cole 9 © 2008 Brooks/Cole 10 Equilibria Involving Pure Liquids and Solids Equilibria in Dilute Solutions [Solid] is constant throughout a reaction. density g / L • pure solid concentration = mol. -
Laboratory 1: Chemical Equilibrium 1
1 Laboratory 1: Chemical Equilibrium 1 Reading: Olmstead and Williams, Chemistry , Chapter 14 (all sections) Purpose: The shift in equilibrium position of a chemical reaction with applied stress is determined. Introduction Chemical Equilibrium No chemical reaction goes to completion. When a reaction stops, some amount of reactants remain. For example, although we write → ← 2 CO 2 (g) 2 CO (g) + O 2 (g) (1) as though it goes entirely to products, at 2000K only 2% of the CO 2 decomposes. A chemical reaction reaches equilibrium when the concentrations of the reactants and products no longer change with time. The position of equilibrium describes the relative amounts of reactants and products that remain at the end of a chemical reaction. The position of equilibrium for reaction (1) is said to lie with the reactants, or to the left, because at equilibrium very little of the carbon dioxide has reacted. On the other hand, in the reaction → ← H2 (g) + ½ O2 (g) H2O (g) (2) the equilibrium position lies very far to the right since only very small amounts of H 2 and O 2 remain after the reaction reaches equilibrium. Since chemists often wish to maximize the yield of a reaction, it is vital to determine how to control the position of the equilibrium. The equilibrium position of a reaction may shift if an external stress is applied. The stress may be in the form of a change in temperature, pressure, or the concentration of one of the reactants or products. For example, consider a flask with an equilibrium mixture of CO 2, CO, and O 2, as in reaction (1). -
Chapter 4 Calculation of Standard Thermodynamic Properties of Aqueous Electrolytes and Non-Electrolytes
Chapter 4 Calculation of Standard Thermodynamic Properties of Aqueous Electrolytes and Non-Electrolytes Vladimir Majer Laboratoire de Thermodynamique des Solutions et des Polymères Université Blaise Pascal Clermont II / CNRS 63177 Aubière, France Josef Sedlbauer Department of Chemistry Technical University Liberec 46117 Liberec, Czech Republic Robert H. Wood Department of Chemistry and Biochemistry University of Delaware Newark, DE 19716, USA 4.1 Introduction Thermodynamic modeling is important for understanding and predicting phase and chemical equilibria in industrial and natural aqueous systems at elevated temperatures and pressures. Such systems contain a variety of organic and inorganic solutes ranging from apolar nonelectrolytes to strong electrolytes; temperature and pressure strongly affect speciation of solutes that are encountered in molecular or ionic forms, or as ion pairs or complexes. Properties related to the Gibbs energy, such as thermodynamic equilibrium constants of hydrothermal reactions and activity coefficients of aqueous species, are required for practical use by geologists, power-cycle chemists and process engineers. Derivative properties (enthalpy, heat capacity and volume), which can be obtained from calorimetric and volumetric experiments, are useful in extrapolations when calculating the Gibbs energy at conditions remote from ambient. They also sensitively indicate evolution in molecular interactions with changing temperature and pressure. In this context, models with a sound theoretical basis are indispensable, describing with a limited number of adjustable parameters all thermodynamic functions of an aqueous system over a wide range of temperature and pressure. In thermodynamics of hydrothermal solutions, the unsymmetric standard-state convention is generally used; in this case, the standard thermodynamic properties (STP) of a solute reflect its interaction with the solvent (water), and the excess properties, related to activity coefficients, correspond to solute-solute interactions. -
Notation for States and Processes, Significance of the Word Standard in Chemical Thermodynamics, and Remarks on Commonly Tabulated Forms of Thermodynamic Functions
Pure &Appl.Chem.., Vol.54, No.6, pp.1239—1250,1982. 0033—4545/82/061239—12$03.00/0 Printed in Great Britain. Pergamon Press Ltd. ©1982IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY PHYSICAL CHEMISTRY DIVISION COMMISSION ON THERMODYNAMICS* NOTATION FOR STATES AND PROCESSES, SIGNIFICANCE OF THE WORD STANDARD IN CHEMICAL THERMODYNAMICS, AND REMARKS ON COMMONLY TABULATED FORMS OF THERMODYNAMIC FUNCTIONS (Recommendations 1981) (Appendix No. IV to Manual of Symbols and Terminology for Physicochemical Quantities and Units) Prepared for publication by J. D. COX, National Physical Laboratory, Teddington, UK with the assistance of a Task Group consisting of S. ANGUS, London; G. T. ARMSTRONG, Washington, DC; R. D. FREEMAN, Stiliwater, OK; M. LAFFITTE, Marseille; G. M. SCHNEIDER (Chairman), Bochum; G. SOMSEN, Amsterdam, (from Commission 1.2); and C. B. ALCOCK, Toronto; and P. W. GILLES, Lawrence, KS, (from Commission 11.3) *Membership of the Commission for 1979-81 was as follows: Chairman: M. LAFFITTE (France); Secretary: G. M. SCHNEIDER (FRG); Titular Members: S. ANGUS (UK); G. T. ARMSTRONG (USA); V. A. MEDVEDEV (USSR); Y. TAKAHASHI (Japan); I. WADSO (Sweden); W. ZIELENKIEWICZ (Poland); Associate Members: H. CHIHARA (Japan); J. F. COUNSELL (UK); M. DIAZ-PENA (Spain); P. FRANZOSINI (Italy); R. D. FREEMAN (USA); V. A. LEVITSKII (USSR); 0.SOMSEN (Netherlands); C. E. VANDERZEE (USA); National Representatives: J. PICK (Czechoslovakia); M. T. RATZSCH (GDR). NOTATION FOR STATES AND PROCESSES, SIGNIFICANCE OF THE WORD STANDARD IN CHEMICAL THERMODYNAMICS, AND REMARKS ON COMMONLY TABULATED FORMS OF THERMODYNAMIC FUNCTIONS SECTION 1. INTRODUCTION The main IUPAC Manual of symbols and terminology for physicochemical quantities and units (Ref. -
Answer Key Chapter 16: Standard Review Worksheet – + 1
Answer Key Chapter 16: Standard Review Worksheet – + 1. H3PO4(aq) + H2O(l) H2PO4 (aq) + H3O (aq) + + NH4 (aq) + H2O(l) NH3(aq) + H3O (aq) 2. When we say that acetic acid is a weak acid, we can take either of two points of view. Usually we say that acetic acid is a weak acid because it doesn’t ionize very much when dissolved in water. We say that not very many acetic acid molecules dissociate. However, we can describe this situation from another point of view. We could say that the reason acetic acid doesn’t dissociate much when we dissolve it in water is because the acetate ion (the conjugate base of acetic acid) is extremely effective at holding onto protons and specifically is better at holding onto protons than water is in attracting them. + – HC2H3O2 + H2O H3O + C2H3O2 Now what would happen if we had a source of free acetate ions (for example, sodium acetate) and placed them into water? Since acetate ion is better at attracting protons than is water, the acetate ions would pull protons out of water molecules, leaving hydroxide ions. That is, – – C2H3O2 + H2O HC2H3O2 + OH Since an increase in hydroxide ion concentration would take place in the solution, the solution would be basic. Because acetic acid is a weak acid, the acetate ion is a base in aqueous solution. – – 3. Since HCl, HNO3, and HClO4 are all strong acids, we know that their anions (Cl , NO3 , – and ClO4 ) must be very weak bases and that solutions of the sodium salts of these anions would not be basic. -
Drugs and Acid Dissociation Constants Ionisation of Drug Molecules Most Drugs Ionise in Aqueous Solution.1 They Are Weak Acids Or Weak Bases
Drugs and acid dissociation constants Ionisation of drug molecules Most drugs ionise in aqueous solution.1 They are weak acids or weak bases. Those that are weak acids ionise in water to give acidic solutions while those that are weak bases ionise to give basic solutions. Drug molecules that are weak acids Drug molecules that are weak bases where, HA = acid (the drug molecule) where, B = base (the drug molecule) H2O = base H2O = acid A− = conjugate base (the drug anion) OH− = conjugate base (the drug anion) + + H3O = conjugate acid BH = conjugate acid Acid dissociation constant, Ka For a drug molecule that is a weak acid The equilibrium constant for this ionisation is given by the equation + − where [H3O ], [A ], [HA] and [H2O] are the concentrations at equilibrium. In a dilute solution the concentration of water is to all intents and purposes constant. So the equation is simplified to: where Ka is the acid dissociation constant for the weak acid + + Also, H3O is often written simply as H and the equation for Ka is usually written as: Values for Ka are extremely small and, therefore, pKa values are given (similar to the reason pH is used rather than [H+]. The relationship between pKa and pH is given by the Henderson–Hasselbalch equation: or This relationship is important when determining pKa values from pH measurements. Base dissociation constant, Kb For a drug molecule that is a weak base: 1 Ionisation of drug molecules. 1 Following the same logic as for deriving Ka, base dissociation constant, Kb, is given by: and Ionisation of water Water ionises very slightly. -
Thermodynamics the Study of the Transformations of Energy from One Form Into Another
Thermodynamics the study of the transformations of energy from one form into another First Law: Heat and Work are both forms of Energy. in any process, Energy can be changed from one form to another (including heat and work), but it is never created or distroyed: Conservation of Energy Second Law: Entropy is a measure of disorder; Entropy of an isolated system Increases in any spontaneous process. OR This law also predicts that the entropy of an isolated system always increases with time. Third Law: The entropy of a perfect crystal approaches zero as temperature approaches absolute zero. ©2010, 2008, 2005, 2002 by P. W. Atkins and L. L. Jones ©2010, 2008, 2005, 2002 by P. W. Atkins and L. L. Jones A Molecular Interlude: Internal Energy, U, from translation, rotation, vibration •Utranslation = 3/2 × nRT •Urotation = nRT (for linear molecules) or •Urotation = 3/2 × nRT (for nonlinear molecules) •At room temperature, the vibrational contribution is small (it is of course zero for monatomic gas at any temperature). At some high temperature, it is (3N-5)nR for linear and (3N-6)nR for nolinear molecules (N = number of atoms in the molecule. Enthalpy H = U + PV Enthalpy is a state function and at constant pressure: ∆H = ∆U + P∆V and ∆H = q At constant pressure, the change in enthalpy is equal to the heat released or absorbed by the system. Exothermic: ∆H < 0 Endothermic: ∆H > 0 Thermoneutral: ∆H = 0 Enthalpy of Physical Changes For phase transfers at constant pressure Vaporization: ∆Hvap = Hvapor – Hliquid Melting (fusion): ∆Hfus = Hliquid – -
Electrochemistry –An Oxidizing Agent Is a Species That Oxidizes Another Species; It Is Itself Reduced
Oxidation-Reduction Reactions Chapter 17 • Describing Oxidation-Reduction Reactions Electrochemistry –An oxidizing agent is a species that oxidizes another species; it is itself reduced. –A reducing agent is a species that reduces another species; it is itself oxidized. Loss of 2 e-1 oxidation reducing agent +2 +2 Fe( s) + Cu (aq) → Fe (aq) + Cu( s) oxidizing agent Gain of 2 e-1 reduction Skeleton Oxidation-Reduction Equations Electrochemistry ! Identify what species is being oxidized (this will be the “reducing agent”) ! Identify what species is being •The study of the interchange of reduced (this will be the “oxidizing agent”) chemical and electrical energy. ! What species result from the oxidation and reduction? ! Does the reaction occur in acidic or basic solution? 2+ - 3+ 2+ Fe (aq) + MnO4 (aq) 6 Fe (aq) + Mn (aq) Steps in Balancing Oxidation-Reduction Review of Terms Equations in Acidic solutions 1. Assign oxidation numbers to • oxidation-reduction (redox) each atom so that you know reaction: involves a transfer of what is oxidized and what is electrons from the reducing agent to reduced 2. Split the skeleton equation into the oxidizing agent. two half-reactions-one for the oxidation reaction (element • oxidation: loss of electrons increases in oxidation number) and one for the reduction (element decreases in oxidation • reduction: gain of electrons number) 2+ 3+ - 2+ Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) 1 3. Complete and balance each half reaction Galvanic Cell a. Balance all atoms except O and H 2+ 3+ - 2+ (Voltaic Cell) Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) b. -
Energy and Enthalpy Thermodynamics
Energy and Energy and Enthalpy Thermodynamics The internal energy (E) of a system consists of The energy change of a reaction the kinetic energy of all the particles (related to is measured at constant temperature) plus the potential energy of volume (in a bomb interaction between the particles and within the calorimeter). particles (eg bonding). We can only measure the change in energy of the system (units = J or Nm). More conveniently reactions are performed at constant Energy pressure which measures enthalpy change, ∆H. initial state final state ∆H ~ ∆E for most reactions we study. final state initial state ∆H < 0 exothermic reaction Energy "lost" to surroundings Energy "gained" from surroundings ∆H > 0 endothermic reaction < 0 > 0 2 o Enthalpy of formation, fH Hess’s Law o Hess's Law: The heat change in any reaction is the The standard enthalpy of formation, fH , is the change in enthalpy when one mole of a substance is formed from same whether the reaction takes place in one step or its elements under a standard pressure of 1 atm. several steps, i.e. the overall energy change of a reaction is independent of the route taken. The heat of formation of any element in its standard state is defined as zero. o The standard enthalpy of reaction, H , is the sum of the enthalpy of the products minus the sum of the enthalpy of the reactants. Start End o o o H = prod nfH - react nfH 3 4 Example Application – energy foods! Calculate Ho for CH (g) + 2O (g) CO (g) + 2H O(l) Do you get more energy from the metabolism of 1.0 g of sugar or -
Biochemical Thermodynamics
© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION CHAPTER 1 Biochemical Thermodynamics Learning Objectives 1. Defi ne and use correctly the terms system, closed, open, surroundings, state, energy, temperature, thermal energy, irreversible process, entropy, free energy, electromotive force (emf), Faraday constant, equilibrium constant, acid dissociation constant, standard state, and biochemical standard state. 2. State and appropriately use equations relating the free energy change of reactions, the standard-state free energy change, the equilibrium constant, and the concentrations of reactants and products. 3. Explain qualitatively and quantitatively how unfavorable reactions may occur at the expense of a favorable reaction. 4. Apply the concept of coupled reactions and the thermodynamic additivity of free energy changes to calculate overall free energy changes and shifts in the concentrations of reactants and products. 5. Construct balanced reduction–oxidation reactions, using half-reactions, and calculate the resulting changes in free energy and emf. 6. Explain differences between the standard-state convention used by chemists and that used by biochemists, and give reasons for the differences. 7. Recognize and apply correctly common biochemical conventions in writing biochemical reactions. Basic Quantities and Concepts Thermodynamics is a system of thinking about interconnections of heat, work, and matter in natural processes like heating and cooling materials, mixing and separation of materials, and— of particular interest here—chemical reactions. Thermodynamic concepts are freely used throughout biochemistry to explain or rationalize chains of chemical transformations, as well as their connections to physical and biological processes such as locomotion or reproduction, the generation of fever, the effects of starvation or malnutrition, and more. -
Chapter 15 Chemical Equilibrium
Chapter 15 Chemical Equilibrium Learning goals and key skills: Explain what is meant by chemical equilibrium and how it relates to reaction rates Write the equilibrium-constant expression for any reaction Convert Kc to Kp and vice versa Relate the magnitude of an equilibrium constant to the relative amounts of reactants and products present in an equilibrium mixture. Manipulate the equilibrium constant to reflect changes in the chemical equation Write the equilibrium-constant expression for a heterogeneous reaction Calculate an equilibrium constant from concentration measurements Predict the direction of a reaction given the equilibrium constant and the concentrations of reactants and products Calculate equilibrium concentrations given the equilibrium constant and all but one equilibrium concentration Calculate equilibrium concentrations given the equilibrium constant and the starting concentrations Use Le Chatelier’s principle to predict how changing the concentrations, volume, or temperature of a system at equilibrium affects the equilibrium position. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. 1 Concept of Equilibrium • As a system approaches equilibrium, both the forward and reverse reactions are occurring. • At equilibrium, the forward and reverse reactions are proceeding at the same rate. • Once equilibrium is achieved, the amount of each reactant and product remains constant. The same equilibrium is reached whether we start with only reactants (N2 and H2) or with only product (NH3). Equilibrium is reached from either direction. 2 The Equilibrium Constant • Consider the generalized reaction aA + bB cC + dD The equilibrium expression for this reaction would be [C]c[D]d K = c [A]a[B]b Since pressure is proportional to concentration for gases in a closed system, the equilibrium expression can also be written c d (PC) (PD) Kp = a b (PA) (PB) Chemical equilibrium occurs when opposing reactions are proceeding at equal rates. -
Acid Dissociation Constant - Wikipedia, the Free Encyclopedia Page 1
Acid dissociation constant - Wikipedia, the free encyclopedia Page 1 Help us provide free content to the world by donating today ! Acid dissociation constant From Wikipedia, the free encyclopedia An acid dissociation constant (aka acidity constant, acid-ionization constant) is an equilibrium constant for the dissociation of an acid. It is denoted by Ka. For an equilibrium between a generic acid, HA, and − its conjugate base, A , The weak acid acetic acid donates a proton to water in an equilibrium reaction to give the acetate ion and − + HA A + H the hydronium ion. Key: Hydrogen is white, oxygen is red, carbon is gray. Lines are chemical bonds. K is defined, subject to certain conditions, as a where [HA], [A−] and [H+] are equilibrium concentrations of the reactants. The term acid dissociation constant is also used for pKa, which is equal to −log 10 Ka. The term pKb is used in relation to bases, though pKb has faded from modern use due to the easy relationship available between the strength of an acid and the strength of its conjugate base. Though discussions of this topic typically assume water as the solvent, particularly at introductory levels, the Brønsted–Lowry acid-base theory is versatile enough that acidic behavior can now be characterized even in non-aqueous solutions. The value of pK indicates the strength of an acid: the larger the value the weaker the acid. In aqueous a solution, simple acids are partially dissociated to an appreciable extent in in the pH range pK ± 2. The a actual extent of the dissociation can be calculated if the acid concentration and pH are known.