A Privileged Scaffold with Diverse Biological Activities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski Et Al
USOO9421 180B2 (12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski et al. (45) Date of Patent: Aug. 23, 2016 (54) ANTIOXIDANT COMPOSITIONS FOR 6,203,817 B1 3/2001 Cormier et al. .............. 424/464 TREATMENT OF INFLAMMATION OR 6,323,232 B1 1 1/2001 Keet al. ............ ... 514,408 6,521,668 B2 2/2003 Anderson et al. ..... 514f679 OXIDATIVE DAMAGE 6,572,882 B1 6/2003 Vercauteren et al. ........ 424/451 6,805,873 B2 10/2004 Gaudout et al. ....... ... 424/401 (71) Applicant: Perio Sciences, LLC, Dallas, TX (US) 7,041,322 B2 5/2006 Gaudout et al. .............. 424/765 7,179,841 B2 2/2007 Zielinski et al. .. ... 514,474 (72) Inventors: Jan Zielinski, Vista, CA (US); Thomas 2003/0069302 A1 4/2003 Zielinski ........ ... 514,452 Russell Moon, Dallas, TX (US); 2004/0037860 A1 2/2004 Maillon ...... ... 424/401 Edward P. Allen, Dallas, TX (US) 2004/0091589 A1 5, 2004 Roy et al. ... 426,265 s s 2004/0224004 A1 1 1/2004 Zielinski ..... ... 424/442 2005/0032882 A1 2/2005 Chen ............................. 514,456 (73) Assignee: Perio Sciences, LLC, Dallas, TX (US) 2005, 0137205 A1 6, 2005 Van Breen ..... 514,252.12 2005. O154054 A1 7/2005 Zielinski et al. ............. 514,474 (*) Notice: Subject to any disclaimer, the term of this 2005/0271692 Al 12/2005 Gervasio-Nugent patent is extended or adjusted under 35 et al. ............................. 424/401 2006/0173065 A1 8/2006 BeZwada ...................... 514,419 U.S.C. 154(b) by 19 days. 2006/O193790 A1 8/2006 Doyle et al. -
Natural Chalcones in Chinese Materia Medica: Licorice
Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2020, Article ID 3821248, 14 pages https://doi.org/10.1155/2020/3821248 Review Article Natural Chalcones in Chinese Materia Medica: Licorice Danni Wang ,1 Jing Liang,2 Jing Zhang,1 Yuefei Wang ,1 and Xin Chai 1 1Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China 2School of Foreign Language, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China Correspondence should be addressed to Xin Chai; [email protected] Received 28 August 2019; Accepted 7 February 2020; Published 15 March 2020 Academic Editor: Veronique Seidel Copyright © 2020 Danni Wang et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Licorice is an important Chinese materia medica frequently used in clinical practice, which contains more than 20 triterpenoids and 300 flavonoids. Chalcone, one of the major classes of flavonoid, has a variety of biological activities and is widely distributed in nature. To date, about 42 chalcones have been isolated and identified from licorice. -ese chalcones play a pivotal role when licorice exerts its pharmacological effects. According to the research reports, these compounds have a wide range of biological activities, containing anticancer, anti-inflammatory, antimicrobial, antioxidative, antiviral, antidiabetic, antidepressive, hep- atoprotective activities, and so on. -is review aims to summarize structures and biological activities of chalcones from licorice. We hope that this work can provide a theoretical basis for the further studies of chalcones from licorice. -
WO 2017/131957 Al 3 August 2017 (03.08.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/131957 Al 3 August 2017 (03.08.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 8/35 (2006.01) A61Q 5/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 8/97 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2017/012985 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, (22) International Filing Date: KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, 11 January 2017 ( 11.01 .2017) MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, (25) Filing Language: English RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (26) Publication Language: English TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/287,501 27 January 2016 (27.01.2016) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: ELC MANAGEMENT LLC [US/US]; 155 GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, Pinelawn Road, Suite 345 South, Melville, New York TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 11747 (US). -
Phenolic Compounds in Trees and Shrubs of Central Europe
applied sciences Review Phenolic Compounds in Trees and Shrubs of Central Europe Lidia Szwajkowska-Michałek 1,*, Anna Przybylska-Balcerek 1 , Tomasz Rogozi ´nski 2 and Kinga Stuper-Szablewska 1 1 Department of Chemistry, Faculty of Forestry and Wood Technology, Pozna´nUniversity of Life Sciences ul. Wojska Polskiego 75, 60-625 Pozna´n,Poland; [email protected] (A.P.-B.); [email protected] (K.S.-S.) 2 Department of Furniture Design, Faculty of Forestry and Wood Technology, Pozna´nUniversity of Life Sciences ul. Wojska Polskiego 38/42, 60-627 Pozna´n,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-61-848-78-43 Received: 1 September 2020; Accepted: 30 September 2020; Published: 2 October 2020 Abstract: Plants produce specific structures constituting barriers, hindering the penetration of pathogens, while they also produce substances inhibiting pathogen growth. These compounds are secondary metabolites, such as phenolics, terpenoids, sesquiterpenoids, resins, tannins and alkaloids. Bioactive compounds are secondary metabolites from trees and shrubs and are used in medicine, herbal medicine and cosmetology. To date, fruits and flowers of exotic trees and shrubs have been primarily used as sources of bioactive compounds. In turn, the search for new sources of bioactive compounds is currently focused on native plant species due to their availability. The application of such raw materials needs to be based on knowledge of their chemical composition, particularly health-promoting or therapeutic compounds. Research conducted to date on European trees and shrubs has been scarce. This paper presents the results of literature studies conducted to systematise the knowledge on phenolic compounds found in trees and shrubs native to central Europe. -
WO 2017/117099 Al 6 July 2017 (06.07.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/117099 Al 6 July 2017 (06.07.2017) P O P C T (51) International Patent Classification: (US). GENESKY, Geoffery [FR/FR]; 14 Rue Royale, Λ 61Κ 8/04 (2006.01) A61K 8/97 (201 7.01) 75008 Paris (FR). A61K 8/06 (2006.01) A61K 31/70 (2006.01) (74) Agent: BALLS, R., James; Polsinelli PC, 1401 Eye A61K 8/34 (2006.01) A61K 31/351 (2006.01) Street, N.W., Suite 800, Washington, DC 20005 (US). A61K 8/60 (2006.01) A61K 31/355 (2006.01) A61K 5/67 (2006.01) A61K 31/7048 (2006.01) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, PCT/US20 16/068662 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 27 December 2016 (27. 12.2016) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, (25) Filing Language: English MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (26) Publication Language: English NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (30) Priority Data: TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, 62/272,326 29 December 201 5 (29. -
CARDAMONIN ANALOGUES and IDENTIFICATION of a HIGHLY ACTIVE Cu(II)-CARDAMONIN COMPLEX THAT INHIBITS MIGRATION and INDUCES APOPTOSIS VIA INHIBITION of MTOR EXPRESSION
THE UNIVERSITY OF NOTTINGHAM SEMI-SYNTHESIS OF NOVEL CARDAMONIN ANALOGUES AND IDENTIFICATION OF A HIGHLY ACTIVE Cu(II)-CARDAMONIN COMPLEX THAT INHIBITS MIGRATION AND INDUCES APOPTOSIS VIA INHIBITION OF MTOR EXPRESSION Mohammed Khaled Ali Bin Break, MSc (Chemistry) Thesis submitted to The University of Nottingham for the degree of Doctor of Philosophy JULY 2018 Abstract Lung cancer is considered a major health concern and is responsible for most cancer-related deaths. Nasopharyngeal carcinoma (NPC) is another type of cancer that is predominantly in China and has a low survival rate, which makes it a serious health issue. There is currently no cure for lung cancer and NPC, so it was decided to investigate derivatives of the highly bioactive natural product, cardamonin, for a potential drug candidate. 19 analogues of cardamonin were synthesised and tested against A549 (lung) and HK1 (NPC) cell lines. The techniques employed in synthesising the analogues were one-step reactions which included alkylation, acylation, reduction, condensation, cyclisation and complexation reactions. The analogues were fully characterised. MTS assay showed that several derivatives, such as the allyl derivative of cardamonin (2) and cardamonin’s Cu (II) complex (19), had more potent cytotoxic activities than cardamonin. Furthermore, the active analogues have generally demonstrated lower toxicity towards normal MRC5 cells. Structure-activity relationship (SAR) analysis showed the importance of the ketone and alkene groups for bioactivity, while substituting cardamonin’s phenolic groups with more polar moieties resulted in activity enhancement. As part of the SAR study and further exploration of chemical space, the effect of metal coordination on cytotoxicity was also investigated, but it was only possible to successfully obtain the Cu (II) complex of cardamonin (19), and the metal ion enhanced bioactivity. -
Targeting Inflammatory Pathways by Flavonoids for Prevention and Treatment of Cancer
1044 Reviews Targeting Inflammatory Pathways by Flavonoids for Prevention and Treatment of Cancer Authors Sahdeo Prasad, Kannokarn Phromnoi, Vivek R. Yadav, Madan M. Chaturvedi, Bharat B. Aggarwal Affiliation Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA Key words Abstract formation, tumor cell survival, proliferation, inva- l" cancer ! sion, angiogenesis, and metastasis. Whereas vari- l" inflammation Observational studies have suggested that life- ous lifestyle risk factors have been found to acti- l" flavonoids style risk factors such as tobacco, alcohol, high- vate NF-κB and NF-κB-regulated gene products, l" NF‑κB fat diet, radiation, and infections can cause cancer flavonoids derived from fruits and vegetables l" fruits l" vegetables and that a diet consisting of fruits and vegetables have been found to suppress this pathway. The can prevent cancer. Evidence from our laboratory present review describes various flavones, flava- and others suggests that agents either causing or nones, flavonols, isoflavones, anthocyanins, and preventing cancer are linked through the regula- chalcones derived from fruits, vegetables, le- tion of inflammatory pathways. Genes regulated gumes, spices, and nuts that can suppress the by the transcription factor NF-κB have been proinflammatory cell signaling pathways and shown to mediate inflammation, cellular trans- thus can prevent and even treat the cancer. Introduction cancers and the observed changes in the inci- ! dence of cancer in migrating populations. For ex- Despite spending billions of dollars in research, a ample, Ho [4] showed that although the Chinese great deal of understanding of the causes and cell in Shanghai will have a cancer incidence of 2 cases signaling pathways that lead to the disease, can- per 100 000 population, among those who mi- cer continues to be a major killer worldwide. -
Chalcone Derivatives: Role in Anticancer Therapy
biomolecules Review Chalcone Derivatives: Role in Anticancer Therapy Yang Ouyang 1,† , Juanjuan Li 1,†, Xinyue Chen 1, Xiaoyu Fu 1, Si Sun 2,* and Qi Wu 1,* 1 Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; [email protected] (Y.O.); [email protected] (J.L.); [email protected] (X.C.); [email protected] (X.F.) 2 Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China * Correspondence: [email protected] (S.S.); [email protected] (Q.W.); Tel.: +86-15827099866 (S.S.); +86-13296588817 (Q.W.) † These authors contributed equally to this work. Abstract: Chalcones (1,3-diaryl-2-propen-1-ones) are precursors for flavonoids and isoflavonoids, which are common simple chemical scaffolds found in many naturally occurring compounds. Many chalcone derivatives were also prepared due to their convenient synthesis. Chalcones as weandhetic analogues have attracted much interest due to their broad biological activities with clinical potentials against various diseases, particularly for antitumor activity. The chalcone family has demonstrated potential in vitro and in vivo activity against cancers via multiple mechanisms, including cell cycle disruption, autophagy regulation, apoptosis induction, and immunomodulatory and inflammatory mediators. It represents a promising strategy to develop chalcones as novel anticancer agents. In addition, the combination of chalcones and other therapies is expected to be an effective way to improve anticancer therapeutic efficacy. However, despite the encouraging results for their response to cancers observed in clinical studies, a full description of toxicity is required for their clinical use as safe drugs for the treatment of cancer. -
Flavonoids with Gastroprotective Activity
Molecules 2009, 14, 979-1012; doi:10.3390/molecules14030979 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Flavonoids with Gastroprotective Activity Kelly Samara de Lira Mota 1, Guilherme Eduardo Nunes Dias 1, Meri Emili Ferreira Pinto 1, Ânderson Luiz-Ferreira 2, Alba Regina Monteiro Souza-Brito 2, Clélia Akiko Hiruma-Lima 3, José Maria Barbosa-Filho 1 and Leônia Maria Batista 1,* 1 Laboratório de Tecnologia Farmacêutica Prof. Delby Fernandes de Medeiros – LTF, Universidade Federal da Paraíba - UFPB, Cx. Postal 5009, 58051-970, João Pessoa, PB, Brazil; E-mails: [email protected] (K-L.M.); [email protected] (G-N.D.); [email protected] (M-F.P.); [email protected] (J-M.B-F.) 2 Laboratório de Produtos Naturais, Universidade Estadual de Campinas - UNICAMP, Cx. Postal 6109, 13083-970, Campinas, SP, Brazil; E-mail: [email protected] (A.L-F.); [email protected] (A-M.S-B.) 3 Departamento de Fisiologia, Instituto de Biosciência, São Paulo, Universidade Estadual de São Paulo-UNESP, c.p. 510, Zip Code: 18618-000, Botucatu, SP, Brazil; E-mail: [email protected] (C-A.H-L.) * Author to whom correspondence should be addressed; E-mail: [email protected]. Received: 30 November 2008; in revised form: 7 January 2009 / Accepted: 6 February 2009 / Published: 3 March 2009 Abstract: Peptic ulcers are a common disorder of the entire gastrointestinal tract that occurs mainly in the stomach and the proximal duodenum. This disease is multifactorial and its treatment faces great difficulties due to the limited effectiveness and severe side effects of the currently available drugs. -
Pharmacological Properties of Chalcones: a Review of Preclinical Including Molecular Mechanisms and Clinical Evidence
REVIEW published: 18 January 2021 doi: 10.3389/fphar.2020.592654 Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence Bahare Salehi 1, Cristina Quispe 2, Imane Chamkhi 3,4, Nasreddine El Omari 5, Abdelaali Balahbib 6, Javad Sharifi-Rad 7,8*, Abdelhakim Bouyahya 9*, Muhammad Akram 10, Mehwish Iqbal 11, Anca Oana Docea 12, Constantin Caruntu 13,14*, Gerardo Leyva-Gómez 15, Abhijit Dey 16*, Miquel Martorell 17,18, Daniela Calina 19*, Víctor López 20,21 and Edited by: Francisco Les 20,21 Andrei Mocan, Iuliu Hat¸ieganu University of Medicine 1Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 2Facultad de Ciencias and Pharmacy, Romania de La Salud, Universidad Arturo Prat, Iquique, Chile, 3Faculty of Sciences, Mohammed V University of Rabat, Rabat, Morocco, Reviewed by: 4Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco, 5 Iulia Popescu, Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 6 University of Pittsburgh, United States Rabat, Morocco, Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 7 8 Priyia Pusparajah, Morocco, Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Facultad de 9 Monash University Malaysia, Malaysia Medicina, Universidad del Azuay, Cuenca, Ecuador, Laboratory of Human Pathologies -
Phytochemicai Studies of Flavonoids from Polygon Um Glahrum L of Sudan
SD9900041 Phytochemicai Studies of Flavonoids from Polygon um glahrum L of Sudan A Thesis Submitted by Intisar Sirour Mohammed B. Sc. (Hons) Faculty of Science For Master Degree in Chemistry The Graduate College University of Khartoum Sudan Jan. 1996 ' 30-46 DEDICATION! TO MY FAMILY,MY HUSBAND AND MY TWO SONS. CONTENTS CONTENTS (i) ACKNOWLEDGEMENT (iii) ABSTRACT(English) (iv) ABSTRACT(Arabic) (v) CHAPTER( ONE) INTRODUCTION 1.1 POLYGONACEAE 1 1.1.1 POLYGONUM GLABRUM 1 1.1.2 DISTRIBUTION OF POLYGONUM GLABRUM 2 1.2 THE FLAVONOIDS 2 1.2.1 CHEMISTRY AND DISTRIBUTION 4 1.2.2 CLASSIFICATION OF THE FLAVONOIDS 6 1.3 MINOR FLAVONIDS, XANTHONES AND STELBENES 16 1.3.1 CHEMISTRY AND DISTRIBUTION 16 1.4. SYNTHESIS OF FLAVONOIDS 21 1.4.1 CHALCONES AND DIHYDROCHALCONES 24 1.4.2 FLAVANONES 24 1.4.3 FLAVONES 25 1.4.4 3-HYDRXY FLAVONES (FLAVONOLS)AND 3-METHOXY FLAVONES 26 1.4.5 AURONES 29 1.4.6 ISOFLAVONES 30 1.4.7 HOMOISOFLAVANONES 31 1.5. FLAVONOIDS OF POLYGONUM ORIGIN 31 1.6. SCOPE OF THE PRESENT INVESTIGATION 3 5 CHAPTER (TWO) EXPERIMENTAL 2.1.1 SOLVENTS AND CHEMICALS 36 2.1.2 SPECTROPHOTOMETRIC APPARATUS 36 2.1.3 PREPARATION OF PLANT MATERIAL 37 2.2.1 PHYTOCHEMICAL SCREENING 37 2.2.2 CHROMATOGRAPHIC METHODS 39 2.2.3 PREPARATION OF EXTRACTS 39 2.2.4 COLUMNCHROMATOGRAPHY OF THE ETHANOLIC EXTRACT 40 2.2.5 PREPARATIVE THIN LAYER CHROMATOGRAPHY 41 2.2.6 SPECTROSCOP1C METHODS FOR THE IDENTIFCATION OF THE ISOLATED COMPOUNDS 42 CHAPTER (THREE) RESULTS AND DISCUSSION 3.1.1 PRELIMINARY PHYTOCHEMICAL SCREENING OF THE PLANT EXTRACT 43 3.1.2 ISOLATION OF FLAVONOIDS 43 CONCLUSION 52 REFRENCES 53 I would like to express my sincere appreciation, thanks and gratitute to my supervisor Dr. -
Dietary Chalcones with Chemopreventive and Chemotherapeutic Potential
Genes Nutr (2011) 6:125–147 DOI 10.1007/s12263-011-0210-5 RESEARCH PAPER Dietary chalcones with chemopreventive and chemotherapeutic potential Barbora Orlikova • Deniz Tasdemir • Frantisek Golais • Mario Dicato • Marc Diederich Received: 23 July 2010 / Accepted: 6 January 2011 / Published online: 4 February 2011 Ó Springer-Verlag 2011 Abstract Chalcones are absorbed in the daily diet and Introduction appear to be promising cancer chemopreventive agents. Chalcones represent an important group of the polyphenolic Polyphenols represent one of the most prevalent classes of family, which includes a large number of naturally occurring compounds found in our daily diet [171]. Over the last ten molecules. This family possesses an interesting spectrum of years, increasing attention has been dedicated to chalcones biological activities, including antioxidative, antibacterial, because of their interesting biological activities. Indeed, anti-inflammatory, anticancer, cytotoxic, and immuno- chalcones constitute an important group of natural com- suppressive potential. Compounds of this family have been pounds that are especially abundant in fruits (e.g., citruses, shown to interfere with each step of carcinogenesis, apples), vegetables (e.g., tomatoes, shallots, bean sprouts, including initiation, promotion and progression. Moreover, potatoes) and various plants and spices (e.g., licorice),— numerous compounds from the family of dietary chalcones many of which have been used for centuries in traditional appear to show activity against cancer cells, suggesting that herbal medicine [29]. Chemically, chalcones are open- these molecules or their derivatives may be considered as chain flavonoids bearing two aromatic rings linked by a potential anticancer drugs. This review will focus primarily three-carbon enone moiety (Fig. 1).