New Microsoft Word Document

Total Page:16

File Type:pdf, Size:1020Kb

New Microsoft Word Document E- Content BSc I Sem. -II Back Cross and Test Cross Back Cross Backcrossing is a crossing of a hybrid with one of its parents or an individual genetically similar to its parent, in order to achieve offspring with a genetic identity which is closer to that of the parent. It is used in horticulture, animal breeding and in production of gene knockout organisms. Backcrossed hybrids are sometimes described with acronym “BC”, for example, an F1 hybrid crossed with one of its parents (or a genetically similar individual) can be termed a BC1 hybrid, and a further cross of the BC1 hybrid to the same parent (or a genetically similar individual) produces a BC2 hybrid. York radiate groundsel (Senecio eboracensis) is a naturally occurring hybrid species of Oxford ragwort (Senecio squalidus) and common groundsel (Senecio vulgaris). It is thought to have arisen from a backcrossing of the F1 hybrid with S. vulgaris. Again, the pure tall (TT) and pure dwarf (tt) pea plants when crossed in the parental generation, they produce all heterozygote (Tt) tall pea plants in the first filial generation. The cross between first filial heterozygote tall (Tt) pea plant and pure tall (TT) or pure dwarf (tt) pea plant of the parental generation is also an example for the back-crossing between two plants. In this case, the filial generation formed after the back cross may have a phenotype ratio of 1:1 if the cross is made with recessive parent or else all offspring may be having phenotype of dominant trait if back cross is with parent having dominant trait. Backcrossing may be deliberately employed in animals to transfer a desirable trait in an animal of inferior genetic background to an animal of preferable genetic background. In gene knockout experiments in particular, where the knockout is performed on easily cultured stem cell lines, but is required in an animal with a different genetic background, the knockout animal is backcrossed against the animal of the required genetic background. As the figure shows, each time that the mouse with the desired trait (in this case the lack of a gene (i.e. a knockout), indicated by the presence of a positive selectable marker) is crossed with a mouse of a constant genetic background, the average percentage of the genetic material of the offspring that is derived from that constant. The result, after sufficient reiterations, is an animal with the desired trait in the desired genetic background, with the percentage of genetic material from the original stem cells reduced to a minimum (in the order of 0.01%). This image demonstrates backcrossing of a heterozygous mouse from one genetic background onto another genetic background. In this example, the gene knockout is performed on 129/Sv cells and then backcrossed into the C57B/6J genetic background. With each successive backcross, there is an increase in the percentage of C57B/6J DNA that constitutes the genome of the offspring. Due to the nature of meiosis, in which chromosomes derived from each parent are randomly shuffled and assigned to each nascent gamete, the percentage of genetic material deriving from either cell-line will vary between offspring of a single crossing but will have an expected value. The genotype of each member of offspring may be assessed to choose not only an individual that carries the desired genetic trait, but also the minimum percentage of genetic material from the original stem cell line. A consomic strain is an inbred strain with one of its chromosomes replaced by the homologous chromosome of another inbred strain via a series of marker-assisted backcrosses. Test Cross In genetics, a test cross, first introduced by Gregor Mendel, involves the breeding of an individual with a phenotypically recessive individual, in order to determine the zygosity of the former by analyzing proportions of offspring phenotypes. Zygosity can either be heterozygous or homozygous. Those that are heterozygous have one dominant and one recessive allele. Individuals that are homozygous dominant have two dominant alleles, and those that are homozygous recessive have two recessive alleles. The genotype that an offspring has for each of its genes is determined by the alleles inherited from its parents. The combination of alleles is a result of the maternal and paternal chromosomes contributed from each gamete at fertilization of that offspring. During meiosis in gametes, homologous chromosomes experience genetic recombination and segregate randomly into haploid daughter cells, each with a unique combination of maternally and paternally coded genes. Dominant alleles will override the expression of recessive alleles. Punnett squares showing typical test crosses and the two potential outcomes. The individual in question may either be heterozygous, in which half the offspring would be heterozygous and half would be homozygous recessive, or homozygous dominant, in which all the offspring would be heterozygous. The genotype that an offspring has for each of its genes is determined by the alleles inherited from its parents. The combination of alleles is a result of the maternal and paternal chromosomes contributed from each gamete at fertilization of that offspring. During meiosis in gametes, homologous chromosomes experience genetic recombination and segregate randomly into haploid daughter cells, each with a unique combination of maternally and paternally coded genes. Dominant alleles will override the expression of recessive alleles. Test crosses are used to test an individual’s genotype by crossing it with an individual of a known genotype. Individuals that show the recessive phenotype are known to have a homozygous recessive genotype. Individuals that show the dominant phenotype, however, may either be homozygous dominant or heterozygous. The phenotypically dominant organism is the individual in question in a test cross. The purpose of a test cross is to determine if this individual is homozygous dominant or heterozygous. Test crosses involve breeding the individual in question with another individual that expresses a recessive version of the same trait. Analyzing the proportions of dominant and recessive offspring determines if the individual in question is homozygous dominant or heterozygous. If all offspring from the test cross display the dominant phenotype, the individual in question is homozygous dominant; if half the offspring display dominant phenotypes and half display recessive phenotypes, then the individual is heterozygous. Since the homozygous recessive individual can only pass on recessive alleles, the alleles the individual in question passes on determine the phenotypes of the offspring. Test Cross versus Backcross Test cross and backcross are two types of crosses introduced by Gregor Mendel. In test cross, a dominant phenotype is crossed with the homologous recessive genotype in order to discriminate between homologous dominant and heterozygous genotypes. In backcross, the F1 is crossed with one of the parents or genetically identical individuals to the parent. The main difference between test cross and the backcross is that test cross is used to discriminate the genotype of an individual which is phenotypically dominant whereas a backcross is used to recover an elite genotype from a parent which bears an elite genotype. The breeding of a dominant phenotype with the recessive phenotype is referred to as a test cross. Zygosity of the dominant phenotype can be identified by test cross. Zygosity is the degree of similarity between two alleles which determine a particular trait. The zygosity is identified by the proportion of phenotypes occurring in the offspring. It can be either homozygous or heterozygous. Homozygous individuals consist of either two dominant alleles or two recessive alleles. The heterozygous individuals contain both dominant and recessive alleles of the gene. If an individual exhibits the dominant phenotype, the genotype of that particular individual would be either homozygous dominant or heterozygous. In this situation, the exact genotype can be determined by performing a test cross with an individual exhibiting the recessive phenotype for that trait. The genotype of the recessive phenotype is always homozygous recessive for that particular trait. Therefore, the proportion of the phenotypes in the offspring may describe the zygosity of the dominant phenotype which is examined during the test cross. Punnett square of the test cross performed for the pod colour of a pea plant. Dominant allele for the pod colour is dominated by Y whereas the recessive is dominated by y. Here, yellow is the dominant colour of the pod whereas green is the recessive pod colour. The allele combination of the homologous dominant is YY, exhibiting the yellow colour pods. Yy is the allele combination of heterozygous, exhibiting the yellow colour pods. The allele combination of the homozygous recessive is yy, exhibiting the green colour pods. The genotype of the pea which exhibits the yellow pod colour can be either YY or Yy. The discrimination between YY and Yy can be achieved by mating that particular pea with a pea exhibiting the green colour pods (yy). If the genotype of the yellow colour pod is Yy, the offspring consists of 50% yellow colour pods and 50% green colour pods as in the first Punnett square in the above figure. On the other hand, if the genotype is YY, the offspring consists of only the yellow colour pods. Hence, the genotype of the dominant phenotype can be identified depending on the colour of the pods resulting in the offspring. The breeding of F1 hybrid with one of the two parents is referred to as a backcross. When F1 is bred with the homozygous dominant, the offspring produces a 100% dominant phenotype. When the F1 is bred with a recessive phenotype, the offspring produces 50% dominant and 50% recessive phenotypes. This cross produces an offspring which is genetically identical or closer to the parents of the F1. Hence, backcross is often used in horticulture and animal breeding in order to achieve genetically identical offspring carrying elite genotypes.
Recommended publications
  • B. Sample Multiple Choice Questions 1
    Genetics Review B. Sample Multiple Choice Questions 1. A represents the dominant allele and a represents the recessive allele of a pair. If, in 1000 offspring, 500 are aa and 500 are of some other genotype, which of the following are most probably the genotypes of the parents? a. Aa and Aa b. Aa and aa c. AA and Aa d. AA and aa e. aa and aa 2. A form of vitamin D-resistant rickets, known as hypophosphatemia, is inherited as an X-linked dominant trait. If a male with hypophosphatemia marries a normal female, which of the following predictions concerning their potential progeny would be true? a. All of their sons would inherit the disease b. All of their daughters would inherit the disease c. About 50% of their sons would inherit the disease d. About 50% of their daughters would inherit the disease e. None of their daughters would inherit the disease 3. Which of the following best describes the parents in a testcross? a. One individual has the dominant phenotype and the other has the recessive phenotype. b. Both individuals are heterozygous. c. Both individuals have the dominant phenotype. d. Both individuals have the recessive phenotype. e. Both individuals have an unknown phenotype. 4. Which of the following is the most likely explanation for a high rate of crossing-over between two genes? a. The two genes are far apart on the same chromosome. b. The two genes are both located near the centromere. c. The two genes are sex-linked. d. The two genes code for the same protein.
    [Show full text]
  • 3Rd Period Allele: Alternate Forms of a Genetic Locus
    Glossary of Terms Commonly Encountered in Plant Breeding 1st Period - 3rd Period Allele: alternate forms of a genetic locus. For example, at a locus determining eye colour, an individual might have the allele for blue eyes, brown, etc. Breeding: the intentional development of new forms or varieties of plants or animals by crossing, hybridization, and selection of offspring for desirable characteristics Chromosome: the structure in the eukaryotic nucleus and in the prokaryotic cell that carries most of the DNA Cross-over: The point along the meiotic chromosome where the exchange of genetic material takes place. This structure can often be identified through a microscope Crossing-over: The reciprocal exchange of material between homologous chromosomes during meiosis, which is responsible for genetic recombination. The process involves the natural breaking of chromosomes, the exchange of chromosome pieces, and the reuniting of DNA molecules Domestication: the process by which plants are genetically modified by selection over time by humans for traits that are more desirable or advantageous for humans DNA: an abbreviation for “deoxyribose nucleic acid”, the carrier molecule of inherited genetic information Dwarfness: The genetically controlled reduction in plant height. For many crops, dwarfness, as long as it is not too extreme, is an advantage, because it means that less of the crop's energy is used for growing the stem. Instead, this energy is used for seed/fruit/tuber production. The Green Revolution wheat and rice varieties were based on dwarfing genes Emasculation: The removal of anthers from a flower before the pollen is shed. To produce F1 hybrid seed in a species bearing monoecious flowers, emasculation is necessary to remove any possibility of self-pollination Epigenetic: heritable variation caused by differences in the chemistry of either the DNA (methylation) or the proteins associated with the DNA (histone acetylation), rather than in the DNA sequence itself Gamete: The haploid cell produced by meiosis.
    [Show full text]
  • 12.2 Characteristics and Traits
    334 Chapter 12 | Mendel's Experiments and Heredity 12.2 | Characteristics and Traits By the end of this section, you will be able to do the following: • Explain the relationship between genotypes and phenotypes in dominant and recessive gene systems • Develop a Punnett square to calculate the expected proportions of genotypes and phenotypes in a monohybrid cross • Explain the purpose and methods of a test cross • Identify non-Mendelian inheritance patterns such as incomplete dominance, codominance, recessive lethals, multiple alleles, and sex linkage Physical characteristics are expressed through genes carried on chromosomes. The genetic makeup of peas consists of two similar, or homologous, copies of each chromosome, one from each parent. Each pair of homologous chromosomes has the same linear order of genes. In other words, peas are diploid organisms in that they have two copies of each chromosome. The same is true for many other plants and for virtually all animals. Diploid organisms produce haploid gametes, which contain one copy of each homologous chromosome that unite at fertilization to create a diploid zygote. For cases in which a single gene controls a single characteristic, a diploid organism has two genetic copies that may or may not encode the same version of that characteristic. Gene variants that arise by mutation and exist at the same relative locations on homologous chromosomes are called alleles. Mendel examined the inheritance of genes with just two allele forms, but it is common to encounter more than two alleles for any given gene in a natural population. Phenotypes and Genotypes Two alleles for a given gene in a diploid organism are expressed and interact to produce physical characteristics.
    [Show full text]
  • Lecture No. IV
    Course: Fundamentals of Genetics Class: - Ist Year, IInd Semester Lecture No. IV Title of topic: - Monohybrid crosses, Di-hybrid crosses, Test cross and Back cross Prepared by- Vinod Kumar, Assistant Professor, (PB & G) College of Agriculture, Powarkheda Monohybrid crosses:—Crosses between parents that differed in a single characteristic. The character (S) being studied in a monohybrid cross are governed by two or multiple variations for a single locus. The Mendel’s first law i.e. Law of segregation or purity of gametes can be explained by considering the monohybrid ratio i.e. by studying inheritance of only one character. For example: In pea, round seed shape is dominant over wrinkled seed shape. Generation Parental Parents Female X Male Phenotype Round X Wrinkled Genotype RR X rr Gametes R r Generation F1 Rr (Heterozygous) Round On selfing: Parents Female X Male Phenotype Round X round Genotype Rr X Rr Gametes R r R r Generation F2 ♂ R r ♀ RR Rr R Round Round r Rr rr Round Wrinkled Phenotype ratio: 3 round : 1 wrinkled Genotypic ratio: 1 RR : 2Rr : 1rr Two different alleles of the same gene i.e. ‘R’ and ‘r’ were brought together in the hybrid (F1). Even though the hybrid was round seeded in the next generation (F2) it produced both round and wrinkled seeded progeny. Thus both the alleles for round shape (R) and wrinkled shape (r) remained together in the hybrid without contaminating each other. In F2 generation (selfing of (F1) hybrid), the different phenotypes could be recovered because the two alleles in F1 remained pure and did not contaminate each other thus producing two types of gametes from F1 i.e.
    [Show full text]
  • Revise Meiosis Process and the Relation Between Mendel Laws and Meiosis Before Proceeding with This Lecture
    Genetics (BTBio 211) Lecture 3 part 2 2015-2016 Revise Meiosis process and the relation between Mendel laws and Meiosis before proceeding with this lecture. Meiosis Action: For each Parent 2 Chromosomes 2 Chromatids each 2 Chromosomes 1 Chromosome each 4 gametes: 4 Chromatid s 4 Chromatids each 1 Chromosome each each 1 Chromatids each 1 Genetics (BTBio 211) Lecture 3 part 2 2015-2016 LINKAGE AND CHROMOSOME MAPPING IN EUKARYOTES I. LINKAGE Genetic linkage is the tendency of genes that are located proximal to each other on a chromosome to be inherited together during meiosis. Genes whose loci are nearer to each other are less likely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be genetically linked. Linked genes: Genes that are inherited together with other gene(s) in form of single unit as they are located on the same chromosome. For example: in fruit flies the genes for eye color and the genes for wing length are on the same chromosome, thus are inherited together. A couple of genes on chromosomes may be present either on the different or on the same chromosome. 1. The independent assortment of two genes located on different chromosomes. Mendel’s Law of Independent Assortment: during gamete formation, segregation of one gene pair is independent of other gene pairs because the traits he studied were determined by genes on different chromosomes. Consider two genes A and B, each with two alleles A a and B b on separate (different) chromosomes. 2 Genetics (BTBio 211) Lecture 3 part 2 2015-2016 Gametes of non-homologous chromosomes assort independently at anaphase producing 4 different genotypes AB, ab, Ab and aB with a genotypic ratio 1:1:1:1.
    [Show full text]
  • Revision Guide
    Revision Guide Biology - Unit 4 GCE A Level WJEC These notes have been authored by experienced teachers and are provided as support to students revising for their GCE A level exams. Though the resources are comprehensive, they may not cover every aspect of the specification and do not represent the depth of knowledge required for each unit of work. 1 Content Page Section 3 4.1 – Sexual Reproduction in Humans 13 4.2 - Sexual Reproduction in Plants 21 4.3 - Inheritance 36 4.4 - Variation and Evolution 49 4.5 - Application of Reproduction and Genetics 62 Acknowledgements 2 Section 4.1 - Sexual Reproduction in Humans The Male Reproductive System seminal vesicle vas deferens prostate gland urethra epididymis seminiferous tubules testis Male reproductive system Structure Function Scrotum External sac of skin containing the testes. Testes • Produce gametes (sperm formed by spermatogenesis), • Produce testosterone. Epididymis Sperm are stored here and mature to become fully mobile. Vas deferens Carries sperm towards the penis during ejaculation. Seminal vesicle Secretes a fluid into the vas deferens that contains a mixture of chemicals which make up approximately 60% of semen. Seminal fluid provides nutrients for sperm such as fructose for respiration and amino acids. Seminal fluid is alkaline which helps to neutralise the acidity of any urine remaining in the urethra and the acidity of the vaginal tract. Prostate gland Secretes a fluid into the vas deferens that contains a mixture of chemicals which make up approximately 30% of semen. Prostate fluid contains zinc ions and is also alkaline which helps to neutralise the acidity of any urine remaining in the urethra and the acidity of the vaginal tract.
    [Show full text]
  • 7.014 Problem Set 6 Solutions
    MIT Department of Biology 7.014 Introductory Biology, Spring 2004 7.014 Problem Set 6 Solutions Question 1 a) Define the following terms: Dominant – In genetics, the ability of one allelic form of a gene to determine the phenotype of a heterozygous individual, in which the homologous chromosomes carries both it and a different (recessive) allele. Recessive – In genetics, an allele that does not determine phenotype in the presence of a dominant allele. Phenotype – The observable properties of an individual resulting from both genetic and environmental factors. Genotype – An exact description of the genetic constitution of an individual, either with respect to a single trait or with respect to a larger set of traits. Alleles – The alternate forms of a genetic character found at a given locus on a chromosome. Homozygous – In a diploid organism, having identical alleles of a given gene on both homologous chromosomes. An individual may be a homozygote with respect to one gene and a heterozygote with respect to another. Heterozygous – Of a diploid organism having different alleles of a given gene on the pair of homologues carrying that gene. Mendel’s First Law – Law of Segregation - In genetics, the separation of alleles, or of homologous chromosomes, from one another during meiosis so that each of the haploid daughter nuclei produced by meiosis contains one or the other member of the pair found in the diploid mother cell, but never both. Mendel’s Second Law – Law of Independent Assortment - During meiosis, the random separation of genes carried on nonhomologous chromosomes. Sex-Linked – The pattern of inheritance characteristic of genes located on the sex chromosomes of organisms having a chromosomal mechanism for sex determination.
    [Show full text]
  • Dihybrid Crosses
    Dihybrid Crosses: Punnett squares for two traits Genes on Different Chromosomes If two genes are on different chromosomes, all four possible alleles combinations for two different genes in a heterozygous cross are _____________ due to independent assortment. If parents are RrYy (heterozygous for both traits) Equally R r likely to R r OR line up either way y Y Y y when dividing Ry rY RY ry Gametes: ___________________________________ Setting up a Dihybrid Cross: RrYy x RrYy Each side of a Punnett Square represents all the possible allele combinations in a gamete from a parent. Parent gametes always contain one allele for___ _______ .(____________-R or r & Y or y in this case). Four possible combinations of the alleles for the two genes are possible if heterozygous for both traits. (For example: ___________________) Due to independent assortment, each possible combination is equally likely if genes are on separate chromosomes. Therefore Punnett squares indicate probabilities for each outcome. Discuss with your table partner: A. R r Y y Which is correct for a R dihybrid cross of two r heterozygous parents RrYy x RrYy? Y y B. RR Rr rr rR C. RY Ry rY ry YY RY Yy Ry yy rY yY ry Explain how the correct answer relates to the genes passed down in each gamete (egg or sperm) Dihybrid Cross of 2 Heterozygotes 9 3 3 1 Heterozygous Dihybrid Cross Dominant Dominant Recessive Recessive for both 1st trait 1st trait for both traits Recessive Dominant traits 2nd trait 2nd trait Round Round Wrinkled Wrinkled Yellow Green Yellow Green __ __ __ __ ______ = ______ = ______ = _______ = ___ ____ ____ _____ Heterozygous cross __________ratio if independent assortment Mendel came up with the Law of Independent Assortment because he realized that the results for his dihybrid crosses matched the probability of the two genes being inherited independently.
    [Show full text]
  • Genetics Slides
    Genetics - part one Simple Genetics (One Gene for One Trait) n Mendel’s Pea Plants. – Tall or short. – Round or wrinkled. – Etc… n Dominant & recessive. n Purebred or Hybrid. n Simple Punnett Squares. Gregor Mendel TEST 1 on SLIDES 1-19 1 n Gregor Mendel was a monk who worked with pea plants in the mid 1800’s. Today he is known as “Father of Genetics.” He was curious about the “factors” acting on inheritance. Are there patterns? 2 What is Genetics? n Genetics is the branch of biology that deals with heredity. n Heredity is the passing of traits from parents to offspring. – Parents à offspring n Traits are characteristics of an organism. – Human examples: height, hair, eye color. 3 1 Genetics - part one n Gene: a section/piece of DNA on a chromosome that codes for a specific trait. § Alleles = alternate forms of a gene (Ex: Blood type A/B/O). § Genes tend to come in pairs (alleles). n DOMINANT: an allele whose trait always shows up in the organism when the allele present. – (CAPITAL LETTER) n recessive: an allele hidden by dominant. – (lower case letter) n Genotype: genetic makeup; allele combinations. – (Ex: BB, Bb, bb) n Phenotype: physical appearance of an organism (Ex: Brown hair) 4 How to make a test cross (aka Punnett Square) Parent #1 alleles Offspring Offspring Offspring Offspring Parent #2 alleles 5 6 2 Genetics - part one Diagrams & math can be used to predict the probability that a trait will pass from parent(s) to offspring. Punnet Squares 7 8 Complete this test cross between two purebred pea plants: T T t t T = tall stem t = short stem 9 3 Genetics - part one 10 11 Where are genes? n Genes & chromosomes come in pairs.
    [Show full text]
  • In This Lesson, You Will Learn How to Predict the Probable Genetic Makeup and Appearance of Offspring Resulting from Specific Cr
    In this lesson, you will learn how to predict the probable genetic makeup and appearance of offspring resulting from specific crosses.! Probability! n Predicts the likelihood that a specific event will occur.! n May be expressed a a decimal, a percentage, or a fraction.! n Determined by the following formula:! Probability = number of times an event is expected to happen! number of opportunities for an event to happen! Why probability is important to genetics! n Mendel used probability to determine how likely the dominant trait would appear over the recessive trait.! n The yellow pea appeared 6,022 times in the F2 generation. The green pea appeared 2,001 times. ! n The total number of individual was 8023 (6022+2001)! n Using the formula: ! n 6022 ÷ 8023 = 0.75 ! n 2001 ÷ 8023 = 0.25 ! n Percentage: 75% green peas 25% yellow peas! n Ratio: 3:1 ratio of yellow to green peas! n Fraction: 1/4 chance of green peas and 3/4 chance of yellow peas! ! ! Results of the F1 generation! PP Pp x 2 pp ratio: 1:2:1 or 3:1 purple to white! 75% purple to 25% white! F1 generation yielded 100% purple flowers, heterozygous for the purple trait.! white (pp) x purple(PP) ! ! ! ! yields! ! ! ! 100% purple flowers that are heterozygous for the purple flower trait (Pp).! Punnett Square! n A diagram used to predict the probability of certain traits by offspring.! n The following examples will illustrate the outcome of different types of crosses.! How to set up and work a Punnett square! n Draw a four-square box.! n Place one set of alleles on the side of the box as shown at right.! How to set up and work a Punnett square! n One set of alleles for a trait go on top of the box (usually male) and the other set of alleles go on the side of the box.! n Each letter from the set of alleles is placed on top of the square.! Filling in the boxes…! n Fill in the top left box with the alleles from top left and upper left.! n The dominant letter is placed first.
    [Show full text]
  • Genetics Worksheet
    Genetics Worksheet Part 1 Introduction: 1. Describe the genotypes given (use your notes). The first two are already done. A. DD homozygous, dominant D. ss ______________________ B. Dd _heterozygous E. Yy ______________________ C. dd __________________ F. WW ____________________ 2. In humans, brown eye color (B), is dominant over blue eye color (b). What are the phenotypes of the following genotypes? In other words, what color eyes will they have? A. BB ________________________ B. bb ________________________ C. Bb ________________________ The Five (5) Steps Associated With Solving a Genetics Problem: If you take the time to follow the directions below, you will be able to solve most genetics problems. 1. Determine the genotypes of the parents or whatever is given in problem. 2. Set up your Punnett square as follows: *# sq. based on possible gametes that can be formed. Possiblepossible parental gametes gametes otherOther possible possible parentalparental gametes gametes 3. Fill in the squares. This represents the possible combinations that could occur during fertilization. 4. Write out the possible genotypic ratio of the offspring. 5. Using the genotypic ratio determine the phenotypic ratio for the offspring. Part 2: Sample Problem (Just read this over, it is a practice problem) A heterozygous male, black eyed mouse is crossed with a red eyed, female mouse. Predict the possible offspring! Step 1: Determine the genotype of the parents. The male parent is heterozygous which means he has one allele for black eyes and one allele for red eyes. Since his eyes are black, this means that black allele must be dominant over the red allele.
    [Show full text]
  • Ch 14 Review Questions
    Genetics I Answered Review Questions 1. Who discovered the laws of heredity and with what specific organism was this person working? “Modern genetics had its genesis in an abbey garden, where a monk named Gregor Mendel documented a particulate mechanism of inheritance. The painting in the figure below, depicts Mendel working with his experimental organism, garden peas. Mendel developed his theory of inheritance several decades before the behavior of chromosomes was observed in the microscope and their significance understood.” (Text quoted from page 251 of the textbook) 2. What are alleles and where would they be located in a cell? “…alternative versions of genes account for variations in inherited characters. The gene for flower color in pea plants, for example, exists in two versions, one for purple flowers and the other for white. These alternative versions of a gene are now called alleles (see table below). Today, we can relate this concept to chromosomes and DNA. As noted in Chapter 13, each gene resides at a specific locus on a specific chromosome. The DNA at that locus, however, can vary somewhat in its sequence of nucleotides and hence in its information content. The purple-flower allele and the white-flower allele are two DNA variations possible at the flower-color locus on one of a pea plant’s chromosomes.” (Text quoted from pages 253 and 254 of the textbook.) 3. Contrast dominant and recessive alleles. “if the two alleles at a locus differ, then one, the dominant allele, determines the organism’s appearance; the other, the recessive allele, has no noticeable effect on the organism’s appearance.” (Text quoted from page 254 of the textbook) A dominant allele may be expressed when only one dominant allele is present.
    [Show full text]