Topic 4 Thermodynamics Thermodynamics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 4 Calculation of Standard Thermodynamic Properties of Aqueous Electrolytes and Non-Electrolytes
Chapter 4 Calculation of Standard Thermodynamic Properties of Aqueous Electrolytes and Non-Electrolytes Vladimir Majer Laboratoire de Thermodynamique des Solutions et des Polymères Université Blaise Pascal Clermont II / CNRS 63177 Aubière, France Josef Sedlbauer Department of Chemistry Technical University Liberec 46117 Liberec, Czech Republic Robert H. Wood Department of Chemistry and Biochemistry University of Delaware Newark, DE 19716, USA 4.1 Introduction Thermodynamic modeling is important for understanding and predicting phase and chemical equilibria in industrial and natural aqueous systems at elevated temperatures and pressures. Such systems contain a variety of organic and inorganic solutes ranging from apolar nonelectrolytes to strong electrolytes; temperature and pressure strongly affect speciation of solutes that are encountered in molecular or ionic forms, or as ion pairs or complexes. Properties related to the Gibbs energy, such as thermodynamic equilibrium constants of hydrothermal reactions and activity coefficients of aqueous species, are required for practical use by geologists, power-cycle chemists and process engineers. Derivative properties (enthalpy, heat capacity and volume), which can be obtained from calorimetric and volumetric experiments, are useful in extrapolations when calculating the Gibbs energy at conditions remote from ambient. They also sensitively indicate evolution in molecular interactions with changing temperature and pressure. In this context, models with a sound theoretical basis are indispensable, describing with a limited number of adjustable parameters all thermodynamic functions of an aqueous system over a wide range of temperature and pressure. In thermodynamics of hydrothermal solutions, the unsymmetric standard-state convention is generally used; in this case, the standard thermodynamic properties (STP) of a solute reflect its interaction with the solvent (water), and the excess properties, related to activity coefficients, correspond to solute-solute interactions. -
Notation for States and Processes, Significance of the Word Standard in Chemical Thermodynamics, and Remarks on Commonly Tabulated Forms of Thermodynamic Functions
Pure &Appl.Chem.., Vol.54, No.6, pp.1239—1250,1982. 0033—4545/82/061239—12$03.00/0 Printed in Great Britain. Pergamon Press Ltd. ©1982IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY PHYSICAL CHEMISTRY DIVISION COMMISSION ON THERMODYNAMICS* NOTATION FOR STATES AND PROCESSES, SIGNIFICANCE OF THE WORD STANDARD IN CHEMICAL THERMODYNAMICS, AND REMARKS ON COMMONLY TABULATED FORMS OF THERMODYNAMIC FUNCTIONS (Recommendations 1981) (Appendix No. IV to Manual of Symbols and Terminology for Physicochemical Quantities and Units) Prepared for publication by J. D. COX, National Physical Laboratory, Teddington, UK with the assistance of a Task Group consisting of S. ANGUS, London; G. T. ARMSTRONG, Washington, DC; R. D. FREEMAN, Stiliwater, OK; M. LAFFITTE, Marseille; G. M. SCHNEIDER (Chairman), Bochum; G. SOMSEN, Amsterdam, (from Commission 1.2); and C. B. ALCOCK, Toronto; and P. W. GILLES, Lawrence, KS, (from Commission 11.3) *Membership of the Commission for 1979-81 was as follows: Chairman: M. LAFFITTE (France); Secretary: G. M. SCHNEIDER (FRG); Titular Members: S. ANGUS (UK); G. T. ARMSTRONG (USA); V. A. MEDVEDEV (USSR); Y. TAKAHASHI (Japan); I. WADSO (Sweden); W. ZIELENKIEWICZ (Poland); Associate Members: H. CHIHARA (Japan); J. F. COUNSELL (UK); M. DIAZ-PENA (Spain); P. FRANZOSINI (Italy); R. D. FREEMAN (USA); V. A. LEVITSKII (USSR); 0.SOMSEN (Netherlands); C. E. VANDERZEE (USA); National Representatives: J. PICK (Czechoslovakia); M. T. RATZSCH (GDR). NOTATION FOR STATES AND PROCESSES, SIGNIFICANCE OF THE WORD STANDARD IN CHEMICAL THERMODYNAMICS, AND REMARKS ON COMMONLY TABULATED FORMS OF THERMODYNAMIC FUNCTIONS SECTION 1. INTRODUCTION The main IUPAC Manual of symbols and terminology for physicochemical quantities and units (Ref. -
Thermodynamics of Solar Energy Conversion in to Work
Sri Lanka Journal of Physics, Vol. 9 (2008) 47-60 Institute of Physics - Sri Lanka Research Article Thermodynamic investigation of solar energy conversion into work W.T.T. Dayanga and K.A.I.L.W. Gamalath Department of Physics, University of Colombo, Colombo 03, Sri Lanka Abstract Using a simple thermodynamic upper bound efficiency model for the conversion of solar energy into work, the best material for a converter was obtained. Modifying the existing detailed terrestrial application model of direct solar radiation to include an atmospheric transmission coefficient with cloud factors and a maximum concentration ratio, the best shape for a solar concentrator was derived. Using a Carnot engine in detailed space application model, the best shape for the mirror of a concentrator was obtained. A new conversion model was introduced for a solar chimney power plant to obtain the efficiency of the power plant and power output. 1. INTRODUCTION A system that collects and converts solar energy in to mechanical or electrical power is important from various aspects. There are two major types of solar power systems at present, one using photovoltaic cells for direct conversion of solar radiation energy in to electrical energy in combination with electrochemical storage and the other based on thermodynamic cycles. The efficiency of a solar thermal power plant is significantly higher [1] compared to the maximum efficiency of twenty percent of a solar cell. Although the initial cost of a solar thermal power plant is very high, the running cost is lower compared to the other power plants. Therefore most countries tend to build solar thermal power plants. -
Vapour Absorption Refrigeration Systems Based on Ammonia- Water Pair
Lesson 17 Vapour Absorption Refrigeration Systems Based On Ammonia- Water Pair Version 1 ME, IIT Kharagpur 1 The specific objectives of this lesson are to: 1. Introduce ammonia-water systems (Section 17.1) 2. Explain the working principle of vapour absorption refrigeration systems based on ammonia-water (Section 17.2) 3. Explain the principle of rectification column and dephlegmator (Section 17.3) 4. Present the steady flow analysis of ammonia-water systems (Section 17.4) 5. Discuss the working principle of pumpless absorption refrigeration systems (Section 17.5) 6. Discuss briefly solar energy based sorption refrigeration systems (Section 17.6) 7. Compare compression systems with absorption systems (Section 17.7) At the end of the lecture, the student should be able to: 1. Draw the schematic of a ammonia-water based vapour absorption refrigeration system and explain its working principle 2. Explain the principle of rectification column and dephlegmator using temperature-concentration diagrams 3. Carry out steady flow analysis of absorption systems based on ammonia- water 4. Explain the working principle of Platen-Munter’s system 5. List solar energy driven sorption refrigeration systems 6. Compare vapour compression systems with vapour absorption systems 17.1. Introduction Vapour absorption refrigeration system based on ammonia-water is one of the oldest refrigeration systems. As mentioned earlier, in this system ammonia is used as refrigerant and water is used as absorbent. Since the boiling point temperature difference between ammonia and water is not very high, both ammonia and water are generated from the solution in the generator. Since presence of large amount of water in refrigerant circuit is detrimental to system performance, rectification of the generated vapour is carried out using a rectification column and a dephlegmator. -
Chapter 8 and 9 – Energy Balances
CBE2124, Levicky Chapter 8 and 9 – Energy Balances Reference States . Recall that enthalpy and internal energy are always defined relative to a reference state (Chapter 7). When solving energy balance problems, it is therefore necessary to define a reference state for each chemical species in the energy balance (the reference state may be predefined if a tabulated set of data is used such as the steam tables). Example . Suppose water vapor at 300 oC and 5 bar is chosen as a reference state at which Hˆ is defined to be zero. Relative to this state, what is the specific enthalpy of liquid water at 75 oC and 1 bar? What is the specific internal energy of liquid water at 75 oC and 1 bar? (Use Table B. 7). Calculating changes in enthalpy and internal energy. Hˆ and Uˆ are state functions , meaning that their values only depend on the state of the system, and not on the path taken to arrive at that state. IMPORTANT : Given a state A (as characterized by a set of variables such as pressure, temperature, composition) and a state B, the change in enthalpy of the system as it passes from A to B can be calculated along any path that leads from A to B, whether or not the path is the one actually followed. Example . 18 g of liquid water freezes to 18 g of ice while the temperature is held constant at 0 oC and the pressure is held constant at 1 atm. The enthalpy change for the process is measured to be ∆ Hˆ = - 6.01 kJ. -
Solar Thermal Energy
22 Solar Thermal Energy Solar thermal energy is an application of solar energy that is very different from photovol- taics. In contrast to photovoltaics, where we used electrodynamics and solid state physics for explaining the underlying principles, solar thermal energy is mainly based on the laws of thermodynamics. In this chapter we give a brief introduction to that field. After intro- ducing some basics in Section 22.1, we will discuss Solar Thermal Heating in Section 22.2 and Concentrated Solar (electric) Power (CSP) in Section 22.3. 22.1 Solar thermal basics We start this section with the definition of heat, which sometimes also is called thermal energy . The molecules of a body with a temperature different from 0 K exhibit a disordered movement. The kinetic energy of this movement is called heat. The average of this kinetic energy is related linearly to the temperature of the body. 1 Usually, we denote heat with the symbol Q. As it is a form of energy, its unit is Joule (J). If two bodies with different temperatures are brought together, heat will flow from the hotter to the cooler body and as a result the cooler body will be heated. Dependent on its physical properties and temperature, this heat can be absorbed in the cooler body in two forms, sensible heat and latent heat. Sensible heat is that form of heat that results in changes in temperature. It is given as − Q = mC p(T2 T1), (22.1) where Q is the amount of heat that is absorbed by the body, m is its mass, Cp is its heat − capacity and (T2 T1) is the temperature difference. -
A Comparative Energy and Economic Analysis Between a Low Enthalpy Geothermal Design and Gas, Diesel and Biomass Technologies for a HVAC System Installed in an Office Building
energies Article A Comparative Energy and Economic Analysis between a Low Enthalpy Geothermal Design and Gas, Diesel and Biomass Technologies for a HVAC System Installed in an Office Building José Ignacio Villarino 1, Alberto Villarino 1,* , I. de Arteaga 2 , Roberto Quinteros 2 and Alejandro Alañón 1 1 Department of Construction and Agronomy, Construction Engineering Area, High Polytechnic School of Ávila, University of Salamanca, Hornos Caleros, 50, 05003 Ávila, Spain; [email protected] (J.I.V.); [email protected] (A.A.) 2 Facultad de Ingeniería, Escuela de Ingeniería Mecánica, Pontificia Universidad Católica de Valparaíso, Av. Los Carrera 01567, Quilpué 2430000, Chile; [email protected] (I.d.A.); [email protected] (R.Q.) * Correspondence: [email protected]; Tel.: +34-920-353-500; Fax: +34-920-353-501 Received: 3 January 2019; Accepted: 25 February 2019; Published: 6 March 2019 Abstract: This paper presents an analysis of economic and energy between a ground-coupled heat pump system and other available technologies, such as natural gas, biomass, and diesel, providing heating, ventilation, and air conditioning to an office building. All the proposed systems are capable of reaching temperatures of 22 ◦C/25 ◦C in heating and cooling modes. EnergyPlus software was used to develop a simulation model and carry out the validation process. The first objective of the paper is the validation of the numerical model developed in EnergyPlus with the experimental results collected from the monitored building to evaluate the system in other operating conditions and to compare it with other available technologies. The second aim of the study is the assessment of the position of the low enthalpy geothermal system proposed versus the rest of the systems, from energy, economic, and environmental aspects. -
A Comprehensive Review of Thermal Energy Storage
sustainability Review A Comprehensive Review of Thermal Energy Storage Ioan Sarbu * ID and Calin Sebarchievici Department of Building Services Engineering, Polytechnic University of Timisoara, Piata Victoriei, No. 2A, 300006 Timisoara, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-256-403-991; Fax: +40-256-403-987 Received: 7 December 2017; Accepted: 10 January 2018; Published: 14 January 2018 Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included. Keywords: storage system; phase-change materials; chemical storage; cold storage; performance 1. Introduction Recent projections predict that the primary energy consumption will rise by 48% in 2040 [1]. On the other hand, the depletion of fossil resources in addition to their negative impact on the environment has accelerated the shift toward sustainable energy sources. -
Empirical Modelling of Einstein Absorption Refrigeration System
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 75, Issue 3 (2020) 54-62 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal homepage: www.akademiabaru.com/arfmts.html ISSN: 2289-7879 Empirical Modelling of Einstein Absorption Refrigeration Open Access System Keng Wai Chan1,*, Yi Leang Lim1 1 School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia ARTICLE INFO ABSTRACT Article history: A single pressure absorption refrigeration system was invented by Albert Einstein and Received 4 April 2020 Leo Szilard nearly ninety-year-old. The system is attractive as it has no mechanical Received in revised form 27 July 2020 moving parts and can be driven by heat alone. However, the related literature and Accepted 5 August 2020 work done on this refrigeration system is scarce. Previous researchers analysed the Available online 20 September 2020 refrigeration system theoretically, both the system pressure and component temperatures were fixed merely by assumption of ideal condition. These values somehow have never been verified by experimental result. In this paper, empirical models were proposed and developed to estimate the system pressure, the generator temperature and the partial pressure of butane in the evaporator. These values are important to predict the system operation and the evaporator temperature. The empirical models were verified by experimental results of five experimental settings where the power input to generator and bubble pump were varied. The error for the estimation of the system pressure, generator temperature and partial pressure of butane in evaporator are ranged 0.89-6.76%, 0.23-2.68% and 0.28-2.30%, respectively. -
Cryogenicscryogenics Forfor Particleparticle Acceleratorsaccelerators Ph
CryogenicsCryogenics forfor particleparticle acceleratorsaccelerators Ph. Lebrun CAS Course in General Accelerator Physics Divonne-les-Bains, 23-27 February 2009 Contents • Low temperatures and liquefied gases • Cryogenics in accelerators • Properties of fluids • Heat transfer & thermal insulation • Cryogenic distribution & cooling schemes • Refrigeration & liquefaction Contents • Low temperatures and liquefied gases ••• CryogenicsCryogenicsCryogenics ininin acceleratorsacceleratorsaccelerators ••• PropertiesPropertiesProperties ofofof fluidsfluidsfluids ••• HeatHeatHeat transfertransfertransfer &&& thermalthermalthermal insulationinsulationinsulation ••• CryogenicCryogenicCryogenic distributiondistributiondistribution &&& coolingcoolingcooling schemesschemesschemes ••• RefrigerationRefrigerationRefrigeration &&& liquefactionliquefactionliquefaction • cryogenics, that branch of physics which deals with the production of very low temperatures and their effects on matter Oxford English Dictionary 2nd edition, Oxford University Press (1989) • cryogenics, the science and technology of temperatures below 120 K New International Dictionary of Refrigeration 3rd edition, IIF-IIR Paris (1975) Characteristic temperatures of cryogens Triple point Normal boiling Critical Cryogen [K] point [K] point [K] Methane 90.7 111.6 190.5 Oxygen 54.4 90.2 154.6 Argon 83.8 87.3 150.9 Nitrogen 63.1 77.3 126.2 Neon 24.6 27.1 44.4 Hydrogen 13.8 20.4 33.2 Helium 2.2 (*) 4.2 5.2 (*): λ Point Densification, liquefaction & separation of gases LNG Rocket fuels LIN & LOX 130 000 m3 LNG carrier with double hull Ariane 5 25 t LHY, 130 t LOX Air separation by cryogenic distillation Up to 4500 t/day LOX What is a low temperature? • The entropy of a thermodynamical system in a macrostate corresponding to a multiplicity W of microstates is S = kB ln W • Adding reversibly heat dQ to the system results in a change of its entropy dS with a proportionality factor T T = dQ/dS ⇒ high temperature: heating produces small entropy change ⇒ low temperature: heating produces large entropy change L. -
Teaching Psychrometry to Undergraduates
AC 2007-195: TEACHING PSYCHROMETRY TO UNDERGRADUATES Michael Maixner, U.S. Air Force Academy James Baughn, University of California-Davis Michael Rex Maixner graduated with distinction from the U. S. Naval Academy, and served as a commissioned officer in the USN for 25 years; his first 12 years were spent as a shipboard officer, while his remaining service was spent strictly in engineering assignments. He received his Ocean Engineer and SMME degrees from MIT, and his Ph.D. in mechanical engineering from the Naval Postgraduate School. He served as an Instructor at the Naval Postgraduate School and as a Professor of Engineering at Maine Maritime Academy; he is currently a member of the Department of Engineering Mechanics at the U.S. Air Force Academy. James W. Baughn is a graduate of the University of California, Berkeley (B.S.) and of Stanford University (M.S. and PhD) in Mechanical Engineering. He spent eight years in the Aerospace Industry and served as a faculty member at the University of California, Davis from 1973 until his retirement in 2006. He is a Fellow of the American Society of Mechanical Engineering, a recipient of the UCDavis Academic Senate Distinguished Teaching Award and the author of numerous publications. He recently completed an assignment to the USAF Academy in Colorado Springs as the Distinguished Visiting Professor of Aeronautics for the 2004-2005 and 2005-2006 academic years. Page 12.1369.1 Page © American Society for Engineering Education, 2007 Teaching Psychrometry to Undergraduates by Michael R. Maixner United States Air Force Academy and James W. Baughn University of California at Davis Abstract A mutli-faceted approach (lecture, spreadsheet and laboratory) used to teach introductory psychrometric concepts and processes is reviewed. -
Matching Energy Consumption and Photovoltaic Production in a Retrofitted Dwelling in Subtropical Climate Without a Backup System
energies Article Matching Energy Consumption and Photovoltaic Production in a Retrofitted Dwelling in Subtropical Climate without a Backup System Sergio Gómez Melgar 1,* , Antonio Sánchez Cordero 2 , Marta Videras Rodríguez 2 and José Manuel Andújar Márquez 1 1 TEP192 Control y Robótica, Escuela Técnica Superior de Ingeniería, Universidad de Huelva, CP. 21007 Huelva, Spain; [email protected] 2 Programa de Ciencia y Tecnología Industrial y Ambiental, Escuela Técnica Superior de Ingeniería, Universidad de Huelva, CP. 21007 Huelva, Spain; [email protected] (A.S.C.); [email protected] (M.V.R.) * Correspondence: [email protected] Received: 4 October 2020; Accepted: 16 November 2020; Published: 18 November 2020 Abstract: The construction sector is a great contributor to global warming both in new and existing buildings. Minimum energy buildings (MEBs) demand as little energy as possible, with an optimized architectural design, which includes passive solutions. In addition, these buildings consume as low energy as possible introducing efficient facilities. Finally, they produce renewable energy on-site to become zero energy buildings (ZEBs) or even plus zero energy buildings (+ZEB). In this paper, a deep analysis of the energy use and renewable energy production of a social dwelling was carried out based on data measurements. Unfortunately, in residential buildings, most renewable energy production occurs at a different time than energy demand. Furthermore, energy storage batteries for these facilities are expensive and require significant maintenance. The present research proposes a strategy, which involves rescheduling energy demand by changing the habits of the occupants in terms of domestic hot water (DHW) consumption, cooking, and washing.