Quick viewing(Text Mode)

PHY103A: Lecture # 5 (Text Book: Intro to Electrodynamics by Griffiths, 3Rd Ed.)

PHY103A: Lecture # 5 (Text Book: Intro to Electrodynamics by Griffiths, 3Rd Ed.)

Semester II, 2017-18 Department of , IIT Kanpur

PHY103A: Lecture # 5 (Text Book: Intro to Electrodynamics by Griffiths, 3rd Ed.)

Anand Kumar Jha 12-Jan-2018

1 Summary of Lecture # 4:

โ€ข : if ร— = 0 everywhere, = V

๐›๐› ๐…๐… ๐…๐… โˆ’๐›๐› โ€ข : if = 0 everywhere, = ร—

๐›๐› โ‹… ๐…๐… ๐…๐… ๐›๐› ๐€๐€ 1 โ€ข โ€™ Law: ( ) = r ๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๐„๐„ ๐ซ๐ซ 0 ๏ฟฝ ฬ‚ 4๐œ‹๐œ‹ ๐œ–๐œ– โ€ข Electric =

๐ธ๐ธ ฮฆ ๏ฟฝ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

โ€ข โ€™s Law = (in form) ๐‘„๐‘„enc ๏ฟฝ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š 0 ๐œ–๐œ– = (in differential form) ๐œŒ๐œŒ ๐›๐› โ‹… ๐„๐„ 2 ๐œ–๐œ–0 Correction in Lecture # 4:

This is the Gaussโ€™s law in integral form. = ๐‘„๐‘„enc ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘ ๐‘ : ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข(Griffiths: Ex 2.10):๐œ–๐œ–0 What is the flux through the shaded face of the cube due to the at the corner ? ? ๐‘ž๐‘ž ๏ฟฝ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

Answer: 24 = ๐‘ž๐‘ž ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข ๐œ–๐œ–10 = 24 ๐‘ž๐‘ž 3 ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข ๐œ–๐œ–0 Gaussโ€™s Law from Coulombโ€™s Law: If Coulombโ€™s Law and Gaussโ€™s law have the same information content, can we derive Gaussโ€™s law from Coulombโ€™s law?

Coulombโ€™s law gives the electric due to a volume charge โ€ฒ 1 r ( ) = ๐œŒ๐œŒ ๐ซ๐ซ r ฬ‚ โ€ฒ Take the ๐„๐„ ๐ซ๐ซ of both๏ฟฝ 2 sides๐œŒ๐œŒ ๐ซ๐ซ of๐‘‘๐‘‘๐‘‘๐‘‘ the equation 4๐œ‹๐œ‹๐œ–๐œ–0 1 r ( ) = r ฬ‚ โ€ฒ ๐›๐› โ‹… ๐„๐„ ๐ซ๐ซr ๏ฟฝ ๐›๐› โ‹… 2 ๐œŒ๐œŒ ๐ซ๐ซ ๐‘‘๐‘‘๐‘‘๐‘‘ We have: =4๐œ‹๐œ‹4 ๐œ–๐œ– 0 (r) = 4 ( ) r ฬ‚ ๐›๐› โ‹… 2 ๐œ‹๐œ‹1๐›ฟ๐›ฟ ๐œ‹๐œ‹ ๐›ฟ๐›ฟ ๐ซ๐ซ โˆ’ ๐ซ๐ซํซ ( ) Therefore, = 4 = โ€ฒ โ€ฒ ๐œŒ๐œŒ ๐ซ๐ซ ๐›๐› โ‹… ๐„๐„ ๐ซ๐ซ 0 ๏ฟฝ ๐œ‹๐œ‹ ๐›ฟ๐›ฟ ๐ซ๐ซ โˆ’ ๐ซ๐ซ ๐œŒ๐œŒ ๐ซ๐ซ ๐‘‘๐‘‘๐‘‘๐‘‘ 0 4๐œ‹๐œ‹๐œ–๐œ–The divergence of is๐œ–๐œ– equal = to the divided by ๐œŒ๐œŒ 4 ๐›๐› โ‹… ๐„๐„ ๐œ–๐œ–0 ๐œ–๐œ–0 of the Electric Field: Letโ€™s take the simplest electric field: Electric field due to a single point charge is: 1 ( ) = r r ๐‘ž๐‘ž ๐‘ž๐‘ž We need to find the2 curl of it ๐„๐„ ๐ซ๐ซ 0 ฬ‚ 4๐œ‹๐œ‹๐œ–๐œ– 1 ร— = ร— r r ๐‘ž๐‘ž Take๐›๐› the ๐„๐„area๐ซ๐ซ integral ๐›๐› 2 ฬ‚ 4๐œ‹๐œ‹๐œ–๐œ–0 1 ร— = ร— r r ๐‘ž๐‘ž Use๏ฟฝ Stokesโ€™s๐›๐› ๐„๐„theorem๐ซ๐ซ โ‹… ๐‘‘๐‘‘๐š๐š ๏ฟฝ ๐›๐› 2 ฬ‚ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข 4๐œ‹๐œ‹๐œ–๐œ–0 ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข 1 1 since ร— = r = = + r r + sin ๐‘ž๐‘ž ๐‘ž๐‘ž 2 2 ๐‘‘๐‘‘๐ฅ๐ฅ ๐‘‘๐‘‘๐‘‘๐‘‘๐’“๐’“๏ฟฝ ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐œฝ๐œฝ๏ฟฝ ๏ฟฝ ๐›๐› ๐„๐„ ๐ซ๐ซ โ‹… ๐‘‘๐‘‘๐š๐š ๏ฟฝ ฬ‚ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ 0 ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข 4๐œ‹๐œ‹๐œ–๐œ–0 4๐œ‹๐œ‹๐œ–๐œ– ๐‘Ÿ๐‘Ÿ ๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐“๐“๏ฟฝ 1 ร— = ร— ๐‘Ÿ๐‘Ÿ๐‘Ž๐‘Ž = 0 implies ร— = ๐‘ž๐‘ž ๏ฟฝ ๐›๐› ๐„๐„ ๐ซ๐ซ โ‹… ๐‘‘๐‘‘๐š๐š ๏ฟฝ ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข 4๐œ‹๐œ‹๐œ–๐œ–0 ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ๐‘Ž๐‘Ž ๐›๐› ๐„๐„ ๐ŸŽ๐ŸŽ 5 Curl of the Electric Field (Digression):

Curl of an electric field is zero. We have shown this for the ร— = simplest field, which is the field of a point charge. But it can be shown to be true for any electric field, as long as the field is static. ๐›๐› ๐„๐„ ๐ŸŽ๐ŸŽ What if the field is dynamic, that is, what if the field changes as a of time? ร— = Faradayโ€™s Law in differential ๐‘‘๐‘‘๐๐ form. ๐›๐› ๐„๐„ โˆ’ Integrate over a surface๐‘‘๐‘‘๐‘‘๐‘‘

ร— = ๐‘‘๐‘‘๐๐ ๏ฟฝ ๐›๐› ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ๏ฟฝ โˆ’ โ‹… ๐‘‘๐‘‘๐š๐š Apply Stokesโ€™๐’”๐’”๐’–๐’– ๐’–๐’–theorem๐’–๐’– ๐’”๐’”๐’–๐’–๐’–๐’–๐’–๐’– ๐‘‘๐‘‘๐‘ก๐‘ก

= ๐‘‘๐‘‘ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ โˆ’ ๏ฟฝ ๐๐ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘๐‘๐‘Ž๐‘Ž๐‘Ž๐‘Žํ‘Ž ๐‘‘๐‘‘๐‘ก๐‘ก ๐’”๐’”๐’–๐’–Magnetic๐’–๐’–๐’–๐’– flux Faradayโ€™s Law in integral form. = 6 EMF ๐‘‘๐‘‘ฮฆ โˆ’ ๐‘‘๐‘‘๐‘ก๐‘ก โ€™s Equations (Digression 2):

Gaussโ€™s Law = = ๐œŒ๐œŒ ๐‘„๐‘„enc ๐›๐› โ‹… ๐„๐„ 0 ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ๐œ–๐œ– ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข ๐œ–๐œ–0 ร— = = Faradayโ€™s Law ๐‘‘๐‘‘๐๐ ๐‘‘๐‘‘ ๐›๐› ๐„๐„ โˆ’ ๏ฟฝ๐‘๐‘๐‘Ž๐‘Ž๐‘Ž๐‘Žํ‘Ž๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ โˆ’ ๏ฟฝ๐’”๐’”๐’–๐’–๐’–๐’–๐’–๐’–๐๐ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘ก๐‘ก No name; Magnetic = 0 Monopole does not exist ๐›๐› โ‹… ๐๐ โ€™s Law with ร— = Maxwellโ€™s correction ๐‘‘๐‘‘๐„๐„ When๐›๐› ๐๐ do๐œ‡๐œ‡0 not๐‰๐‰ โˆ’ vary๐œ‡๐œ‡0๐œ–๐œ–0 as a function of time, it is called / ๐‘‘๐‘‘๐‘‘๐‘‘ . (before mid-sem) When fields do vary as a function of time, then the two fields have to be studied together as an , and one consequence of a changing electric and is the electromagnetic . (after mid-sem) When the of the field is quantized () then it is called electrodynamics. (Not for this course). Applications: Quantum computers, Quantum cryptography, Quantum teleportation 7

Electric Potential:

Recall: If the curl of a is zero, that is, if ร— = 0 everywhere, then: (1) is independent of path. ๐…๐… ๐›๐›This๐…๐… is because of Stokesโ€™ theorem a (2) โˆซ ๐…๐… โ‹… =๐ฅ๐ฅ 0 for any closed loop. ร— =

(3) โˆฎ is๐…๐… theโ‹… ๐‘‘๐‘‘๐ฅ๐ฅ of a scalar function: = V๏ฟฝ๐‘†๐‘† ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข ๐›๐› ๐…๐… โ‹… ๐‘‘๐‘‘๐š๐š ๏ฟฝ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Žํ‘Ž๐…๐… โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ โ€ข This is because Curl of a gradient is zero ร— V = ๐…๐… ๐…๐… โˆ’๐›๐› ๐›๐› ๐›๐› ๐ŸŽ๐ŸŽ The curl of Electric field is zero, that is, ร— = 0 everywhere. Therefore: (1) d is independent of path. ๐„๐„ ๐›๐› ๐„๐„ This is because of Stokesโ€™ theorem b a (2) โˆซ ๐„๐„ โ‹… =๐ฅ๐ฅ 0 for any closed loop. ร— =

โˆฎ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๏ฟฝ๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข ๐›๐› ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ๏ฟฝ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Žํ‘Ž๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ (3) is the gradient of a scalar function: = V

๐„๐„ ๐„๐„ โˆ’๐›๐› V is called the . It is a scalar quantity, the gradient of which is equal to the electric field

8 Electric Potential:

Since ร— = 0 everywhere, = V

๐›๐› ๐„๐„ ๐„๐„ โˆ’๐›๐› How to write electric potential in terms of the electric field? V =

Take theโˆ’๐›๐› ๐„๐„ of the above equation over a path

๐’ƒ๐’ƒ V = ๐’ƒ๐’ƒ

๏ฟฝ ๐›๐› โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๐’‚๐’‚ ๐’‚๐’‚ Use the fundamental Theorem for Gradient: ๐’ƒ๐’ƒ V = V V( )

๏ฟฝ ๐›๐› โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž ๐’‚๐’‚ ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๏ฟฝ โ€ข Absolute potential cannot be defined. V V( ) = ๐’ƒ๐’ƒ โ€ข Only potential differences can be defined. ๐›๐› โˆ’ ๐š๐š โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๐’‚๐’‚

9 Electric Potential: (1) Electric potential is different from electric . Unit of electric potential is -meter per Coulomb ( ) or . โ‹… (2) The potential obeys , i.e., the potential due to several charges is equal to the sum of the due to individual ones: V = V + V +

(3) If one knows the electrical potential (a scalar quantity), the electric field1 (a 2 โ‹ฏ vector quantity) can be calculated (4) The electric field is a vector quantity, but we still get all the information from the potential (a scalar quantity). This is because different components are interrelated: ร— = 0, i.e., = ; = ; = ; ๐œ•๐œ•Ex ๐œ•๐œ•Ey ๐œ•๐œ•Ez ๐œ•๐œ•Ey ๐œ•๐œ•Ex ๐œ•๐œ•Ez (5) V ๐›๐›V( ๐„๐„) = ๐œ•๐œ•ํœ• . Absolute๐œ•๐œ•ํœ• ๐œ•๐œ•ํœ• potential๐œ•๐œ•ํœ• cannot๐œ•๐œ•ํœ• be๐œ•๐œ•ํœ• defined. In electrostatics, usually one๐’ƒ๐’ƒ takes the reference point to infinity and set the ๐’‚๐’‚ potential๐›๐› at โˆ’infinity๐š๐š to โˆ’zero,โˆซ ๐„๐„thatโ‹… ๐‘‘๐‘‘ ๐ฅ๐ฅis, take V = V = 0. Also if V = V( ),

๐š๐š โˆž ๐›๐› ๐ซ๐ซ V = ๐ซ๐ซ 10 ๐ซ๐ซ โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ โˆž Electric Potential due to a point charge at origin:

Electric field ( ) at due to a single point charge at origin: ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ ๐„๐„ ๐ซ๐ซ 1 ๐ซ๐ซ ( ) = ๐‘ž๐‘ž ๐‘ž๐‘ž ๐„๐„ ๐ซ๐ซ๐Ÿ๐Ÿ 2 ๐ซ๐ซ๏ฟฝ๐Ÿ๐Ÿ Electric potential4๐œ‹๐œ‹ V ๐œ–๐œ–0 ๐‘Ÿ๐‘Ÿat1 due to a single point charge at origin: ๐ซ๐ซ ๐ซ๐ซ ๐‘ž๐‘ž V = ๐‘Ÿ๐‘Ÿ = ๐’“๐’“ ( )

๐ซ๐ซ โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ โˆ’ ๏ฟฝ ๐„๐„ ๐ซ๐ซ๐Ÿ๐Ÿ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ๐Ÿ๐Ÿ The line elementโˆž is: = โˆž r + + sin

๐‘‘๐‘‘1๐ฅ๐ฅ๐Ÿ๐Ÿ ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ1 ๏ฟฝ๐Ÿ๐Ÿ ๐‘Ÿ๐‘Ÿ1๐‘‘๐‘‘๐œƒ๐œƒ1 ๐›‰๐›‰๏ฟฝ๐Ÿ๐Ÿ 1๐‘Ÿ๐‘Ÿ1 ๐œƒ๐œƒ1๐‘‘๐‘‘๐œ™๐œ™1 ๐“๐“๏ฟฝ๐Ÿ๐Ÿ1 V = ๐’“๐’“ = ๐’“๐’“ = ๐‘ž๐‘ž ๐‘ž๐‘ž ๐‘ž๐‘ž 2 1 2 1 ๐ซ๐ซ โˆ’ ๏ฟฝ 0 1 ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ โˆ’ 0 ๏ฟฝ 1 ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ 0 โˆž 4๐œ‹๐œ‹๐œ–๐œ– ๐‘Ÿ๐‘Ÿ 4๐œ‹๐œ‹๐œ–๐œ– โˆž ๐‘Ÿ๐‘Ÿ 4๐œ‹๐œ‹๐œ–๐œ– ๐‘Ÿ๐‘Ÿ 1 V = 11 ๐‘ž๐‘ž ๐ซ๐ซ 4๐œ‹๐œ‹๐œ–๐œ–0 ๐‘Ÿ๐‘Ÿ Electric Potential due to localized charge distribution: Potential due to a point 1 charge at origin: V = ๐‘ž๐‘ž ๐‘ž๐‘ž ๐ซ๐ซ 4๐œ‹๐œ‹๐œ–๐œ–0 ๐‘Ÿ๐‘Ÿ Potential due to a point 1 V = charge at : r ๐‘ž๐‘ž ๐ซ๐ซ ๐‘ž๐‘ž ๐ซ๐ซโ€ฒ 4๐œ‹๐œ‹๐œ–๐œ–0 Potential due to a collection 1 of point charges V = ๐‘›๐‘› r ๐‘ž๐‘ži๐‘–๐‘– ๐ซ๐ซ 0 ๏ฟฝ Potential due to a a continuous 4๐œ‹๐œ‹๐œ–๐œ– ๐‘–๐‘–=1 charge distribution is 1 V( ) = r ๐‘‘๐‘‘๐‘‘๐‘‘ ๐ซ๐ซ ๏ฟฝ For a line charge = 4๐œ‹๐œ‹๐œ–๐œ– 0 For a = โ€ฒ For a volume charge๐‘‘๐‘‘๐‘‘๐‘‘ ๐œ†๐œ†=๐ซ๐ซ ๐‘‘๐‘‘๐‘‘๐‘‘โ€ฒ๏ฟฝ 12 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œŽ๐œŽ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œŒ๐œŒ ๐ซ๐ซ ๐‘‘๐‘‘๐‘‘๐‘‘๏ฟฝ Ease of calculating the Electric Field

โ€ข The easiest way to calculate the electric field is using Gaussโ€™s law. But this is possible only when there is some symmetry in the problem.

โ€ข The next best thing: if the electric potential is known, one can calculate the electric field by just taking the gradient of the potential = V. Sometimes, it is very effective to calculate the electric potential first and then the electric field from there. ๐„๐„ โˆ’๐›๐›

โ€ข If the above two is not applicable, one has to go back to the Coulombโ€™s law and then calculate the electric field.

13