“Glad You Asked” What Are Fulgurites and Where

Total Page:16

File Type:pdf, Size:1020Kb

“Glad You Asked” What Are Fulgurites and Where Table of Contents Utah’s Newly Recognized Dinosaur Record . 1 The Inventory and Management of Utah’s Fossil Resources . 5 Director’s Survey News . 6 Robert W. Gloyn . 7 Perspective Pilot Project Shows Promise for Aquifer Storage and Recovery . 8 by Richard G. Allis Deep Utah coal deposits - repositories for greenhouse gas emissions? . 10 he Utah Geological Survey (UGS) has just completed a five-year planning GeoSights . 12 document to coincide with the transition to a new governor and executive Lehi Hintze Award . 13 administration. The document points out that the need for geological “Glad You Asked” . .14 information and advice is becoming increasingly important due to Utah’s ongo- Teacher’s Corner . 15 Ting economic and population growth, which are stressing its geologic resources Design by Vicky Clarke (minerals, energy, ground water), increasing vulnerability to natural hazards, and Cover: A new UGS dinosaur quarry at base of increasing conflict over wise use of land. Examples of issues confronting Utahns Cedar Mountain Formation (see page 1). Other over the next decade for which geological information from the UGS will be criti- captions, p. 5. cal include the following: • Utah has considerable energy and mineral wealth (annual production value of State of Utah Jon Huntsman, Jr., Governor $3 billion) but there are increasing challenges to extracting that wealth in an Department of Natural Resources acceptable and environmentally sustainable way. Michael Styler, Executive Director • Utah’s demand for electricity continues to grow, and will likely require new UGS Board coal-fired power plant capacity. Charles Semborski, Chair Geoff Bedell Craig Nelson • Natural gas has become Utah’s most important energy commodity in recent Kathleen Ochsenbein Robert Robison years, replacing copper (1960s) and oil (1980s), but normal production decline Steve Church Ron Bruhn rates in existing wells will require new exploration to sustain this trend Kevin Carter (Trust Lands Administration-ex officio) through the 2000s. UGS Staff Administration • The continued growth in urban areas is filling available land on the valley Richard G. Allis, Director floors and causing development in more hazardous areas along the mountain- Kimm Harty, Deputy Director John Kingsley, Assoc. Director front regions. Daniel Kelly, Acct. Officer • Utah has been lucky that a very damaging earthquake has not yet occurred Rebecca Medina, Secretary/Receptionist along the Wasatch Front in historical times; old, unreinforced masonry build- Jo Lynn Campbell, Admin. Secretary Linda Bennett, Accounting Tech. ings vulnerable to collapse that were built until the 1970s are abundant in Michael Hylland, Tech. Reviewer most downtown city areas. Editorial Staff Jim Stringfellow • Utah is the second-driest state, and this is compounded by the ongoing Vicky Clarke, Sharon Hamre, James Parker, Lori Douglas drought; ground-water resources are finite, and in some areas of the state they Geologic Hazards Gary Christenson may have been over-appropriated William Lund, Barry Solomon, Francis Ashland, Richard Giraud, Greg McDonald, Lucas Shaw, Clearly the UGS has an important role to play in state government in the coming Chris DuRoss, Mike Kirschbaum, Garrett Vice years. Energy and Mineral Resources David Tabet Utah’s use of its natural Robert Blackett, Roger Bon, Thomas Chidsey, resources such as oil, gas, Bryce Tripp, Craig Morgan, J. Wallace Gwynn, Jeff Quick, Kevin McClure, Sharon Wakefield, minerals, and ground water Cheryl Gustin, Mike Laine, Tom Dempster, has grown as the popula- Brigitte Hucka, Dallas Rippy, Taylor Boden tion has grown. These Geologic Mapping Grant Willis trends are expected to con- Jon King, Douglas Sprinkel, Janice Hayden, tinue, requiring additional Kent Brown, Bob Biek, Basia Matyjasik, geologic advice and infor- Lisa Brown, Don Clark, Darryl Greer mation to help with chal- Geologic Information and Outreach Sandra Eldredge, William Case lenging land-use decisions Christine Wilkerson, Mage Yonetani, that balance development Patricia Stokes, Mark Milligan, Carl Ege, versus preservation needs. Rob Nielson, Jeff Campbell, Nancy Carruthers Mineral production value Environmental Sciences Michael Lowe has been adjusted to year- James Kirkland, Charles Bishop, Janae Wallace, 2000 dollars. Martha Hayden, Hugh Hurlow, Juliette Lucy, Don DeBlieux, Neil Burk, Kim Nay, Stefan Kirby, Survey Notes is published three times yearly by Utah Geological Survey, 1594 W. North Temple, Suite 3110, Salt Lake City, Utah Justin Johnson, Jake Umbriaco 84116; (801) 537-3300. The UGS is an applied scientific agency that creates, evaluates, and distributes information about Utah’s geologic environment, resources, and hazards to promote safe, beneficial, and wise use of land. The UGS is a division of the Department of Natural Resources. Single copies of Survey Notes are distributed free of charge within the United States and Cana- ISSN 1061-7930 da and reproduction is encouraged with recognition of source. Copies are available at http://geology.utah.gov/surveynotes S URVEY N OTES 1 Utah’s Newly Recognized Dinosaur Record from the Early Cretaceous Cedar Mountain Formation by James I. Kirkland Introduction Many of Utah’s sedimentary rock layers contain abundant fossils and other features that have given us a wealth of information about dinosaurs and the environmental con- ditions under which they lived. With sites such as the Carnegie Quarry at Dinosaur National Monument in northeastern Utah, and the Cleveland-Lloyd Quarry southwest of Price, Utah is justifiably famous for its dinosaurs from the Late Jurassic Morrison Formation. Likewise, Utah’s Late Cretaceous dinosaur record is well known as the most complete in the world, owing to the extraordinary fossil record preserved in southern Utah. However, rocks from the Early Cretaceous period had until recently yielded little information about the dinosaurs that lived here during that time. Only over the past decade have new discoveries revealed the importance of dinosaurs preserved in Utah’s Early Cretaceous Cedar Mountain Formation. This recently recognized dinosaur Outcrop of Cedar Mountain Formation in east-central Utah. record permits for the first time a detailed reconstruction of Utah’s Early Cretaceous geology, biology, geography, The reported absence of dinosaur bones in the Cedar and climate. Mountain Formation limited the number of paleontolo- In 1944 the University of Utah’s William Lee Stokes gists investigating these rocks for many years. Because applied the name Cedar Mountain Shale to drab, slope- geologists lacked any accepted means of subdividing these forming rocks lying between the Buckhorn Conglomerate rocks, they were long considered to be a rather monoto- and Dakota Formation, based on a type-section defined on nous sequence of Early Cretaceous strata that generally the southwest flank of Cedar Mountain at the north end of thicken to the west. Then, new dinosaur species reported the San Rafael Swell in Emery Co., Utah. In 1952, he in the mid-1990s led to a rush of institutions searching for renamed it the Cedar Mountain Formation and included the dinosaurs in the Cedar Mountain Formation. Brigham the Buckhorn Conglomerate as its basal member. Back Young University, College of Eastern Utah Prehistoric then, where the cliff-forming Buckhorn is not present, the Museum, Denver Museum of Nature and Science, rule of thumb for distinguishing the Cedar Mountain from Dinosaur National Monument, Oklahoma Museum of the underlying Morrison Formation included (1) its more Natural History, and the Utah Geological Survey are just drably variegated color, (2) its more abundant carbonate some of the many research groups presently looking for nodules often with a thick carbonate paleosol (ancient soil) fossils. A wealth of new fossil sites, and some radiometric at the base, (3) the presence of common polished chert dates, have established that the relatively thin layer (nor- pebbles identified as gastroliths (dinosaur stomach mally less than 100 meters) of Early Cretaceous Cedar stones), and (4) the absence of dinosaur bones. Mountain Formation, which separates thousands of 2 S URVEY N OTES Ankylosaur preserved lying on its back in Buckhorn Conglomerate near Buckhorn Wash, near Cedar Mountain type section southwest of Cedar Mountain. meters of Jurassic rocks and thou- sy has arisen over the age of the Dinosaurs identified in these rocks sands of meters of Late Cretaceous Buckhorn Conglomerate, as a thick include the polacanthine ankylosaur, rocks, is more complex than previous- carbonate paleosol locally overlies the Gastonia burgei; advanced iguan- ly thought. Additionally, it preserves Buckhorn and a similar paleosol has odonts (bipedal plant eaters with nearly 30 million years of what may been used to define the base of the thumb spikes), “Iguanodon” ottingeri, be the most interesting episode of Cretaceous elsewhere. However, and perhaps other species; and sever- dinosaur history apart from their ori- well-developed paleosols may occur al sauropod (long-necked dinosaurs) gin and extinction. at a number of stratigraphic positions families, represented by the bra- within the Cedar Mountain Forma- chiosaurid Cedarosaurus weiskopfae, a In 1997, using the distribution of spe- tion. Additionally, the recent discov- new titanosaurid, and a possible cific dinosaur faunas (groups of ery of a possible ankylosaur (armored camarasaurid. Meat-eating or thero- dinosaurs living together) and their dinosaur) skeleton suggests a Creta- pod dinosaurs
Recommended publications
  • The Wasatch Fault
    The WasatchWasatchThe FaultFault UtahUtah Geological Geological Survey Survey PublicPublic Information Information Series Series 40 40 11 9 9 9 9 6 6 The WasatchWasatchThe FaultFault CONTENTS The ups and downs of the Wasatch fault . .1 What is the Wasatch fault? . .1 Where is the Wasatch fault? Globally ............................................................................................2 Regionally . .2 Locally .............................................................................................4 Surface expressions (how to recognize the fault) . .5 Land use - your fault? . .8 At a glance - geological relationships . .10 Earthquakes ..........................................................................................12 When/how often? . .14 Howbig? .........................................................................................15 Earthquake hazards . .15 Future probability of the "big one" . .16 Where to get additional information . .17 Selected bibliography . .17 Acknowledgments Text by Sandra N. Eldredge. Design and graphics by Vicky Clarke. Special thanks to: Walter Arabasz of the University of Utah Seismograph Stations for per- mission to reproduce photographs on p. 6, 9, II; Utah State University for permission to use the satellite image mosaic on the cover; Rebecca Hylland for her assistance; Gary Christenson, Kimm Harty, William Lund, Edith (Deedee) O'Brien, and Christine Wilkerson for their reviews; and James Parker for drafting. Research supported by the U.S. Geological Survey (USGS), Department
    [Show full text]
  • A New Microvertebrate Assemblage from the Mussentuchit
    A new microvertebrate assemblage from the Mussentuchit Member, Cedar Mountain Formation: insights into the paleobiodiversity and paleobiogeography of early Late Cretaceous ecosystems in western North America Haviv M. Avrahami1,2,3, Terry A. Gates1, Andrew B. Heckert3, Peter J. Makovicky4 and Lindsay E. Zanno1,2 1 Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA 2 North Carolina Museum of Natural Sciences, Raleigh, NC, USA 3 Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA 4 Field Museum of Natural History, Chicago, IL, USA ABSTRACT The vertebrate fauna of the Late Cretaceous Mussentuchit Member of the Cedar Mountain Formation has been studied for nearly three decades, yet the fossil-rich unit continues to produce new information about life in western North America approximately 97 million years ago. Here we report on the composition of the Cliffs of Insanity (COI) microvertebrate locality, a newly sampled site containing perhaps one of the densest concentrations of microvertebrate fossils yet discovered in the Mussentuchit Member. The COI locality preserves osteichthyan, lissamphibian, testudinatan, mesoeucrocodylian, dinosaurian, metatherian, and trace fossil remains and is among the most taxonomically rich microvertebrate localities in the Mussentuchit Submitted 30 May 2018 fi fi Accepted 8 October 2018 Member. To better re ne taxonomic identi cations of isolated theropod dinosaur Published 16 November 2018 teeth, we used quantitative analyses of taxonomically comprehensive databases of Corresponding authors theropod tooth measurements, adding new data on theropod tooth morphodiversity in Haviv M. Avrahami, this poorly understood interval. We further provide the first descriptions of [email protected] tyrannosauroid premaxillary teeth and document the earliest North American record of Lindsay E.
    [Show full text]
  • Geological Sukvey
    DEPABTMENT OF THE IHTERIOE BULLETIN OF THE UNITED STATES GEOLOGICAL SUKVEY No. 148 WASHINGTON' G-OVEKNMENT PRINTING OFFICE 1897 UNITED STATES GEOLOGICAL SUEYEY CHARLES D. WALCOTT, 'DIRECTOR ANALYSES OF ROCKS ANALYTICAL METHODS LABORATORY OF THE UNITED STATES GEOLOGICAL SURVEY 1880 to 1896 BY F. W. CLAEKE AND W. F. HILLEBEAND WASHINGTON GOVERNMENT PRINTING OFFICE 1897 CONTENTS. Pago. Introduction, by F. W. Clarke ....'.......................................... 9 Some principles and methods of analysis applied to silicate rocks; by W. F. Hillebrand................................................................ 15 Part I. Introduction ................................................... 15 Scope of the present paper .......................................... 20 Part II. Discussion of methods ..................................i....... 22 Preparation of sample....................:.......................... 22 Specific gravity. ............................: ......--.........--... 23 Weights of sample to be employed for analysis....................... 26 Water, hygroscopic ................................ ................. 26 Water, total or combined....... ^.................................... 30 Silica, alumina, iron, etc............................................ 34 Manganese, nickel, cobalt, copper, zinc.............................. 41 Calcium and strontium...................................... ........ 43 Magnesium......................................................... 43 Barium and titanium............... .... ............................
    [Show full text]
  • PALEOSEISMIC INVESTIGATION of the NORTHERN WEBER SEGMENT of the WASATCH FAULT ZONE at the RICE CREEK TRENCH SITE, NORTH OGDEN, UTAH by Christopher B
    Paleoseismology of Utah, Volume 18 PALEOSEISMIC INVESTIGATION OF THE NORTHERN WEBER SEGMENT OF THE WASATCH FAULT ZONE AT THE RICE CREEK TRENCH SITE, NORTH OGDEN, UTAH by Christopher B. DuRoss, Stephen F. Personius, Anthony J. Crone, Greg N. McDonald, and David J. Lidke SPECIAL STUDY 130 Utah Geological Survey UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES 2009 Paleoseismology of Utah, Volume 18 PALEOSEISMIC INVESTIGATION OF THE NORTHERN WEBER SEGMENT OF THE WASATCH FAULT ZONE AT THE RICE CREEK TRENCH SITE, NORTH OGDEN, UTAH by Christopher B. DuRoss1, Stephen F. Personius2, Anthony J. Crone2, Greg N. McDonald1, and David J. Lidke2 1Utah Geological Survey 2U.S. Geological Survey Cover photo: Rice Creek trench site; view is to the east. ISBN 1-55791-819-8 SPECIAL STUDY 130 Utah Geological Survey UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES 2009 STATE OF UTAH Gary R. Herbert, Governor DEPARTMENT OF NATURAL RESOURCES Michael Styler, Executive Director UTAH GEOLOGICAL SURVEY Richard G. Allis, Director PUBLICATIONS contact Natural Resources Map & Bookstore 1594 W. North Temple Salt Lake City, UT 84116 telephone: 801-537-3320 toll-free: 1-888-UTAH MAP Web site: mapstore.utah.gov email: [email protected] UTAH GEOLOGICAL SURVEY contact 1594 W. North Temple, Suite 3110 Salt Lake City, UT 84116 telephone: 801-537-3300 Web site: geology.utah.gov Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding its suitability for a particular use. The Utah Department of Natural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product.
    [Show full text]
  • Cathedral Valley Loop @
    Cathedral Valley Loop @ www.ontdek-amerika.nl Last Update : Januari 27, 2007 Cathedral Valley Loop INLEIDING Cathedral Valley ligt in het uiterste noorden van Capitol Reef National Park, en is alleen via onverharde wegen bereikbaar. Een van de meest opvallende kenmerken is de aanwezigheid van veel schitterende monolieten, dat zijn apart staande rotsen die hoog boven de omgeving uitsteken. Het woord monoliet is afgeleid van de Griekse woorden ‘monos’ (alleen) en ‘lithos’ (gesteente). Je kan het zeer eenzame gebied – er komen hier maar héél weinig bezoekers – bereiken via de Hartnet Road en de Caineville Wash Road, die samen een 58 mijl lange lus vormen. Via diverse korte zijwegen kan je naar een aantal punten rijden die een panoramisch uitzicht bieden over de weidse omgeving. De route valt deels binnen de parkgrenzen; het deel dat niet tot het park behoort wordt beheerd door het Bureau of Landmanagement. De beste jaargetijden om de Cathedral Valley Loop te rijden zijn de lente en de herfst. Tijdens de winter is de weg vaak te slecht, en tijdens de zomer kan het ondraaglijk heet worden. TOESTAND VAN DE WEG In principe is de weg het hele jaar door open. Vierwielaandrijving is meestal niet nodig, maar een hoge bodemvrijheid (high clearance) is wel absoluut noodzakelijk. Bij goede weersomstandigheden is de weg goed berijdbaar, maar bij slecht weer kan de toestand van de weg drastisch veranderen. Regen en sneeuw kunnen delen van de route onbegaanbaar maken. Informeer daarom altijd vooraf bij het Visitor Center in Capitol Reef National Park naar de conditie van de weg én naar de weersvoorspelling.
    [Show full text]
  • A. K. Rozhdestvensky HISTORY of the DINOSAUR FAUNA of ASIA
    A. K. Rozhdestvensky HISTORY OF THE DINOSAUR FAUNA OF ASIA AND OTHER CONTINENTS AND QUESTIONS CONCERNING PALEOGEOGRAPHY* The distribution and evolution of dinosaur faunas during the period of their existence, from the Late Triassic to the end of the Cretaceous, shows a close connection with the paleogeography of the Mesozoic. However these questions were hard to examine on a global scale until recently, because only the dinosaurs of North America were well known, where during the last century were found their richest deposits and where the best paleontologists were studying them — J. Leidy, E. Cope, O. Marsh, R. Lull, H. Osborn, C. Gilmore, B. Brown, and later many others. On the remaining continents, including Europe, where the study of dinosaurs started earlier than it did in America, the information was rather incomplete due to the fragmentary condition of the finds and rare, episodic studies. The Asian continent remained unexplored the longest, preventing any intercontinental comparisons. Systematic exploration and large excavations of dinosaur locations in Asia, which began in the last fifty years (Osborn, 1930; Efremov, 1954; Rozhdestvenskiy, 1957a, 1961, 1969, 1971; Rozhdestvenskiy & Chzhou, 1960; Kielan-Jaworowska & Dovchin, 1968; Kurochkin, Kalandadze, & Reshetov, 1970; Barsbold, Voronin, & Zhegallo, 1971) showed that this continent has abundant dinosaur remains, particularly in its central part (Fig. 1). Their study makes it possible to establish a faunal connection between Asia and other continents, correlate the stratigraphy of continental deposits of the Mesozoic, because dinosaurs are reliable leading forms, as well as to make corrections in the existing paleogeographic structure. The latter, in their turn, promote a better understanding of the possible paths of distribution of the individual groups of dinosaurs, the reasons for their appearance, their development, and disappearance.
    [Show full text]
  • Lightning Strikes As a Major Facilitator of Prebiotic Phosphorus Reduction on Early Earth ✉ Benjamin L
    ARTICLE https://doi.org/10.1038/s41467-021-21849-2 OPEN Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth ✉ Benjamin L. Hess 1,2,3 , Sandra Piazolo 2 & Jason Harvey2 When hydrated, phosphides such as the mineral schreibersite, (Fe,Ni)3P, allow for the synthesis of important phosphorus-bearing organic compounds. Such phosphides are com- mon accessory minerals in meteorites; consequently, meteorites are proposed to be a main 1234567890():,; source of prebiotic reactive phosphorus on early Earth. Here, we propose an alternative source for widespread phosphorus reduction, arguing that lightning strikes on early Earth potentially formed 10–1000 kg of phosphide and 100–10,000 kg of phosphite and hypo- phosphite annually. Therefore, lightning could have been a significant source of prebiotic, reactive phosphorus which would have been concentrated on landmasses in tropical regions. Lightning strikes could likewise provide a continual source of prebiotic reactive phosphorus independent of meteorite flux on other Earth-like planets, potentially facilitating the emer- gence of terrestrial life indefinitely. 1 Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA. 2 School of Earth and Environment, Institute of Geophysics and Tectonics, The University of Leeds, Leeds, UK. 3 Department of Geology and Environmental Science, Wheaton College, Wheaton, IL, USA. ✉ email: [email protected] NATURE COMMUNICATIONS | (2021) 12:1535 | https://doi.org/10.1038/s41467-021-21849-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21849-2 ife on Earth likely originated by 3.5 Ga1 with carbon isotopic Levidence suggesting as early as 3.8–4.1 Ga2,3.
    [Show full text]
  • At Carowinds
    at Carowinds EDUCATOR’S GUIDE CLASSROOM LESSON PLANS & FIELD TRIP ACTIVITIES Table of Contents at Carowinds Introduction The Field Trip ................................... 2 The Educator’s Guide ....................... 3 Field Trip Activity .................................. 4 Lesson Plans Lesson 1: Form and Function ........... 6 Lesson 2: Dinosaur Detectives ....... 10 Lesson 3: Mesozoic Math .............. 14 Lesson 4: Fossil Stories.................. 22 Games & Puzzles Crossword Puzzles ......................... 29 Logic Puzzles ................................. 32 Word Searches ............................... 37 Answer Keys ...................................... 39 Additional Resources © 2012 Dinosaurs Unearthed Recommended Reading ................. 44 All rights reserved. Except for educational fair use, no portion of this guide may be reproduced, stored in a retrieval system, or transmitted in any form or by any Dinosaur Data ................................ 45 means—electronic, mechanical, photocopy, recording, or any other without Discovering Dinosaurs .................... 52 explicit prior permission from Dinosaurs Unearthed. Multiple copies may only be made by or for the teacher for class use. Glossary .............................................. 54 Content co-created by TurnKey Education, Inc. and Dinosaurs Unearthed, 2012 Standards www.turnkeyeducation.net www.dinosaursunearthed.com Curriculum Standards .................... 59 Introduction The Field Trip From the time of the first exhibition unveiled in 1854 at the Crystal
    [Show full text]
  • Quaternary Tectonics of Utah with Emphasis on Earthquake-Hazard Characterization
    QUATERNARY TECTONICS OF UTAH WITH EMPHASIS ON EARTHQUAKE-HAZARD CHARACTERIZATION by Suzanne Hecker Utah Geologiral Survey BULLETIN 127 1993 UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES 0 STATE OF UTAH Michael 0. Leavitt, Governor DEPARTMENT OF NATURAL RESOURCES Ted Stewart, Executive Director UTAH GEOLOGICAL SURVEY M. Lee Allison, Director UGSBoard Member Representing Lynnelle G. Eckels ................................................................................................... Mineral Industry Richard R. Kennedy ................................................................................................. Civil Engineering Jo Brandt .................................................................................................................. Public-at-Large C. Williatn Berge ...................................................................................................... Mineral Industry Russell C. Babcock, Jr.............................................................................................. Mineral Industry Jerry Golden ............................................................................................................. Mineral Industry Milton E. Wadsworth ............................................................................................... Economics-Business/Scientific Scott Hirschi, Director, Division of State Lands and Forestry .................................... Ex officio member UGS Editorial Staff J. Stringfellow .........................................................................................................
    [Show full text]
  • Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex
    Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex By Karen E. Poole B.A. in Geology, May 2004, University of Pennsylvania M.A. in Earth and Planetary Sciences, August 2008, Washington University in St. Louis A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 31, 2015 Dissertation Directed by Catherine Forster Professor of Biology The Columbian College of Arts and Sciences of The George Washington University certifies that Karen Poole has passed the Final Examination for the degree of Doctor of Philosophy as of August 10th, 2015. This is the final and approved form of the dissertation. Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex Karen E. Poole Dissertation Research Committee: Catherine A. Forster, Professor of Biology, Dissertation Director James M. Clark, Ronald Weintraub Professor of Biology, Committee Member R. Alexander Pyron, Robert F. Griggs Assistant Professor of Biology, Committee Member ii © Copyright 2015 by Karen Poole All rights reserved iii Dedication To Joseph Theis, for his unending support, and for always reminding me what matters most in life. To my parents, who have always encouraged me to pursue my dreams, even those they didn’t understand. iv Acknowledgements First, a heartfelt thank you is due to my advisor, Cathy Forster, for giving me free reign in this dissertation, but always providing valuable commentary on any piece of writing I sent her, no matter how messy.
    [Show full text]
  • Tigers Eye Free
    FREE TIGERS EYE PDF Karen Robards | 400 pages | 11 May 2010 | HarperCollins Publishers Inc | 9780380755554 | English | New York, United States Tigers Eye Stone Meaning & Uses: Aids Harmonious Balanced Action Tiger's eye also called tiger eye is a Tigers Eye gemstone that is usually a metamorphic rock with a golden to red-brown colour and a silky lustre. As members of the quartz group, tiger's eye and the related blue-coloured mineral hawk's eye gain their silky, lustrous appearance from the parallel intergrowth of quartz crystals and altered amphibole fibres that have mostly turned into limonite. Tiger iron is an altered rock composed chiefly of tiger's eye, red jasper and black hematite. The undulating, contrasting bands of colour and lustre make for an attractive motif and it is Tigers Eye used for Tigers Eye and ornamentation. Tiger iron is a popular ornamental material Tigers Eye in a variety of applications, from beads to knife hilts. Tiger iron is mined primarily in South Africa and Western Australia. Tiger's eye is composed chiefly of silicon dioxide SiO 2 and is coloured mainly by Tigers Eye oxide. The specific gravity ranges from 2. Serpentine deposits in which are occasionally found chatoyant bands of chrysotile fibres have been found in the US states of Arizona and California. These have been cut and sold as "Arizona tiger-eye" and "California tiger's eye" gemstones. In some parts of the world, the stone is believed to ward off the evil eye. Gems are usually given a cabochon cut to best display their chatoyance.
    [Show full text]
  • Postcranial Anatomy of Tanius Sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Postkraniala Anatomin Hos Tanius Sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea)
    Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 320 Postcranial Anatomy of Tanius Sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Postkraniala anatomin hos Tanius sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Niclas H. Borinder INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 320 Postcranial Anatomy of Tanius Sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Postkraniala anatomin hos Tanius sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Niclas H. Borinder ISSN 1650-6553 Copyright © Niclas H. Borinder and the Department of Earth Sciences, Uppsala University Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2015 Abstract Postcranial Anatomy of Tanius Sinensis Wiman, 1929 (Dinosauria; Hadrosauroidea) Niclas H. Borinder Tanius sinensis Wiman, 1929 was one of the first hadrosauroid or “duck-billed” taxa erected from China, indeed one of the very first non-avian dinosaur taxa to be erected based on material from the country. Since the original description by Wiman in 1929, the anatomy of T. sinensis has received relatively little attention in the literature since then. This is unfortunate given the importance of T. sinensis as a possible non-hadrosaurid hadrosauroid i.e. a member of Hadrosauroidea outside the family of Hadrosauridae, living in the Late Cretaceous, at a time when most non-hadrosaurid hadro- sauroids had become replaced by the members of Hadrosauridae. To gain a better understanding of the anatomy of T. sinensis and its phylogenetic relationships, the postcranial anatomy of it is redescribed. T. sinensis is found to have a mosaic of basal traits like strongly opisthocoelous cervical vertebrae, the proximal end of scapula being dorsoventrally wider than the distal end, the ratio between the proximodistal length of the metatarsal III and the mediolateral width of this element being greater than 4.5.
    [Show full text]