Two-Dimensional Figures Line Segment

Total Page:16

File Type:pdf, Size:1020Kb

Two-Dimensional Figures Line Segment Name_____________________________________________________ Date______________ Two-Dimensional Figures Line segment: ______________________ A line segment is a part of a line. It has a beginning and an end, and it is straight. Angle: vertex vertex An angle is formed by two lines or two line segments that cross each other. The point where these two line segments cross is called a vertex. All angles have a vertex. Triangle: A triangle is a figure with three sides and three angles. All these figures are triangles. Right angle: A right angle is an angle that is formed by two perpendicular lines crossing. Rectangles and squares and rectangles have four right angles. 1 ©2003 abcteach.com Name_____________________________________________________ Date______________ Closed Figures Closed figures are formed of lines or line segments. Closed figures have no openings. Rectangle: A rectangle is a figure with four sides and four right angles. Square: A square has four right angles, like a rectangle. Unlike a rectangle, a square has four equal sides. Circle: * A circle is a round figure. All the points on the edge of a circle are the same distance from the center. 2 ©2003 abcteach.com Name_____________________________________________________ Date______________ Polygon: A polygon is closed figure bounded by straight sides. Triangles, rectangles, and squares are polygons. Other polygons: Pentagon (5 sides) Hexagon (six sides) Octagon (8 sides) Some figures are NOT polygons. A circle is not a polygon, because it does not have straight sides. This figure is not a polygon, because it has a rounded side. 3 ©2003 abcteach.com Name_____________________________________________________ Date______________ Polygons 1. Draw a polygon with four sides. 2. Draw a polygon with three sides. 3. Draw a polygon with four right angles. 4. Which figure is NOT a polygon? a. n b. c. d. 5. Which of these figures is not a polygon? a. b. c. d. 6. This is not a polygon. Explain why. ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ 4 ©2003 abcteach.com Name_____________________________________________________ Date______________ Angles An angle is formed when two line segments intersect. The point where the two line segments intersect is called the vertex. Vertices are the term for more than one vertex. vertex vertex Polygons have angles. 1. How many angles does this triangle have? ____ How many vertices? ______ 2. How many angles does this rectangle have? _____ How many vertices? ______ 3. How many angles does this pentagon have? ____ How many vertices? ______ 4. Do you see a pattern? Explain. ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ Squares and rectangles have square corners. These square corners are called right angles. 5. Look around the room. List some of the right angles you see. ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ 5 ©2003 abcteach.com Name_____________________________________________________ Date______________ Squares and Rectangles A rectangle has four sides, four vertices and four right angles. A square is a rectangle with four equal sides. This is a rectangle. This is a square. Look at the picture below. Identify the rectangles. Put an R on the rectangles. Put an S on the squares. Look around the room. List the objects that are rectangles or squares. Rectangles Squares Look at the design. With a colored pencil, put a small square at each right angle. 6 ©2003 abcteach.com Name_____________________________________________________ Date______________ Connect the terms with the matching figure. 1. square a. 2. vertex b. 3. rectangle c. d. 4. pentagon e. 5. triangle f. 6. hexagon g. 7. circle h. 8. right angle i. 9. line segment 10. octagon j. 7 ©2003 abcteach.com Name_____________________________________________________ Date______________ Two-Dimensional Figures T H G I A R T S V G A E U O O G N R S Y I F O S V Y T G V D T O E Q E R A U Q S N E E E B X G C M L D G N C U N R M B Z P A T F G A I G D I T I Y I I A X A K N E U S L E R U G I F D E N U A S S P X L S C T Y O R H G Y I T E E J C F O L W N W S L Y R N F P N R L W L E L S A E Q T T O R J I O Z P C P S E P A H S E G K C L O C Q P A N G L E T E M Y I O J U W R E O D A N U K I O L Y J Y N Y N V Y E R F Q O N E O N R T N E Q C X Z J K P R N G P L Y D ANGLE FIGURE OPEN SIDES CENTER GEOMETRY PENTAGON SQUARE CIRCLE HEXAGON POLYGON STRAIGHT CIRCLE LINE RECTANGLE TRIANGLE CLOSED LINE SEGMENT SHAPE VERTEX 8 ©2003 abcteach.com Name_____________________________________________________ Date______________ Answers Page 4 1. answers will vary 2. answers will vary 3. answers will vary 4. b 5. c 6. This figure is not a polygon because it has a curved edge. Polygons have straight sides. Page 5 1. 3 angles, 3 vertices 2. 4 angles, 4 vertices 3. 5 angles, 5 vertices 4. The number of angles and the number of vertices for a figure are the same. 5. answers will vary Page 6 Assessment is visual Page 7 1. c 2. d 3. f 4. i 5. h 6. e 7. a 8. j 9. b 10. g 9 ©2003 abcteach.com .
Recommended publications
  • Models of 2-Dimensional Hyperbolic Space and Relations Among Them; Hyperbolic Length, Lines, and Distances
    Models of 2-dimensional hyperbolic space and relations among them; Hyperbolic length, lines, and distances Cheng Ka Long, Hui Kam Tong 1155109623, 1155109049 Course Teacher: Prof. Yi-Jen LEE Department of Mathematics, The Chinese University of Hong Kong MATH4900E Presentation 2, 5th October 2020 Outline Upper half-plane Model (Cheng) A Model for the Hyperbolic Plane The Riemann Sphere C Poincar´eDisc Model D (Hui) Basic properties of Poincar´eDisc Model Relation between D and other models Length and distance in the upper half-plane model (Cheng) Path integrals Distance in hyperbolic geometry Measurements in the Poincar´eDisc Model (Hui) M¨obiustransformations of D Hyperbolic length and distance in D Conclusion Boundary, Length, Orientation-preserving isometries, Geodesics and Angles Reference Upper half-plane model H Introduction to Upper half-plane model - continued Hyperbolic geometry Five Postulates of Hyperbolic geometry: 1. A straight line segment can be drawn joining any two points. 2. Any straight line segment can be extended indefinitely in a straight line. 3. A circle may be described with any given point as its center and any distance as its radius. 4. All right angles are congruent. 5. For any given line R and point P not on R, in the plane containing both line R and point P there are at least two distinct lines through P that do not intersect R. Some interesting facts about hyperbolic geometry 1. Rectangles don't exist in hyperbolic geometry. 2. In hyperbolic geometry, all triangles have angle sum < π 3. In hyperbolic geometry if two triangles are similar, they are congruent.
    [Show full text]
  • Swimming in Spacetime: Motion by Cyclic Changes in Body Shape
    RESEARCH ARTICLE tation of the two disks can be accomplished without external torques, for example, by fixing Swimming in Spacetime: Motion the distance between the centers by a rigid circu- lar arc and then contracting a tension wire sym- by Cyclic Changes in Body Shape metrically attached to the outer edge of the two caps. Nevertheless, their contributions to the zˆ Jack Wisdom component of the angular momentum are parallel and add to give a nonzero angular momentum. Cyclic changes in the shape of a quasi-rigid body on a curved manifold can lead Other components of the angular momentum are to net translation and/or rotation of the body. The amount of translation zero. The total angular momentum of the system depends on the intrinsic curvature of the manifold. Presuming spacetime is a is zero, so the angular momentum due to twisting curved manifold as portrayed by general relativity, translation in space can be must be balanced by the angular momentum of accomplished simply by cyclic changes in the shape of a body, without any the motion of the system around the sphere. external forces. A net rotation of the system can be ac- complished by taking the internal configura- The motion of a swimmer at low Reynolds of cyclic changes in their shape. Then, presum- tion of the system through a cycle. A cycle number is determined by the geometry of the ing spacetime is a curved manifold as portrayed may be accomplished by increasing ␪ by ⌬␪ sequence of shapes that the swimmer assumes by general relativity, I show that net translations while holding ␾ fixed, then increasing ␾ by (1).
    [Show full text]
  • Art Concepts for Kids: SHAPE & FORM!
    Art Concepts for Kids: SHAPE & FORM! Our online art class explores “shape” and “form” . Shapes are spaces that are created when a line reconnects with itself. Forms are three dimensional and they have length, width and depth. This sweet intro song teaches kids all about shape! Scratch Garden Value Song (all ages) https://www.youtube.com/watch?v=coZfbTIzS5I Another great shape jam! https://www.youtube.com/watch?v=6hFTUk8XqEc Cookie Monster eats his shapes! https://www.youtube.com/watch?v=gfNalVIrdOw&list=PLWrCWNvzT_lpGOvVQCdt7CXL ggL9-xpZj&index=10&t=0s Now for the activities!! Click on the links in the descriptions below for the step by step details. Ages 2-4 Shape Match https://busytoddler.com/2017/01/giant-shape-match-activity/ Shapes are an easy art concept for the littles. Lots of their environment gives play and art opportunities to learn about shape. This Matching activity involves tracing the outside shape of blocks and having littles match the block to the outline. It can be enhanced by letting your little ones color the shapes emphasizing inside and outside the shape lines. Block Print Shapes https://thepinterestedparent.com/2017/08/paul-klee-inspired-block-printing/ Printing is a great technique for young kids to learn. The motion is like stamping so you teach little ones to press and pull rather than rub or paint. This project requires washable paint and paper and block that are not natural wood (which would stain) you want blocks that are painted or sealed. Kids can look at Paul Klee art for inspiration in stacking their shapes into buildings, or they can chose their own design Ages 4-6 Lois Ehlert Shape Animals http://www.momto2poshlildivas.com/2012/09/exploring-shapes-and-colors-with-color.html This great project allows kids to play with shapes to make animals in the style of the artist Lois Ehlert.
    [Show full text]
  • Geometric Modeling in Shape Space
    Geometric Modeling in Shape Space Martin Kilian Niloy J. Mitra Helmut Pottmann Vienna University of Technology Figure 1: Geodesic interpolation and extrapolation. The blue input poses of the elephant are geodesically interpolated in an as-isometric- as-possible fashion (shown in green), and the resulting path is geodesically continued (shown in purple) to naturally extend the sequence. No semantic information, segmentation, or knowledge of articulated components is used. Abstract space, line geometry interprets straight lines as points on a quadratic surface [Berger 1987], and the various types of sphere geometries We present a novel framework to treat shapes in the setting of Rie- model spheres as points in higher dimensional space [Cecil 1992]. mannian geometry. Shapes – triangular meshes or more generally Other examples concern kinematic spaces and Lie groups which straight line graphs in Euclidean space – are treated as points in are convenient for handling congruent shapes and motion design. a shape space. We introduce useful Riemannian metrics in this These examples show that it is often beneficial and insightful to space to aid the user in design and modeling tasks, especially to endow the set of objects under consideration with additional struc- explore the space of (approximately) isometric deformations of a ture and to work in more abstract spaces. We will show that many given shape. Much of the work relies on an efficient algorithm to geometry processing tasks can be solved by endowing the set of compute geodesics in shape spaces; to this end, we present a multi- closed orientable surfaces – called shapes henceforth – with a Rie- resolution framework to solve the interpolation problem – which mannian structure.
    [Show full text]
  • Shape Synthesis Notes
    SHAPE SYNTHESIS OF HIGH-PERFORMANCE MACHINE PARTS AND JOINTS By John M. Starkey Based on notes from Walter L. Starkey Written 1997 Updated Summer 2010 2 SHAPE SYNTHESIS OF HIGH-PERFORMANCE MACHINE PARTS AND JOINTS Much of the activity that takes place during the design process focuses on analysis of existing parts and existing machinery. There is very little attention focused on the synthesis of parts and joints and certainly there is very little information available in the literature addressing the shape synthesis of parts and joints. The purpose of this document is to provide guidelines for the shape synthesis of high-performance machine parts and of joints. Although these rules represent good design practice for all machinery, they especially apply to high performance machines, which require high strength-to-weight ratios, and machines for which manufacturing cost is not an overriding consideration. Examples will be given throughout this document to illustrate this. Two terms which will be used are part and joint. Part refers to individual components manufactured from a single block of raw material or a single molding. The main body of the part transfers loads between two or more joint areas on the part. A joint is a location on a machine at which two or more parts are fastened together. 1.0 General Synthesis Goals Two primary principles which govern the shape synthesis of a part assert that (1) the size and shape should be chosen to induce a uniform stress or load distribution pattern over as much of the body as possible, and (2) the weight or volume of material used should be a minimum, consistent with cost, manufacturing processes, and other constraints.
    [Show full text]
  • Geometry and Art LACMA | | April 5, 2011 Evenings for Educators
    Geometry and Art LACMA | Evenings for Educators | April 5, 2011 ALEXANDER CALDER (United States, 1898–1976) Hello Girls, 1964 Painted metal, mobile, overall: 275 x 288 in., Art Museum Council Fund (M.65.10) © Alexander Calder Estate/Artists Rights Society (ARS), New York/ADAGP, Paris EOMETRY IS EVERYWHERE. WE CAN TRAIN OURSELVES TO FIND THE GEOMETRY in everyday objects and in works of art. Look carefully at the image above and identify the different, lines, shapes, and forms of both GAlexander Calder’s sculpture and the architecture of LACMA’s built environ- ment. What is the proportion of the artwork to the buildings? What types of balance do you see? Following are images of artworks from LACMA’s collection. As you explore these works, look for the lines, seek the shapes, find the patterns, and exercise your problem-solving skills. Use or adapt the discussion questions to your students’ learning styles and abilities. 1 Language of the Visual Arts and Geometry __________________________________________________________________________________________________ LINE, SHAPE, FORM, PATTERN, SYMMETRY, SCALE, AND PROPORTION ARE THE BUILDING blocks of both art and math. Geometry offers the most obvious connection between the two disciplines. Both art and math involve drawing and the use of shapes and forms, as well as an understanding of spatial concepts, two and three dimensions, measurement, estimation, and pattern. Many of these concepts are evident in an artwork’s composition, how the artist uses the elements of art and applies the principles of design. Problem-solving skills such as visualization and spatial reasoning are also important for artists and professionals in math, science, and technology.
    [Show full text]
  • A Historical Introduction to Elementary Geometry
    i MATH 119 – Fall 2012: A HISTORICAL INTRODUCTION TO ELEMENTARY GEOMETRY Geometry is an word derived from ancient Greek meaning “earth measure” ( ge = earth or land ) + ( metria = measure ) . Euclid wrote the Elements of geometry between 330 and 320 B.C. It was a compilation of the major theorems on plane and solid geometry presented in an axiomatic style. Near the beginning of the first of the thirteen books of the Elements, Euclid enumerated five fundamental assumptions called postulates or axioms which he used to prove many related propositions or theorems on the geometry of two and three dimensions. POSTULATE 1. Any two points can be joined by a straight line. POSTULATE 2. Any straight line segment can be extended indefinitely in a straight line. POSTULATE 3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center. POSTULATE 4. All right angles are congruent. POSTULATE 5. (Parallel postulate) If two lines intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines inevitably must intersect each other on that side if extended far enough. The circle described in postulate 3 is tacitly unique. Postulates 3 and 5 hold only for plane geometry; in three dimensions, postulate 3 defines a sphere. Postulate 5 leads to the same geometry as the following statement, known as Playfair's axiom, which also holds only in the plane: Through a point not on a given straight line, one and only one line can be drawn that never meets the given line.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Geometry Course Outline
    GEOMETRY COURSE OUTLINE Content Area Formative Assessment # of Lessons Days G0 INTRO AND CONSTRUCTION 12 G-CO Congruence 12, 13 G1 BASIC DEFINITIONS AND RIGID MOTION Representing and 20 G-CO Congruence 1, 2, 3, 4, 5, 6, 7, 8 Combining Transformations Analyzing Congruency Proofs G2 GEOMETRIC RELATIONSHIPS AND PROPERTIES Evaluating Statements 15 G-CO Congruence 9, 10, 11 About Length and Area G-C Circles 3 Inscribing and Circumscribing Right Triangles G3 SIMILARITY Geometry Problems: 20 G-SRT Similarity, Right Triangles, and Trigonometry 1, 2, 3, Circles and Triangles 4, 5 Proofs of the Pythagorean Theorem M1 GEOMETRIC MODELING 1 Solving Geometry 7 G-MG Modeling with Geometry 1, 2, 3 Problems: Floodlights G4 COORDINATE GEOMETRY Finding Equations of 15 G-GPE Expressing Geometric Properties with Equations 4, 5, Parallel and 6, 7 Perpendicular Lines G5 CIRCLES AND CONICS Equations of Circles 1 15 G-C Circles 1, 2, 5 Equations of Circles 2 G-GPE Expressing Geometric Properties with Equations 1, 2 Sectors of Circles G6 GEOMETRIC MEASUREMENTS AND DIMENSIONS Evaluating Statements 15 G-GMD 1, 3, 4 About Enlargements (2D & 3D) 2D Representations of 3D Objects G7 TRIONOMETRIC RATIOS Calculating Volumes of 15 G-SRT Similarity, Right Triangles, and Trigonometry 6, 7, 8 Compound Objects M2 GEOMETRIC MODELING 2 Modeling: Rolling Cups 10 G-MG Modeling with Geometry 1, 2, 3 TOTAL: 144 HIGH SCHOOL OVERVIEW Algebra 1 Geometry Algebra 2 A0 Introduction G0 Introduction and A0 Introduction Construction A1 Modeling With Functions G1 Basic Definitions and Rigid
    [Show full text]
  • C) Shape Formulas for Volume (V) and Surface Area (SA
    Formula Reference Sheet Shape Formulas for Area (A) and Circumference (C) Triangle ϭ 1 ϭ 1 ϫ ϫ A 2 bh 2 base height Rectangle A ϭ lw ϭ length ϫ width Trapezoid ϭ 1 + ϭ 1 ϫ ϫ A 2 (b1 b2)h 2 sum of bases height Parallelogram A ϭ bh ϭ base ϫ height A ϭ πr2 ϭ π ϫ square of radius Circle C ϭ 2πr ϭ 2 ϫ π ϫ radius C ϭ πd ϭ π ϫ diameter Figure Formulas for Volume (V) and Surface Area (SA) Rectangular Prism SV ϭ lwh ϭ length ϫ width ϫ height SA ϭ 2lw ϩ 2hw ϩ 2lh ϭ 2(length ϫ width) ϩ 2(height ϫ width) 2(length ϫ height) General SV ϭ Bh ϭ area of base ϫ height Prisms SA ϭ sum of the areas of the faces Right Circular SV ϭ Bh = area of base ϫ height Cylinder SA ϭ 2B ϩ Ch ϭ (2 ϫ area of base) ϩ (circumference ϫ height) ϭ 1 ϭ 1 ϫ ϫ Square Pyramid SV 3 Bh 3 area of base height ϭ ϩ 1 l SA B 2 P ϭ ϩ 1 ϫ ϫ area of base ( 2 perimeter of base slant height) Right Circular ϭ 1 ϭ 1 ϫ ϫ SV 3 Bh 3 area of base height Cone ϭ ϩ 1 l ϭ ϩ 1 ϫ ϫ SA B 2 C area of base ( 2 circumference slant height) ϭ 4 π 3 ϭ 4 ϫ π ϫ Sphere SV 3 r 3 cube of radius SA ϭ 4πr2 ϭ 4 ϫ π ϫ square of radius 41830 a41830_RefSheet_02MHS 1 8/29/01, 7:39 AM Equations of a Line Coordinate Geometry Formulas Standard Form: Let (x1, y1) and (x2, y2) be two points in the plane.
    [Show full text]
  • Line, Color, Space, Light, and Shape: What Do They Do? What Do They Evoke?
    LINE, COLOR, SPACE, LIGHT, AND SHAPE: WHAT DO THEY DO? WHAT DO THEY EVOKE? Good composition is like a suspension bridge; each line adds strength and takes none away… Making lines run into each other is not composition. There must be motive for the connection. Get the art of controlling the observer—that is composition. —Robert Henri, American painter and teacher The elements and principals of art and design, and how they are used, contribute mightily to the ultimate composition of a work of art—and that can mean the difference between a masterpiece and a messterpiece. Just like a reader who studies vocabulary and sentence structure to become fluent and present within a compelling story, an art appreciator who examines line, color, space, light, and shape and their roles in a given work of art will be able to “stand with the artist” and think about how they made the artwork “work.” In this activity, students will practice looking for design elements in works of art, and learn to describe and discuss how these elements are used in artistic compositions. Grade Level Grades 4–12 Common Core Academic Standards • CCSS.ELA-Writing.CCRA.W.3 • CCSS.ELA-Speaking and Listening.CCRA.SL.1 • CCSS.ELA-Literacy.CCSL.2 • CCSS.ELA-Speaking and Listening.CCRA.SL.4 National Visual Arts Standards Still Life with a Ham and a Roemer, c. 1631–34 Willem Claesz. Heda, Dutch • Artistic Process: Responding: Understanding Oil on panel and evaluating how the arts convey meaning 23 1/4 x 32 1/2 inches (59 x 82.5 cm) John G.
    [Show full text]
  • Shape, Dimension, and Geometric Relationships Calendar Pacing 3 Times Per Checkpoint
    Content Area Mathematics Grade/Course Preschool School Year 2018-19 Framework Number: Name 02: Shape, Dimension, and Geometric Relationships Calendar Pacing 3 times per checkpoint ULTIMATE CURRICULUM FRAMEWORK GOALS Ultimate Performance Task The most important performance we want learners to be able to do with the acquired content knowledge and skills of this framework is: ● to use their understanding of order and position to independently describe location. ● to describe attributes of a new shape in a new orientation or new setting. ● to explain how they independently organized various groups of objects. Transfer Goal(s) Students will be able to independently use their learning to … ● describe shape attributes and positioning in order to describe and understand the environment such as in following directions, organizing and arranging their space through critical thinking and problem solving. Meaning Goals BIG IDEAS / UNDERSTANDINGS ESSENTIAL QUESTIONS Students will understand that … Students will keep considering: ● they need to be able to describe the location of objects. ● How do we describe where something is? ● they need to be able to describe the characteristics of shapes ● How are these shapes the same or different? including three-dimensional shapes. ● What ways are objects sorted? IDEAS IMPORTANTES / CONOCIMIENTOS PREGUNTAS ESENCIALES Los estudiantes comprenderán que … Los estudiantes seguirán teniendo en cuenta: ● necesitarán poder describir la ubicación de objetos. ● ¿Cómo describimos la ubicación de las cosas? ● necesitaran describir las características de formas incluyendo ● ¿Cómo son las formas iguales o diferentes? formas tridimensionales. ● ¿En qué maneras se pueden ordenar los objetos? Acquisition Goals In order to reach the ULTIMATE GOALS, students must have acquired the following knowledge, skills, and vocabulary.
    [Show full text]