Installation, Setup & Troubleshooting Supplement

Total Page:16

File Type:pdf, Size:1020Kb

Installation, Setup & Troubleshooting Supplement EconoMi$er X F a c t o r y --- I n s t a l l e d O p t i o n Low Leak Economizer for 2 Speed SAV (Staged Air Volume) Systems Installation, Setup & Troubleshooting Supplement This document is a supplemental installation instruction for the factory-installed EconoMi$er X (low leak economizer) option. It is to be used with the base unit Installation Instructions for 48/50TC, 50TCQ, 48/50HC, and 50HCQ 2-Stage cooling units, sizes 08 – 30. Units equipped with the EconoMi$er X option are identified by an indicator in the unit's model number (see the unit's nameplate). Use Table 1 (on page 2) to identify whether or not a given unit is equipped with the factory-installed EconoMi$er X. NOTE: Read the entire instruction manual before starting the installation. TABLE OF CONTENTS SAFETY CONSIDERATIONS SAFETY CONSIDERATIONS.................... 1 Improper installation, adjustment, alteration, service, maintenance, or use can cause explosion, fire, electrical GENERAL.................................... 2 shock or other conditions which may cause personal injury Identifying Factory Option...................... 2 or property damage. Consult a qualified installer, service EconoMi$er X................................ 3 agency, or your distributor or branch for information or assistance. The qualified installer or agency must use W7220 Economizer Controller................... 3 factory--authorized kits or accessories when modifying this User Interface................................ 3 product. Refer to the individual instructions packaged with Menu Structure............................... 3 the kits or accessories when installing. Checkout Tests............................... 7 Follow all safety codes. Wear safety glasses and work gloves. Use quenching cloths for brazing operations and SETUP AND CONFIGURATION................. 7 have a fire extinguisher available. Read these instructions W7220 Economizer Module Wiring.............. 7 thoroughly and follow all warnings or cautions attached to Time--Out and Screen Saver..................... 7 the unit. Consult local building codes and appropriate national electrical codes (in USA, ANSI/NFPA70, National Enthalpy Settings............................. 8 Electrical Code (NEC); in Canada, CSA C22.1) for special Enthalpy Control Sensor Configuration............ 8 requirements. Install Outside Air Hood — Factory Option........ 9 It is important to recognize safety information. This is the 15to25TonHorizontalReturnApplicationwith .... safety--alert symbol . When you see this symbol on the Barometric Relief............................ 9 unit and in instructions or manuals, be alert to the OPERATION................................. 10 potential for personal injury. Cooling, Unit with EconoMi$er X............... 10 Understand the signal words DANGER, WARNING, CAUTION, and NOTE. These words are used with the Heating, Unit with EconoMi$er X............... 10 safety--alert symbol. Demand Control Ventilation.................. 10 DANGER identifies the most serious hazards which will result TROUBLESHOOTING......................... 11 in severe personal injury or death. WARNING signifies hazards Power Loss (Outage or Brownout)............... 11 which could result in personal injury or death. Alarms..................................... 11 CAUTION is used to identify unsafe practices, which Clearing Alarms............................. 11 may result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which will result in GENERAL enhanced installation, reliability, or operation. Identifying Factory Option ! WARNING NOTE: This supplement only applies to units that meet the criteria detailed in Table 1. If the unit does not meet ELECTRICAL SHOCK HAZARD that criteria, discard this document. Failure to follow this warning could cause personal injury or death. Table 1 – Model--Size / EconoMi$er X Option Indicator Before performing service or maintenance operations Position in EconoMi$er FIOP Model / Sizes on unit, always turn off main power switch to unit and Model Number Indicator install lock(s) and lockout tag(s). Unit may have more 48/50TC / 08---16 15 UorW than one power switch. Ensure electrical service to rooftop unit agrees with voltage an amperage listed on 48/50TC / 17---30 15 U, V, W or X the unit rating plate. 50TCQ / 08---14 15 UorW 50TCQ / 17---24 15 U, V, W or X 48/50HC / 08---14 15 UorW ! CAUTION 48/50HC / 17---28 15 U, V, W or X 50HCQ / 08---12 15 UorW CUT HAZARD Failure to follow this caution may result in personal injury. NOTE: See Fig. 1 for an example of typical Model LLECON--01SI Number Nomenclature. Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety In addition to criteria in Table 1, all units equipped with a glasses and gloves when handling parts and servicing factory--installed EconoMi$er X display a 6 in the 14th air conditioning equipment. position of the model number indicating the low leak economizer controller. These units also display a G in the 17th position of the model number to indicate that the unit is equipped with the factory--installed VFD (Variable Frequency Drive) option for 2--speed indoor fan control. The VFD option is required for units equipped with EconoMi$er X. For detailed information on the VFD see the Variable Frequency Drive (VFD) Installation, Setup & Troubleshooting Supplement. Position:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Example: 48HCDD24A3A5-6U0 G 0 Product Type Packaging Product Series Electrical Options G = 2-Speed Indoor Fan (VFD) Controller Heat Options Service Options Refrig. Systems Options Intake / Exhaust Options Cooling Tons A = None B = Temp Economizer w/ Baro Relief Sensor Options F = Enthalpy Econoizer w/ Baro Relief K = 2 Position Damper U = Temp Low Leak Economizer w/ Baro Relief Indoor Fan Options & Air Flow Configuraitons V = Temp Low Leak Economizer w/ PE (cent) W = Enthalpy Low Leak Economizer Coil Options (RTPF) (Outdoor - Indoor - Hail Guard) w/ Baro Relief X = Enthalpy Low Leak Economizer w/ PE (cent) Voltage Base Unit Controls 0 = Base Electromechanical Controls Design Revision 1 = PremierLink Controller 2 = RTU Open Multi-Protocol Controller 6 = Electromechanical Controls for Low Leak Economizer Only C11547 Fig. 1 -- Model Number Nomenclature Example 2 EconoMi$er X Using the Keypad with Menus EconoMi$er X is a low leak economizer system which is To use the keypad when working with menus: available for 2--stage cooling units equipped with the SAV 2--speed Variable Frequency Drive (VFD) system. S Press the (Up arrow) button to move to the previous The factory--installed option consist of the following: menu. S S Low leak economizer assembly Press the (Down arrow) button to move to the next menu. S W7220 economizer controller S Press the (Enter) button to display the first item in S 20K dry bulb temperature control sensor the currently displayed menu. S Enthalpy control sensor (enthalpy economizer only) S Press the (Menu Up/Exit) button to exit a menu’s W7220 Economizer Controller item and return to the list of menus. The economizer controller used on electro mechanical units is a Honeywell W7220 which is located in the RTU base Using the Keypad with Settings and Parameters unit’s Control Box. See the Installation Instructions for your base unit for the location of the Control Box access panel. To use the keypad when working with Setpoints, System and Advanced Settings, Checkout tests and Alarms: The W7220 controller provide the following: 1. Navigate to the desired menu. S 2--line LCD interface screen for setup, configuration 2. Press the (Enter) button to display the first item in LLECON--01SI and troubleshooting. the currently displayed menu. S On--board fault detection and diagnostics 3. Use the and buttons to scroll to the desired S Sensor failure loss of communications identification parameter. 4. Press the (Enter) button to display the value of the S Automatic sensor detection currently displayed item. S Capabilites for use with multiple--speed indoor fan 5. Press the button to increase (change) the displayed systems parameter value. 6. Press the button to decrease (change) the displayed User Interface parameter value. The user interface consists of an LCD display and a NOTE: When values are displayed, pressing and 4--button keypad on the front of the economizer controller. holding the or button causes the display to automatically increment. 7. Press the (Enter) button to accept the displayed value and store it in nonvolatile RAM. 8. “CHANGE STORED” displays. 9. Press the (Enter) button to return to the current menu parameter. 2 LINE 10. Press the (MenuUp/Exit)buttontoreturntothe LCD previous menu. Menu Structure Table 2 illustrates the complete hierarchy of menus and parameters for the Economizer X system. MENU UP SELECT (EXIT) SCROLL (ENTER) The Menus in display order are: BUTTON UP/DOWN BUTTON BUTTONS S STATUS C11548 S SETPOINTS Fig. 2 -- W7220 Controller S SYSTEM SETUP S ADVANCED SETUP Keypad S CHECKOUT The four navigation buttons (see Fig. 2) are used to scroll S ALARMS through the menus and menu items, select menu items, and to change parameter and configuration settings. 3 IMPORTANT: Table 2 illustrates the complete hierarchy. your menu parameters may be different depending on your configuration. For example if you do not have a DCV (CO2) sensor, then none of the DCV parameters appear. Table 2 – Menu Structure a Parameter Parameter Menu Parameter Default Notes Range and Incrementb Value STATUS ECON AVAIL NO YES/NO YES = economizing
Recommended publications
  • Installation Guide
    Installation guide Welcome! If you have questions, we have answers. Visit ecobee.com/Support/ecobee3 for tutorials, how-to videos and FAQs. Technical support is also available by email or by phone: [email protected] 1.877.932.6233 (North America) 1.647.428.2220 (International) Compatible systems ecobee3 works with most centralized residential heating and cooling systems. Heating: up to 2 stages Cooling: up to 2 stages Heat pumps: 1 or 2 stages + up to 2 stages auxiliary heat Accessories: Dehumidifier, humidifier or ventilation device 3 Items included in box A ecobee3 thermostat with D Large trim plate back plate and trim plate E Screws and drywall plugs B Remote Sensor and stand F Information booklets C Power Extender Kit G Double-sided adhesives (optional) A B C wire labels Installation Guide Quick Start Guide D E F G 4 Items you’ll need A Phillips screwdriver B Drill for mounting anchors with 3⁄₁₆ inch drill bit A B Tip: Review all the instructions before you start to ensure that there are no surprises during installation. Tip: For accurate temperature readings, install your ecobee3 in a conditioned space, on an interior wall, and away from direct heat sources. 5 Overview of steps Installing your ecobee3 home climate system is easy. Just follow these steps and you’ll be done before you know it. Step 1 Power off your HVAC system page 8 Before doing anything else, power off your system. Step 2 Label the wires page 9 Label each wire with the provided stickers. Step 3 Install Power Extender Kit page 11 The PEK is not required for all installs.
    [Show full text]
  • Vapour Absorption Refrigeration Systems Based on Ammonia- Water Pair
    Lesson 17 Vapour Absorption Refrigeration Systems Based On Ammonia- Water Pair Version 1 ME, IIT Kharagpur 1 The specific objectives of this lesson are to: 1. Introduce ammonia-water systems (Section 17.1) 2. Explain the working principle of vapour absorption refrigeration systems based on ammonia-water (Section 17.2) 3. Explain the principle of rectification column and dephlegmator (Section 17.3) 4. Present the steady flow analysis of ammonia-water systems (Section 17.4) 5. Discuss the working principle of pumpless absorption refrigeration systems (Section 17.5) 6. Discuss briefly solar energy based sorption refrigeration systems (Section 17.6) 7. Compare compression systems with absorption systems (Section 17.7) At the end of the lecture, the student should be able to: 1. Draw the schematic of a ammonia-water based vapour absorption refrigeration system and explain its working principle 2. Explain the principle of rectification column and dephlegmator using temperature-concentration diagrams 3. Carry out steady flow analysis of absorption systems based on ammonia- water 4. Explain the working principle of Platen-Munter’s system 5. List solar energy driven sorption refrigeration systems 6. Compare vapour compression systems with vapour absorption systems 17.1. Introduction Vapour absorption refrigeration system based on ammonia-water is one of the oldest refrigeration systems. As mentioned earlier, in this system ammonia is used as refrigerant and water is used as absorbent. Since the boiling point temperature difference between ammonia and water is not very high, both ammonia and water are generated from the solution in the generator. Since presence of large amount of water in refrigerant circuit is detrimental to system performance, rectification of the generated vapour is carried out using a rectification column and a dephlegmator.
    [Show full text]
  • Chapter 8 and 9 – Energy Balances
    CBE2124, Levicky Chapter 8 and 9 – Energy Balances Reference States . Recall that enthalpy and internal energy are always defined relative to a reference state (Chapter 7). When solving energy balance problems, it is therefore necessary to define a reference state for each chemical species in the energy balance (the reference state may be predefined if a tabulated set of data is used such as the steam tables). Example . Suppose water vapor at 300 oC and 5 bar is chosen as a reference state at which Hˆ is defined to be zero. Relative to this state, what is the specific enthalpy of liquid water at 75 oC and 1 bar? What is the specific internal energy of liquid water at 75 oC and 1 bar? (Use Table B. 7). Calculating changes in enthalpy and internal energy. Hˆ and Uˆ are state functions , meaning that their values only depend on the state of the system, and not on the path taken to arrive at that state. IMPORTANT : Given a state A (as characterized by a set of variables such as pressure, temperature, composition) and a state B, the change in enthalpy of the system as it passes from A to B can be calculated along any path that leads from A to B, whether or not the path is the one actually followed. Example . 18 g of liquid water freezes to 18 g of ice while the temperature is held constant at 0 oC and the pressure is held constant at 1 atm. The enthalpy change for the process is measured to be ∆ Hˆ = - 6.01 kJ.
    [Show full text]
  • Icomfort S30 Smart Thermostat Installation and Setup Guide
    iComfort® S30 Smart Thermostat Installation and Setup Guide Color Touchscreen Programmable Wi-Fi Communicating Thermostat (12U67) 507536-02 5/2017 Supersedes 10/2016 Software Version 3.2 TABLE OF CONTENTS SHIPPING AND PACKING LIST ............................................. 3 Mag-Mount....................................................... 33 GENERAL ................................................................. 3 Add / Remove Equipment........................................... 33 INSTALLING CONTROL SYSTEM COMPONENTS ............................. 4 Reset ............................................................ 33 Smart Hub Installation................................................... 4 Notifications ........................................................... 33 Mag-Mount Installation.................................................. 5 Tests ................................................................. 33 HD Display External Components......................................... 6 Diagnostics ............................................................ 33 HD Display Installation.................................................. 6 Installation Report...................................................... 33 WIRING FOR CONTROL SYSTEM COMPONENTS............................. 7 Information ............................................................ 34 CONFIGURATING HEAT SECTIONS ON AIR HANDLER CONTROL.............. 12 Dealer — Information............................................... 34 SMART HUB OPERATIONS................................................
    [Show full text]
  • A Comparative Energy and Economic Analysis Between a Low Enthalpy Geothermal Design and Gas, Diesel and Biomass Technologies for a HVAC System Installed in an Office Building
    energies Article A Comparative Energy and Economic Analysis between a Low Enthalpy Geothermal Design and Gas, Diesel and Biomass Technologies for a HVAC System Installed in an Office Building José Ignacio Villarino 1, Alberto Villarino 1,* , I. de Arteaga 2 , Roberto Quinteros 2 and Alejandro Alañón 1 1 Department of Construction and Agronomy, Construction Engineering Area, High Polytechnic School of Ávila, University of Salamanca, Hornos Caleros, 50, 05003 Ávila, Spain; [email protected] (J.I.V.); [email protected] (A.A.) 2 Facultad de Ingeniería, Escuela de Ingeniería Mecánica, Pontificia Universidad Católica de Valparaíso, Av. Los Carrera 01567, Quilpué 2430000, Chile; [email protected] (I.d.A.); [email protected] (R.Q.) * Correspondence: [email protected]; Tel.: +34-920-353-500; Fax: +34-920-353-501 Received: 3 January 2019; Accepted: 25 February 2019; Published: 6 March 2019 Abstract: This paper presents an analysis of economic and energy between a ground-coupled heat pump system and other available technologies, such as natural gas, biomass, and diesel, providing heating, ventilation, and air conditioning to an office building. All the proposed systems are capable of reaching temperatures of 22 ◦C/25 ◦C in heating and cooling modes. EnergyPlus software was used to develop a simulation model and carry out the validation process. The first objective of the paper is the validation of the numerical model developed in EnergyPlus with the experimental results collected from the monitored building to evaluate the system in other operating conditions and to compare it with other available technologies. The second aim of the study is the assessment of the position of the low enthalpy geothermal system proposed versus the rest of the systems, from energy, economic, and environmental aspects.
    [Show full text]
  • A Comprehensive Review of Thermal Energy Storage
    sustainability Review A Comprehensive Review of Thermal Energy Storage Ioan Sarbu * ID and Calin Sebarchievici Department of Building Services Engineering, Polytechnic University of Timisoara, Piata Victoriei, No. 2A, 300006 Timisoara, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-256-403-991; Fax: +40-256-403-987 Received: 7 December 2017; Accepted: 10 January 2018; Published: 14 January 2018 Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included. Keywords: storage system; phase-change materials; chemical storage; cold storage; performance 1. Introduction Recent projections predict that the primary energy consumption will rise by 48% in 2040 [1]. On the other hand, the depletion of fossil resources in addition to their negative impact on the environment has accelerated the shift toward sustainable energy sources.
    [Show full text]
  • Dodge Cummins Coolant Bypass
    FPE-2018-06 SUBJECT: DODGE CUMMINS COOLANT BYPASS KIT November, 2020 Page 1 of 6 FITMENT: 2003–2007 Dodge Cummins Manual Transmission Only 2007.5-2018 Dodge Cummins Manual and Automatic Transmissions KIT P/N: FPE-CLNTBYPS-CUMMINS-MAN, FPE-CLNTBYPS-CUMMINS-6.7 ESTIMATED INSTALLATION TIME: 2-3 Hours TOOLS REQUIRED: 16mm ratcheting wrench, 10mm socket, 8mm socket, 6mm Allen, 1” wrench, hammer, 5-gallon clean drain pan, 36” pry bar, Scotch-Brite TM pad (included in kit). KIT CONTENTS: Item Description Qty 1 Coolant bypass hose 1 2 Coolant bypass thermostat housing 1 and O-ring 3 Thermostat riser block and O-ring 1 3 4 4 Coolant bypass hose riser bracket 2 2 5 M8 x 1.25, 20mm socket head cap 2 screw 7 6 6 M6 x 1.00 x 60mm flange head bolt 3 5 7 M12 x 1.75, 40mm flange head bolt 2 8 Scotch-Brite TM pad (not pictured) 1 1 WARNINGS: • Use of this product may void or nullify the vehicle’s factory warranty. • User assumes sole responsibility for the safe & proper use of the vehicle at all times. • The purchaser and end user releases, indemnifies, discharges, and holds harmless Fleece Performance Engineering, Inc. from any and all claims, damages, causes of action, injuries, or expenses resulting from or relating to the use or installation of this product that is in violation of the terms and conditions on this page, the product disclaimer, and/or the product installation instructions. Fleece Performance Engineering, Inc. will not be liable for any direct, indirect, consequential, exemplary, punitive, statutory, or incidental damages or fines cause by the use or installation of this product.
    [Show full text]
  • Cryogenicscryogenics Forfor Particleparticle Acceleratorsaccelerators Ph
    CryogenicsCryogenics forfor particleparticle acceleratorsaccelerators Ph. Lebrun CAS Course in General Accelerator Physics Divonne-les-Bains, 23-27 February 2009 Contents • Low temperatures and liquefied gases • Cryogenics in accelerators • Properties of fluids • Heat transfer & thermal insulation • Cryogenic distribution & cooling schemes • Refrigeration & liquefaction Contents • Low temperatures and liquefied gases ••• CryogenicsCryogenicsCryogenics ininin acceleratorsacceleratorsaccelerators ••• PropertiesPropertiesProperties ofofof fluidsfluidsfluids ••• HeatHeatHeat transfertransfertransfer &&& thermalthermalthermal insulationinsulationinsulation ••• CryogenicCryogenicCryogenic distributiondistributiondistribution &&& coolingcoolingcooling schemesschemesschemes ••• RefrigerationRefrigerationRefrigeration &&& liquefactionliquefactionliquefaction • cryogenics, that branch of physics which deals with the production of very low temperatures and their effects on matter Oxford English Dictionary 2nd edition, Oxford University Press (1989) • cryogenics, the science and technology of temperatures below 120 K New International Dictionary of Refrigeration 3rd edition, IIF-IIR Paris (1975) Characteristic temperatures of cryogens Triple point Normal boiling Critical Cryogen [K] point [K] point [K] Methane 90.7 111.6 190.5 Oxygen 54.4 90.2 154.6 Argon 83.8 87.3 150.9 Nitrogen 63.1 77.3 126.2 Neon 24.6 27.1 44.4 Hydrogen 13.8 20.4 33.2 Helium 2.2 (*) 4.2 5.2 (*): λ Point Densification, liquefaction & separation of gases LNG Rocket fuels LIN & LOX 130 000 m3 LNG carrier with double hull Ariane 5 25 t LHY, 130 t LOX Air separation by cryogenic distillation Up to 4500 t/day LOX What is a low temperature? • The entropy of a thermodynamical system in a macrostate corresponding to a multiplicity W of microstates is S = kB ln W • Adding reversibly heat dQ to the system results in a change of its entropy dS with a proportionality factor T T = dQ/dS ⇒ high temperature: heating produces small entropy change ⇒ low temperature: heating produces large entropy change L.
    [Show full text]
  • Matching Energy Consumption and Photovoltaic Production in a Retrofitted Dwelling in Subtropical Climate Without a Backup System
    energies Article Matching Energy Consumption and Photovoltaic Production in a Retrofitted Dwelling in Subtropical Climate without a Backup System Sergio Gómez Melgar 1,* , Antonio Sánchez Cordero 2 , Marta Videras Rodríguez 2 and José Manuel Andújar Márquez 1 1 TEP192 Control y Robótica, Escuela Técnica Superior de Ingeniería, Universidad de Huelva, CP. 21007 Huelva, Spain; [email protected] 2 Programa de Ciencia y Tecnología Industrial y Ambiental, Escuela Técnica Superior de Ingeniería, Universidad de Huelva, CP. 21007 Huelva, Spain; [email protected] (A.S.C.); [email protected] (M.V.R.) * Correspondence: [email protected] Received: 4 October 2020; Accepted: 16 November 2020; Published: 18 November 2020 Abstract: The construction sector is a great contributor to global warming both in new and existing buildings. Minimum energy buildings (MEBs) demand as little energy as possible, with an optimized architectural design, which includes passive solutions. In addition, these buildings consume as low energy as possible introducing efficient facilities. Finally, they produce renewable energy on-site to become zero energy buildings (ZEBs) or even plus zero energy buildings (+ZEB). In this paper, a deep analysis of the energy use and renewable energy production of a social dwelling was carried out based on data measurements. Unfortunately, in residential buildings, most renewable energy production occurs at a different time than energy demand. Furthermore, energy storage batteries for these facilities are expensive and require significant maintenance. The present research proposes a strategy, which involves rescheduling energy demand by changing the habits of the occupants in terms of domestic hot water (DHW) consumption, cooking, and washing.
    [Show full text]
  • And Tec220x-4(+PIR) Series LONWORKS Network Staged Thermostat Controllers
    TEC226x-4(+PIR) and TEC220x-4(+PIR) Series LONWORKS® Network Staged Thermostat Controllers Code No. LIT-12011611 Technical Bulletin Issued February 8, 2010 Network Variables (NVs) and Configuration Parameters (CPs) List. 3 Network Variable Inputs (NVIs) Table . 8 Network Variable Outputs (NVOs) Table . 10 Configuration Properties (CPs) . 13 Space Comfort Controller Object . 18 Commissioning the Thermostat Using a LONWORKS Network Configuration Tool . 18 Service Pin . 19 TEC22xx-4 Configuration Plug-in. 19 Installing the Plug-in. 19 Registering the Plug-in. 20 Using LN Browser to Display NVs, NCIs, and CPs . 22 Running the Plug-in . 27 Heating - Cooling Tab . 31 Hardware Tab . 32 General Tab . 33 Model Tab . 34 Scheduler Tab . 36 Network Tab . 38 About Tab . 39 Adding a Thermostat to the Network Automation Engine (NAE) . 39 LONWORKS Thermostat Controller Mapping . 40 Preparation . 40 Troubleshooting Guide . 40 Technical Specifications . 43 TEC226x-4(+PIR) and TEC220x-4(+PIR) Series LONWORKS Network Staged Thermostat Controllers . 43 TEC226x-4(+PIR) and TEC220x-4(+PIR) Series LONWORKS® Network Staged 1 Thermostat Controllers Technical Bulletin 2 TEC226x-4(+PIR) and TEC220x-4(+PIR) Series LONWORKS® Network Staged Thermostat Controllers Technical Bulletin TEC226x-4(+PIR) and TEC220x-4(+PIR) Series LONWORKS® Network Staged Thermostat Controllers Technical Bulletin Network Variables (NVs) and Configuration Parameters (CPs) List Table 1 shows the NVs and CPs for the TEC226x-4(+PIR) and TEC220x-4(+PIR) Series Thermostat Controllers. Each Network Variable Input (NVI), Network Variable Output (NVO), and Network Configuration Input (NCI) has a reference number as defined in the XIF Resource File, and some objects have a subcategory number.
    [Show full text]
  • Room Humidistat and Thermostat Combination, Wall Mounting, For
    Room humidistat and thermostat combination, wall mounting, for swimming pools areas and air conditioning Type Q4 DIMENSIONS MAIN FEATURES Main Application: This device is a combination of a humidistat and a room thermostat. It is especially suited for use in air conditioning control of indoor swimming-pool halls.His aesthetics and small size housing (122x70x31mm) allows mounting in most of these applications, but must be protected from splashing water, and used only in ambient air free of chemical contamination or corrosive ingredients. It is designed to turn on heating or cooling, ventilation, humidifiers, dehumidifiers, and heat pumps. It must be vertically wall mounted in a naturally ventilated area Humidity sensing element: hygroscopic polymer film with special treatment, produced by Ultimheat, ensuring a fast response, long life and high stability Humidity setting range: 35 to 95% RH Humidity measuring accuracy: ±5% RH Differential at 50% RH: 8% RH (±3% RH ) Measuring medium: air, pressure-less, non-aggressive Electrical contact: silver contacts, SPDT, 5A 250V, res. For use in humidifier, dehumidifier or ventilation control. Maintenance: The humidity sensing ribbon is maintenance-free in clean air. Air containing solvent can cause measuring errors and failure, depending on the type and concentration. Deposits such as resin aerosols, lacquer aerosols, smokes, which eventually form a water-repellent film are harmful for the measuring element. Temperature measuring element: Bimetal strip Temperature adjustment range: 5-35°C Differential: 0.6+/-0.3°C Electrical contact: silver contacts, SPDT, 5A 250V, res. For use in heating or cooling applications Options: • On Off switch • Thermal anticipator, that provides thermal differential reduction (Needs Neutral+ Line power supply, 230 or 24V) • Remote set point reduction (Needs Neutral+ Line power supply, 230 or 24V) • Temperature printings in °F Connection: screw terminal connection block for 1.5mm² wires, max torque 0.5Nm Mounting: wall mounting, with 2 screws dia 4 mm max, distance 100 x 50 mm.
    [Show full text]
  • SOLAR HEATING CONTROLS by Radiantec Company
    SOLAR HEATING CONTROLS by Radiantec Company THE SOLAR CONTROL LOOP Solar Loop Control Sensors Solar Control (cover off) OPERATION- The solar loop control turns on the solar loop pump whenever solar energy is available and turns the pump off when sufficient solar energy is no longer available. (See the appendix for a detailed dis- cussion of control operation) CONTROLLER LOGIC- The solar loop control is a “differential temperature control”. It senses temperature at two locations and operates according to the difference between the temperatures at these two locations. When the temperature of the “collector” sensor is 8° F warmer, or more, than the “storage/tank” sensor, the output switch is closed. (that action turns the pump on) When the temperature of the “collector” sensor is only 4° F, or less, warmer than the “storage/tank” sensor, the output switch is opened.(That action turns the pump off ) SENSOR PLACEMENT - Place the “collector” sensor on the outlet pipe of the solar collector array and insulate well. Place the “storage” sensor on the pipe at the point where the flow from the heat exchangers come together in one pipe for return to the solar collectors. Insulate well. See page 16 of the installation manual for sensor placement details. Typical Control Setting Turn on = 8° Hi limit = 200° Optional Temperature Display SOLAR HEATING CONTROLS by Radiantec Company HEAT DUMP CONTROL Heat Dump Valve Place the heat dump valve in any hot water line and plumb to a suitable drain. Laundry room placement can be convenient. Setpoint Control Setpoint Control (cover off) OPERATION - The heat dump control lowers system temperature by automatically consuming some domestic hot water whenever excessive temperatures are detected.
    [Show full text]