The Method of Weighted Residuals and Variational Principles

Total Page:16

File Type:pdf, Size:1020Kb

The Method of Weighted Residuals and Variational Principles THE METHOD OF WEIGHTED RESIDUALS AND VARIATIONAL PRINCIPLES WITH APPLICATION IN FLUID MECHANICS, HEAT AND MASS TRANSFER This is Volume 87 in MATHEMATICS IN SCIENCE AND ENGINEERING A series of monographs and textbooks Edited by RICHARD BELLMAN, University of Southern California The complete listing of books in this series is available from the Publisher upon request. The Method of Weighted Residuals and Variational Principles WITH APPLICATION IN FLUID MECHANICS, HEAT AND MASS TRANSFER BRUCE A. FINLAYSON Department of Chemical Engineering University of Washington @ 1972 ACADEMIC PRESS New York and London COPYRIGHT0 1972, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY PHOTOSTAT, MICROFILM, RETRIEVAL SYSTEM, OR ANY OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS. ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003 United Kingdom Edition Dublished bv ACADEM~CPRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NWl LIBRARYOF CONGRESSCATALOG CARD NUMBER: 74-182607 PRINTED IN THE UNITED STATES OF AMERICA Contents Preface ix AcknowIedgments xiii PART I-THE METHOD OF WEIGHTED RESIDUALS Chapter 1 Introduction 1.1 Basic Equations and Their Classification 4 1.2 Method of Weighted Residuals 7 References 12 Chapter 2 Boundary-Value Problems in Heat and Mass Transfer 2.1 One-Dimensional Heat Conduction 16 2.2 Reduction to Ordinary Differential Equations 20 2.3 Boundary Methods 24 2.4 General Treatment of Steady-State Heat Conduction 28 V vi CONTENTS 2.5 Mass Transfer from a Sphere 30 2.6 Choice of Trial Functions 34 Exercises 36 References 37 Chapter 3 Eigenvalue and Initial-Value Problems in Heat and Mass Transfer 3.1 Eigenvalue Problems 40 3.2 Transient Heat and Mass Transfer 44 3.3 Entry-Length and Initial-Value Problems 48 3.4 Mass Transfer to a Moving Fluid 58 3.5 Heat Transfer Involving a Phase Change 61 Exercises 62 References 65 Chapter 4 Applications to Fluid Mechanics 4.? Laminar Flow in Ducts 68 4.2 Boundary Layer Flow past a Flat Plate 74 4.3 Laminar Boundary Layers 76 4.4 Natural Convection 83 4.5 Coupled Entry-Length Problems 85 4.6 Steady-State Flow Problems 88 Exercises 91 References 92 Chapter 5 Chemical Reaction Systems 5.1 Orthogonal Collocation 97 5.2 Unsteady Diffusion 107 5.3 Reaction and Diffusion in a Catalyst Particle 110 5.4 Tubular Reactor with Axial Dispersion 126 5.5 Packed Bed Reactor with Radial Dispersion 130 5.6 Relation to Other Techniques: Galerkin, Least Squares, Finite Difference, Finite Element Methods 135 Exercises 144 References 146 Chapter 6 Convective Instability Problems 6.1 Choice of Trial Functions 151 6.2 Application of the Galerkin Method 157 6.3 Time-Dependent Motion 176 CONTENTS vii 6.4 Variational Methods 184 6.5 Nonlinear Convective Instability 194 6.6 Hydrodynamic Stability 196 Exercises 202 References 203 PART 11-VARIATIONAL PRINCIPLES Chapter 7 Introduction to Variational Principles 7.1 Calculus of Variations 212 7.2 Steady-State Heat Conduction 22 1 7.3 Laminar Flow through Ducts 225 7.4 Relation to Galerkin and Finite Element Methods 229 7.5 Variational Principles for Eigenvalue Problems 232 7.6 Enclosure Theorems 238 7.7 Least Squares Interpretation of D. H. Weinstein’s Method 240 7.8 Lower Bounds for Eigenvalues 244 Exercises 249 References 250 Chapter 8 Variational Principles in Fluid Mechanics 8.1 Basic Equations 254 8.2 Variational Principles for Perfect Fluids 256 8.3 Magnetohydrodynamics 265 8.4 Non-Newtonian Fluids 270 8.5 Slow Flow past Drops and Particles 278 8.6 Variational Principles for Navier-Stokes Equations 285 8.7 Energy Methods for Stability of Fluid Motion 290 Exercises 294 References 294 Chapter 9 Variational Principles for Heat and Mass Transfer Problems 9.1 Frkchet Derivatives 299 9.2 Variational Principles for Non-Self-Adjoint Equations 307 9.3 Variational Principles for the Transport Equation 312 9.4 Applications to Heat Transfer 317 9.5 Applications to Mass Transfer 321 9.6 Upper Bound for Heat Transport by Turbulent Convection 328 Exercises 332 References 333 ... Vlll CONTENTS Chapter 10 On the Search for Variational Principles 10.1 Introduction 335 10.2 Entropy Production 337 10.3 Heat Transfer 339 10.4 Fluid Mechanics 347 Exercises 349 References 350 Chapter 11 Convergence and Error Bounds I 1.1 Definitions 352 1 1.2 Boundary-Value Problems 357 11.3 Initial-Value Problems 370 11.4 Eigenvalue Problems 378 11.5 Error Bounds Using the Maximum Principle 38 1 1 I .6 Error Bounds Using the Mean-Square Residual 388 References 393 Author Index 397 Subject Index 405 Preface This is a book for people who want to solve problems formulated as differential equations in science and engineering. The subject area is limited to fluid mechanics, heat and mass transfer. While making no pretense at completely covering these subjects and their relationship to variational principles and approximate methods, the book is intended to give the novice an introduction to the subject, and lead him through the difficult research problems being treated in the current literature. The first four chapters give a relatively simple treatment of many classical problems in the field. The literature is full of simple, one-term approximations, but the method of weighted residuals (MWR) can be used to obtain answers of any desired accuracy, and there are several methods specifically adapted to the computer. Tn many test cases MWR compares favorably to finite difference computa- tions in that the MWR results are either more accurate or require less com- putation time to generate or both. Chapter 4 discusses the developments by Professor D. E. Abbott and his students at Purdue University on laminar boundary layer flows. Orthogonal collocation is illustrated in Chapter 5. This method was advanced in 1967 by Professor W. E. Stewart at the Univer- sity of Wisconsin and J. V. Villadsen at Danmarks Tekniske Hsjskole. It drastically reduces the drudgery of setting up the problem, and, when ix X PREFACE applicable, is highly recommended. Chapter 6 studies the Galerkin method as applied to convective instability problems, where it proves effec- tive and accurate. Chapters 5 and 7 relate MWR to finite element methods, which is a promising technique, especially for linear problems with irregular boundaries. The ideas behind the method of weighted residuals are relatively simple and are easily applied. Variational principles are only slightly more compli- cated, but are often irrelevant to applications in engineering. Consequently this material takes a more appropriate back seat. Variational principles in fluid mechanics, heat and mass transfer are presented in Chapters 7-9. Chapter 10 is a short summary of my opinions on the attempt to derive '' variational " principles based on a principle of minimum (or maximum) rate of entropy production. The final chapter gives a summary of results on convergence and error bounds, subjects which are rapidly expanding. While numerical convergence often suffices, the theorems in Chapter 11 give the conditions necessary to ensure convergence in difficult nonlinear problems. The book is intended to be comprehensible to a graduate student with some knowledge of and interest in mathematics through differential equations. I hope it will find use as a reference book for graduate courses discussing approximate and numerical solutions, as well as a convenient reference for those working in the field. Problem sets are included to aid in self-study and course work. One of the pleasurable aspects of writing a book, I have discovered, is that while organizing the material new results are suggested. These are scattered throughout the book so that 1 highlight them here. In the varia- tional method the eigenvalue is stationary to small errors in the approximate eigenfunctions. I show that this is also true of the Galerkin method (Chapter 6). While not a new result, Section 7.8 illustrates two very simple and practi- cal methods of obtaining lower bounds on eigenvalues. A variational prin- ciple is given for a collection of fluid drops suspended in another fluid in slow flow-extending the previous results for Newtonian fluids in both phases to allow non-Newtonian fluids in both phases. The nonexistence of a variational principle for the steady-state Navier-Stokes equations is shown in Section 8.6 using Frechet differentials, making more concise the detailed arguments given in 1930 by C. B. Millikan. Indeed the Frechet derivative proves useful in organizing the many variational principles, or lack of them, in heat and mass transfer (see Chapter 9). The FrCchet derivative is also used to define a variational principle for any differential equation and its " adjoint "-even nonlinear equations-although there appears to be no advantage to do so. One of the difficulties with M WR or variational methods is that the error is often not known. Some of the methods discussed above are specifically designed to allow the results to be carried to numerical convergence. Even PREFACE xi so, it is of interest to have some rigorous definition of the error. The residual -the equation which is solved only approximately-provides such a criteria. Material in Section 11.6, largely developed by one of my students, Noble Ferguson, gives error bounds on the solution in terms of error bounds on the residual. Thus the error can be assessed when the exact solution is unknown. The residual also proves a useful guide in cases where the appropriate theorems have not yet been proved. The review of the literature is complete to October, 1970. This page intentionally left blank Acknowledgments Several teachers have been influential in stimulating my interest in the application of mathematics. My high school physics teacher, Mr. Williams, helped me learn calculus at a time when that subject was not taught in many high schools, especially not in a small town in Oklahoma.
Recommended publications
  • Chapter 5 Dimensional Analysis and Similarity
    Chapter 5 Dimensional Analysis and Similarity Motivation. In this chapter we discuss the planning, presentation, and interpretation of experimental data. We shall try to convince you that such data are best presented in dimensionless form. Experiments which might result in tables of output, or even mul- tiple volumes of tables, might be reduced to a single set of curves—or even a single curve—when suitably nondimensionalized. The technique for doing this is dimensional analysis. Chapter 3 presented gross control-volume balances of mass, momentum, and en- ergy which led to estimates of global parameters: mass flow, force, torque, total heat transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif- ferential equations of fluid flow and some particular solutions. These two chapters cov- ered analytical techniques, which are limited to fairly simple geometries and well- defined boundary conditions. Probably one-third of fluid-flow problems can be attacked in this analytical or theoretical manner. The other two-thirds of all fluid problems are too complex, both geometrically and physically, to be solved analytically. They must be tested by experiment. Their behav- ior is reported as experimental data. Such data are much more useful if they are ex- pressed in compact, economic form. Graphs are especially useful, since tabulated data cannot be absorbed, nor can the trends and rates of change be observed, by most en- gineering eyes. These are the motivations for dimensional analysis. The technique is traditional in fluid mechanics and is useful in all engineering and physical sciences, with notable uses also seen in the biological and social sciences.
    [Show full text]
  • Dimensional Analysis of Models and Data Sets: Similarity Solutions and Scaling Analysis
    Dimensional Analysis of Models and Data Sets: Similarity Solutions and Scaling Analysis 40 30 20 Tension, N 10 0 0 0.5 1 1.5 2 2.5 3 3.5 4 time, seconds φ = 0.2 o 2 φ = 1.0 o 1.5 1 Tension/Mg 0.5 0 0 2 4 6 8 10 12 time/(L/g)1/2 James F. Price Woods Hole Oceanographic Institution Woods Hole, Massachusetts, 02543 August 3, 2006 Summary: This essay describes a three-step procedure of dimensional analysis that can be applied to all quantitative models and data sets. In rare but important cases the result of dimensional analysis will be a solution; more often the result is an efficient way to display a large or complex data set. The first step of an analysis is to define an appropriate physical model, which is nothing more than a list of the dependent variable and all of the independent variables and parameters that are thought to be significant. The premise of dimensional analysis is that a complete equation made from this list of variables will be independent of the choice of units. This leads to the second step, calculation of a null space basis of the corresponding dimensional matrix (a computer code is made available for this calculation). To each vector 1 of the null space basis there corresponds a nondimensional variable, the number of which is less than the number of dimensional variables. The nondimensional variables are themselves a basis set and in most cases their form is not determined by dimensional analysis alone.
    [Show full text]
  • Parametric Study of Magnetic Pendulum
    Parametric Study of Magnetic Pendulum Author: Peter DelCioppo Persistent link: http://hdl.handle.net/2345/564 This work is posted on eScholarship@BC, Boston College University Libraries. Boston College Electronic Thesis or Dissertation, 2007 Copyright is held by the author, with all rights reserved, unless otherwise noted. Parametric Study of Magnetic Pendulum Boston College College of Arts and Sciences Honors Program Senior Thesis Project By Peter DelCioppo Advisor: Dr. Andrzej Herczynski, Physics Department Submitted May 2007 Table of Contents I. Genesis of Project…………………………………………………………………...p. 2 II Survey of Existing Literature…………………………………………………...…p. 2 III. Experimental Design……………………………………………………………...p. 3 IV. Theoretical Analysis………………………………………………………………p. 6 V. Calibration of Experimental Apparatus………………………………………….p. 8 VI. Experimental Results…………………………………………………………....p. 12 VII. Summary………………………………………………………………………..p. 15 VIII. References……………………………………………………………………...p. 17 - 1 - I. Genesis of Project This thesis project has been selected as an extension of experiments and research performed as part of the Spring 2006 Introduction to Chaos & Nonlinear Dynamics course (PH545). The current work particularly relates to experimental work analyzing the dynamics of the double well chaotic pendulum and a final project surveying the magnetic pendulum. In the experimental work, a basic understanding of the chaotic pendulum was developed, while the final project included a survey of the basic components of a magnetic pendulum system with particular
    [Show full text]
  • Dimensional Analysis and Modeling
    cen72367_ch07.qxd 10/29/04 2:27 PM Page 269 CHAPTER DIMENSIONAL ANALYSIS 7 AND MODELING n this chapter, we first review the concepts of dimensions and units. We then review the fundamental principle of dimensional homogeneity, and OBJECTIVES Ishow how it is applied to equations in order to nondimensionalize them When you finish reading this chapter, you and to identify dimensionless groups. We discuss the concept of similarity should be able to between a model and a prototype. We also describe a powerful tool for engi- I Develop a better understanding neers and scientists called dimensional analysis, in which the combination of dimensions, units, and of dimensional variables, nondimensional variables, and dimensional con- dimensional homogeneity of equations stants into nondimensional parameters reduces the number of necessary I Understand the numerous independent parameters in a problem. We present a step-by-step method for benefits of dimensional analysis obtaining these nondimensional parameters, called the method of repeating I Know how to use the method of variables, which is based solely on the dimensions of the variables and con- repeating variables to identify stants. Finally, we apply this technique to several practical problems to illus- nondimensional parameters trate both its utility and its limitations. I Understand the concept of dynamic similarity and how to apply it to experimental modeling 269 cen72367_ch07.qxd 10/29/04 2:27 PM Page 270 270 FLUID MECHANICS Length 7–1 I DIMENSIONS AND UNITS 3.2 cm A dimension is a measure of a physical quantity (without numerical val- ues), while a unit is a way to assign a number to that dimension.
    [Show full text]
  • Advanced Programming in Engineering Lecture Notes
    Advanced Programming in Engineering lecture notes P.J. Visser, S. Luding, S. Srivastava March 13, 2011 Changes 13/3/2011 Added Section 7.4 to 7.7. Added Section 4.4 7/3/2011 Added chapter Chapter 7 23/2/2011 Corrected the equation for the average temperature in terms of micro- scopic quantities, Eq. 3.14. Corrected the equation for the speed distribution in 2D, Eq. 3.19. Added links to sources of `true' random numbers available through the web as footnotes in Section 5.1. Added examples of choices for parameters of the LCG and LFG in Section 5.1.1 and 5.1.2, respectively. Added the chi-square test and correlation functions as ways for testing random numbers in Section 5.1.4. Improved the derivation of the average squared distance of particles in a random walk being linear with time, in Section 5.2.1. Added a discussion of the meaning of the terms in the master equation, in Section 5.2.5. Small changes. 19/2/2011 Corrected the Maxwell-Boltzmann distribution for the speed, Eq. 3.19. 14/2/2011 1 2 Added Chapter 6. 6/2/2011 Verified Eq. 3.15 and added footnote discussing its meaning in case of periodic boundary conditions. Added formula for the radial distribution function in Section 3.4.2, Eq. 3.21. 31/1/2011 Added Chapter 5. 9/1/2010 Corrected labels on the axes in Fig. 3.10, changed U · " and r · σ to U=" and r/σ, respectively. Added truncated version of the Lennard-Jones potential in Section 3.3.1.
    [Show full text]
  • Dimensional Analysis and Modeling
    cen72367_ch07.qxd 10/29/04 2:27 PM Page 269 CHAPTER DIMENSIONAL ANALYSIS 7 AND MODELING n this chapter, we first review the concepts of dimensions and units. We then review the fundamental principle of dimensional homogeneity, and OBJECTIVES Ishow how it is applied to equations in order to nondimensionalize them When you finish reading this chapter, you and to identify dimensionless groups. We discuss the concept of similarity should be able to between a model and a prototype. We also describe a powerful tool for engi- ■ Develop a better understanding neers and scientists called dimensional analysis, in which the combination of dimensions, units, and of dimensional variables, nondimensional variables, and dimensional con- dimensional homogeneity of equations stants into nondimensional parameters reduces the number of necessary ■ Understand the numerous independent parameters in a problem. We present a step-by-step method for benefits of dimensional analysis obtaining these nondimensional parameters, called the method of repeating ■ Know how to use the method of variables, which is based solely on the dimensions of the variables and con- repeating variables to identify stants. Finally, we apply this technique to several practical problems to illus- nondimensional parameters trate both its utility and its limitations. ■ Understand the concept of dynamic similarity and how to apply it to experimental modeling 269 cen72367_ch07.qxd 10/29/04 2:27 PM Page 270 270 FLUID MECHANICS Length 7–1 ■ DIMENSIONS AND UNITS 3.2 cm A dimension is a measure of a physical quantity (without numerical val- ues), while a unit is a way to assign a number to that dimension.
    [Show full text]
  • Aircraft Interior Noise Reduction by Alternate Resonance Tuning Progress Report for the Period Ending December, 1990 Final Progr
    _," ;'if ,// ... ..<-. T:- "-"" AIRCRAFT INTERIOR NOISE REDUCTION BY ALTERNATE RESONANCE TUNING PROGRESS REPORT FOR THE PERIOD ENDING DECEMBER, 1990 FINAL PROGRESS REPORT NASA RESEARCH GRANT # NAG-I-722 Prepared for: STRUCTURAL ACOUSTICS BRANCH NASA LANGLEY RESEARCH CENTER Prepared by: Dr. James A. Gottwald Dr. Donald B. Bliss Department of Mechanical Engineering and Materials Science DUKE UNIVERSITY DURHAM, NC 27705 N <) L-/S ;:: "7 7 ..... !L -, r TbN L_io .... • k t,Jniv ) 2:_-, i- GSCL 2_7)tt Abstract Existing interior noise reduction techniques for aircraft fuselages perform reasonably well at higher frequencies, but are inadequate at lower frequencies, particularly with respect to the low blade passage harmonics with high forcing levels found in propeller aircraft. This research focuses on a noise control method which considers aircraft fuselages lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. Adjacent panels would oscillate at equal amplitude, to give equal source strength, but with opposite phase. Provided these adjacent panels are acoustically compact, the resulting cancellation causes the interior acoustic modes to become cutoff, and therefore be non-propagating and evanescent. This interior noise reduction method, called Alternate Resonance Tuning (ART), is described in this thesis both theoretically and experimentally. Problems presented herein deal with tuning single paneled wall structures for optimum noise reduction using the ART tuning methodology, and three theoretical problems are analyzed. The first analysis is a three dimensional, full acoustic solution for tuning a panel wall composed of repeating sections with four different panel tunings within that section, where the panels are modeled as idealized spring-mass-damper systems.
    [Show full text]
  • Nondimensionalization, Scaling, and Units
    Topic 1: Nondimensionalization, Scaling, and Units Course Notes, Math 558 Spring 2012 Barenblatt.book Holmes.new.book This section is a selection of material related to include Chapters 0–3 of [1], Chapters 1–3 of [2]. 1 Dimensional Analysis 1.1 Example 1. Throw a ball Consider the following example: We throw a ball directly upwards from the surface of the Earth. What is its maximum height? We need two physical laws to describe this system: 1. Newton’s Second Law. The acceleration of a body is directly proportional to its force and inversely proportional to its mass; moreover, the acceleration is parallel to the form. This is typically said as “Force equals mass times acceleration” or F = ma. 2. Newton’s law of universal gravitation. Every body in the universe attracts every other body with a gravitational force, which force is proportional to each of the masses of the objects and inversely proportional to the square of the distance between the objects. In equations, if x is the vector from mass 1 to mass 2, then the force on mass 1 due to mass 2 is Gm1m2x F12 = ; kxk3 and the force on mass 2 due to mass 1 is Gm1m2x F21 = −F12 = − : kxk3 Since this problem is one-dimensional, we can think of the force, acceleration, and position as scalars (dis- tance from the ground). So if we define mB as the mass of the ball, mE as the mass of the earth, then we have the differential equation for x(t), the height above the ground, as 2 d x GmBmE m = − ; (1) eq:d B dt2 d2 where d = R + x is the distanceeq:d between the center of the ball and the center of the earth (R is the radius of the earth).
    [Show full text]
  • Introduction of Nonlinear Dynamics Into an Undergraduate Intermediate Dynamics Course
    Introduction of Nonlinear Dynamics into a Undergraduate Intermediate Dynamics Course Bongsu Kang Department of Mechanical Engineering Indiana University – Purdue University Fort Wayne Abstract This paper presents a way to introduce nonlinear dynamics and numerical analysis tools to junior and senior mechanical engineering students through an intermediate dynamics course. The main purpose of introducing nonlinear dynamics into a undergraduate dynamics course is to increase the student awareness of the rich dynamic behavior of physical systems that mechanical engineers often encounter in real world applications, while a more rigorous and quantitative treatment of this subject is left to graduate-level dynamics and vibration courses. Employing relatively simple mechanical systems, well known nonlinear dynamics phenomena such as the jump phenomenon due to stiffness hardening/softening, self excitation/limit cycle, parametric resonance, irregular motion, and the basic concepts of stability are introduced. In addition, the students are introduced to essential analysis techniques such as phase diagrams, Poincaré maps, and nondimensionalization. Equations of motion governing such nonlinear systems are numerically integrated with the Matlab ODE solvers rather than analytically to ensure that the student’s comprehension of the subject is not hindered by mathematics which are beyond the typical undergraduate engineering curricula. Discussions of the subject in the course underline the qualitative behavior of nonlinear dynamic systems rather than quantitative analysis. Introduction Typical undergraduate mechanical engineering curricula layout a sequence of dynamics and vibration courses, e.g., dynamics (first dynamics course), kinematics and kinetics of machinery or similar courses, system dynamics, and relevant technical electives. The Bachelor of Science in Mechanical Engineering program at Indiana University – Purdue University Fort Wayne (IPFW) requires three core courses and offers two technical elective courses in the areas of dynamics and vibration.
    [Show full text]
  • Course Notes, Math 558
    Course Notes, Math 558 March 28, 2012 2 Contents 1 Nondimensionalization, Scaling, and Units 5 1.1 Dimensional Analysis . 5 1.1.1 Example 1. Throw a ball . 5 1.1.2 Example 2. Drag on a sphere . 7 1.1.3 Using dimensional analysis for scale models . 8 1.1.4 Buckingham Pi Theorem . 9 1.1.5 Example 3. Computing the yield of a nuclear device . 10 1.1.6 Example 4. Pythagoras’ Theorem . 11 1.1.7 Example 5. Diffusion equation . 11 1.2 Scaling and nondimensionalization . 12 1.2.1 Projectile problem revisited . 12 1.2.2 A different scaling for projectile problem . 14 1.2.3 Diffusion equation, revisited . 14 2 Regular Asymptotics 17 2.1 Motivation, definitions . 17 2.2 Asymptotics for polynomials . 18 2.2.1 Examples . 18 2.2.2 Systematic expansions for polynomials . 19 2.3 Asymptotics for Differential Equations . 22 2.3.1 Examples . 22 2.3.2 Regular asymptotic regime . 24 3 Random Walks, Diffusions, and SDE 27 3.1 Random Walks . 27 3.1.1 Unbiased random walk — combinatorial approach . 27 3.1.2 Unbiased random walk— asymptotic approach . 29 3.1.3 Biased random walk . 30 3.1.4 Another unbiased random walk . 31 3.1.5 Summary . 31 3.2 Solution of heat equation . 31 3.2.1 No drift term . 31 3.2.2 Drift term . 33 3.3 Stochastic differential equations . 33 3.3.1 Background on probability theory . 33 3.3.2 Stochastic differential equations . 34 3.3.3 Fokker-Planck equations . 35 3.4 Comments on units, scaling .
    [Show full text]
  • Enhanced Closed Loop Performance Using Non-Dimensional Analysis
    Rochester Institute of Technology RIT Scholar Works Theses 2004 Enhanced closed loop performance using non-dimensional analysis Michael H. Wilson Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Wilson, Michael H., "Enhanced closed loop performance using non-dimensional analysis" (2004). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Enhanced Closed Loop Performance Using Non-Dimensional Analysis By Michael H. Wilson A Thesis Submitted in Partial Fulfillment of the Requirement for the MASTER OF SCIENCE IN MECHANICAL ENGINEERING Approved by: Dr. Agamemnon Crassidis (Thesis Advisor) Department of Mechanical Engineering Dr. Mark Kemski Department of Mechanical Engineering Dr. Josef Torok Department of Mechanical Engineering Dr. Edward C. Hensel Department Head of Mechanical Engineering DEPARTMENT OF MECHANICAL ENGINEERING ROCHESTER INSTITUTE OF TECHNOLOGY DECEMBER, 2004 Enhanced Closed-Loop Performance Using Non-Dimensional Analysis I, Michael H. Wilson, hereby grant permission for the Wallace Library of the Rochester Institute ofTechnology to reproduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit. Signature of Author:. Michael H. Wi lson Date: JL Ii 3•Ie 1_ 11 ABSTRACT This paper investigates the benefits of using non-dimension analysis to develop a control law for a flexible electro-mechanical system. The system that is analyzed consists of a DC motor connected to a load inertia through a set of gears.
    [Show full text]
  • Numerical Methods for the Unsteady Compressible Navier-Stokes Equations
    Numerical Methods for the Unsteady Compressible Navier-Stokes Equations Philipp Birken Numerical Methods for the Unsteady Compressible Navier-Stokes Equations Dr. Philipp Birken Habilitationsschrift am Fachbereich Mathematik und Naturwissenschaften der Universit¨atKassel Gutachter: Prof. Dr. Andreas Meister Zweitgutachterin: Prof. Dr. Margot Gerritsen Drittgutachterin: Prof. Dr. Hester Bijl Probevorlesung: 31. 10. 2012 3 There are all kinds of interesting questions that come from a know- ledge of science, which only adds to the excitement and mystery and awe of a flower. It only adds. I don't un- derstand how it subtracts. Richard Feynman 6 Acknowledgements A habilitation thesis like this is not possible without help from many people. First of all, I'd like to mention the German Research Foundation (DFG), which has funded my research since 2006 as part of the collaborative research area SFB/TR TRR 30, project C2. This interdisciplinary project has provided me the necessary freedom, motivation and optimal funding to pursue the research documented in this book. It also allowed me to hire students to help me in my research and I'd like to thank Benjamin Badel, Maria Bauer, Veronika Diba, Marouen ben Said and Malin Trost, who did a lot of coding and testing and created a lot of figures. Furthermore, I thank the colleagues from the TRR 30 for a very successful research cooperation and in particular Kurt Steinhoff for starting the project. Then, there are my collaborators over the last years, in alphabetical order Hester Bijl, who thankfully also acted as reviewer, Jurjen Duintjer Tebbens, Gregor Gassner, Mark Haas, Volker Hannemann, Stefan Hartmann, Antony Jameson, Detlef Kuhl, Andreas Meis- ter, Claus-Dieter Munz, Karsten J.
    [Show full text]