Clibmatological DATA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FMFRP 0-54 the Persian Gulf Region, a Climatological Study
FMFRP 0-54 The Persian Gulf Region, AClimatological Study U.S. MtrineCorps PCN1LiIJ0005LFII 111) DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited DEPARTMENT OF THE NAVY Headquarters United States Marine Corps Washington, DC 20380—0001 19 October 1990 FOREWORD 1. PURPOSE Fleet Marine Force Reference Publication 0-54, The Persian Gulf Region. A Climatological Study, provides information on the climate in the Persian Gulf region. 2. SCOPE While some of the technical information in this manual is of use mainly to meteorologists, much of the information is invaluable to anyone who wishes to predict the consequences of changes in the season or weather on military operations. 3. BACKGROUND a. Desert operations have much in common with operations in the other parts of the world. The unique aspects of desert operations stem primarily from deserts' heat and lack of moisture. While these two factors have significant consequences, most of the doctrine, tactics, techniques, and procedures used in operations in other parts of the world apply to desert operations. The challenge of desert operations is to adapt to a new environment. b. FMFRP 0-54 was originally published by the USAF Environmental Technical Applications Center in 1988. In August 1990, the manual was published as Operational Handbook 0-54. 4. SUPERSESSION Operational Handbook 0-54 The Persian Gulf. A Climatological Study; however, the texts of FMFRP 0—54 and OH 0-54 are identical and OH 0-54 will continue to be used until the stock is exhausted. 5. RECOMMENDATIONS This manual will not be revised. However, comments on the manual are welcomed and will be used in revising other manuals on desert warfare. -
Part 2 Severe Weather
34 INTRODUCTION to SEVERE WEATHER (from http://www.srh.noaa.gov/jetstream//) 34 35 Chapter 1. Tropical Cyclone (from http://www.srh.noaa.gov/srh/jetstream/tropics/tropics_intro.htm) 1. Introduction A tropical cyclone is a warm-core, low pressure system without any "front" attached, that develops over the tropical or subtropical waters, and has an organized circulation. Depending upon location, tropical cyclones have different names around the world. In the: • Atlantic/Eastern Pacific Oceans - hurricanes • Western Pacific - typhoons • Indian Ocean - cyclones Regardless of what they are called, there are several favorable environmental conditions that must be in place before a tropical cyclone can form. They are: • Warm ocean waters (at least 80°F / 27°C) throughou t a depth of about 150 ft. (46 m). • An atmosphere which cools fast enough with height such that it is potentially unstable to moist convection. • Relatively moist air near the mid-level of the troposphere (16,000 ft. / 4,900 m). • Generally a minimum distance of at least 300 miles (480 km) from the equator. • A pre-existing near-surface disturbance. • Low values (less than about 23 mph / 37 kph) of vertical wind shear between the surface and the upper troposphere. Vertical wind shear is the change in wind speed with height. 35 36 Tropical Cyclone Formation Basin Given that sea surface temperatures need to be at least 80°F (27°C) for tropical cyclones form, it is natural that they form near the equator. However, with only the rarest of occasions, these storms do not form within 5° latitude of the equator. -
Understanding the Dominant Sources and Tracks of Moisture for Summer
Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Understanding the Dominant Sources and Tracks of Moisture 10.1029/2017JD027652 for Summer Rainfall in the Southwest United States Key Points: Srijita Jana1,2 , Balaji Rajagopalan1,2 , Michael A. Alexander3 , and Andrea J. Ray3 • The leading source of moisture varies depending on the part of the region 1Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, USA, • Land is an important source of 2 3 moisture during the summer season Cooperative Institute of Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA, NOAA • Large-scale circulation features are Earth System Research Laboratory, Boulder, CO, USA consistent with major pathways of moisture Abstract We investigated the moisture sources and tracks that enable summer rainfall over the four-state Supporting Information: southwestern U.S. region of Arizona, New Mexico, Colorado, and Utah by employing a high-resolution • Supporting Information S1 Lagrangian particle tracking model. Six locations were selected—Cedar City (Utah), Grand Junction • Table S1 (Colorado), Eastonville (Colorado), Laveen (Arizona), Redrock (New Mexico), and Melrose (New Mexico) • Table S2 —together, they represent six spatial regions of summer precipitation for the Southwest. Moisture tracks – Correspondence to: were generated for all the rainy days at these stations for the historical period 1979 2013. Tracks were S. Jana and B. Rajagopalan, generated for a 3-day period ending with the day of rainfall, which were then used to identify the [email protected]; source of moisture, pathway or trajectory, and the modulation along the track. The four major sources of [email protected] moisture—Gulf of California, Gulf of Mexico (GoM), land, and the Pacific Ocean—were identified as responsible for summer rainfall over southwestern United States. -
Killer Tornado Guide (1950-2020) for North Central and Northeast Wisconsin
KILLER TORNADO GUIDE (1950-2020) FOR NORTH CENTRAL AND NORTHEAST WISCONSIN Updated: 2/1/21 1 KILLER TORNADO GUIDE (1950-2020) FOR NORTH CENTRAL AND NORTHEAST WISCONSIN BROWN MENOMINEE CALUMET OCONTO DOOR ONEIDA FOREST OUTAGAMIE FLORENCE PORTAGE KEWAUNEE SHAWANO LANGLADE VILAS LINCOLN WAUPACA MANITOWOC WAUSHARA MARATHON WINNEBAGO MARINETTE WOOD 2 TORNADO REFERENCE GUIDE – KILLER TORNADOES DATE Time Deadly Tornadoes in GRB Service Area Deaths Month Day Year (CST) Start / End Location County or Counties 2 6 25 1950 21:00 1 W Woodboro - 5 NE Rhinelander Oneida 6 9 26 1951 15:45-1608 9 SSW Amherst - 2 SW Bear Creek Portage, Waupaca 2 4 3 1956 12:50 3 S Bancroft - 2 NW Amherst Portage 2 8 19 1968 16:10 3 SW Pound - Marinette Marinette 1 8 9 1979 18:20 Rockland Beach Calumet 1 4 27 1984 14:37-15:07 Fawn Lake - Star Lake Oneida, Vilas 1 4 27 1984 15:20-15:40 1 NE Winneconne - Freedom Winnebago, Outagamie 2 6 8 1985 18:15-18:32 Park Falls - 3 SE Monico Oneida 1 8 29 1992 19:10-19:55 1 N Wautoma - 3 SE Poy Sippi Waushara 1 8 19 2011 15:45-15:56 2.9 NW - 5.2 ESE Wausaukee Marinette 2 DEATHS: June 25, 1950 The EF4 tornado touched down one mile west of Woodboro in Oneida County around 9 PM CST and traveled 13.1 miles to five miles northeast of Rhinelander. The tornado reached a maximum width of 880 yards. Two deaths were reported in Oneida County. 6 DEATHS: September 26, 1951 The EF4 tornado developed 9 miles south southwest of Amherst in Portage County around 3:45 PM CST. -
Extratropical Storms of the Gulf of Mexico and Their Ffece Ts Along the Northern Coast of a Barrier Island: West Ship Island, Mississippi
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1999 Extratropical Storms of the Gulf of Mexico and Their ffecE ts Along the Northern Coast of a Barrier Island: West Ship Island, Mississippi. Phillip Lynn Chaney Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Chaney, Phillip Lynn, "Extratropical Storms of the Gulf of Mexico and Their Effects Along the Northern Coast of a Barrier Island: West Ship Island, Mississippi." (1999). LSU Historical Dissertations and Theses. 6884. https://digitalcommons.lsu.edu/gradschool_disstheses/6884 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. -
The Hurricane-Tornado
July 1965 John S. Smith 453 THEHURRICANE-TORNADO JOHN S. SMITH Weather Bureau Forecast Center, Chicago, 111. ABSTRACT Climatological data in recent years have become sufficient for the further study of tornadoes which occur in hurricane systems. Several characteristics of the hurricane tornado are determined from data for an 8-yr. period by plotting the center positions of each hurricane and its associated tornadoes. The data show: (1) a comparison betweenhurricane and non-hurricane tornadoes; (2) a “Significant Sector” fortornado-genesis; (3) a “Preferred Quadrant” of the hurricane for tornado-genesis; (4) the mostfavorable time of dayfor tornado occurrence; (5) tornado frequencies with,respect to various speeds and distances of the hurricane on and off shore; (6) a tenative hurricane model. 1. INTRODUCTION the “Preferred Quadrant.” Other significant patterns are established from the relationship of the tornado to the Although considerable research has been done on the hurricane. forecasting problemspresented byboth tornadoes and hurricanes, relatively little investigation has been made 2. GENERALCLIMATOLOGY intothe forecasting problems of tornadoesassociated with hurricanes. In this study of the hurricane-tornado Of 15 hurricanes that entered the United States from problem,a climatological analysishas been made by the Gulf of Mexico andthrough the Atlantic Coastal plottingthe center position of eachhurricane and its States, 11 produced tornadoes. Atotal of 98 tornadoes associated tornadoes. was produced during the period from hurricane Connie in August 1955, to hurricane Carla in September 1961. Of Recognition of hurricane tornadoes prior to 1955 was the hurricanes producing tornadoes, the average number apparently limited-unless therehas beensuddena of tornadoes per hurricane is 9, although hurricanes Audrey rash of hurricane-tornadoesin recent years, for since and Carla spawned more than 20 tornadoes each. -
Observational Analysis of the 27 May 1997 Central Texas Tornadic Event
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 2007 Observational Analysis of the 27 May 1997 Central Texas Tornadic Event. Part I: Prestorm Environment and Storm Maintenance/Propagation Adam L. Houston Robert B. Wilhelmson Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. VOLUME 135 MONTHLY WEATHER REVIEW MARCH 2007 Observational Analysis of the 27 May 1997 Central Texas Tornadic Event. Part I: Prestorm Environment and Storm Maintenance/Propagation ADAM L. HOUSTON* Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana ROBERT B. WILHELMSON National Center for Supercomputing Applications, and Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois (Manuscript received 8 August 2005, in final form 23 May 2006) ABSTRACT A detailed analysis of the 27 May 1997 central Texas tornadic storm complex is undertaken in an attempt to document the prestorm environment and identify the roles played by preexisting boundaries on storm maintenance/propagation and rotation. Analysis is carried out using a broad suite of synoptic and subsyn- optic data but focuses on the level-II and -III Weather Surveillance Radar-1988 Doppler (WSR-88D) data from three Texas radars. The 27 May 1997 event was characterized by a back-building (propagation against the mean flow) storm complex that produced at least 12 tornadoes including the F5 Jarrell, Texas, tornado. -
Copyrighted Material
Contents at a Glance Introduction. .1 Part 1: What in the World Is Weather?. 7 CHAPTER 1: Forecasts and Forecasting. .9 CHAPTER 2: Behind the Air Wars. .37 CHAPTER 3: Land, Sea, and Precipitation: Is This Any Way to Run a Planet?. 61 Part 2: Braving the Elements. 79 CHAPTER 4: Blowing in the Winds. 81 CHAPTER 5: Getting Cirrus. 103 CHAPTER 6: Climate Is What You Expect; Weather Is What You Get. 125 CHAPTER 7: The Greatest Storms On Earth. .147 Part 3: Some Seasonable Explanations. .169 CHAPTER 8: The Ways of Winter. .171 CHAPTER 9: Twists and Turns of Spring. 201 CHAPTER 10: Extremely Summer. .233 CHAPTER 11: Falling for Autumn . .255 Part 4: The Special Effects. .263 CHAPTER 12: Taking Care of the Air. .265 CHAPTER 13: Up in the Sky! Look! . 285 CHAPTER 14: Try This at Home. .301 Part 5: The Part of Tens. 315 CHAPTER 15: Ten (or So) Biggest U.S. Weather Disasters of the 20th Century . 317 CHAPTER 16: Ten (or So) Worst World Weather Disasters of the 20th Century. 325 CHAPTER 17: Ten Crafty Critters. 331 CHAPTER 18: Ten Grand Old Weather Proverbs. 337 Appendix:COPYRIGHTED Internet Resource MATERIAL Directory. 343 Index. 351 02_9781119806776-ftoc.indd iii Trim size: 7.375 in × 9.25 in December 11, 2020 2:18 PM 02_9781119806776-ftoc.indd iv Trim size: 7.375 in × 9.25 in December 11, 2020 2:18 PM Table of Contents INTRODUCTION ...................................................1 About This Book ...............................................1 Foolish Assumptions ...........................................2 How This Book Is Organized ....................................2 Part 1: What in the World Is Weather?. -
Deepwater Gulf of Mexico Environmental and Socioeconomic Data Search and Literature Synthesis
OCS Study MMS 2000-049 Deepwater Gulf of Mexico Environmental and Socioeconomic Data Search and Literature Synthesis Volume I: Narrative Report Mississippi Alabama Georgia Texas Florida Deepwater Environment U.S. Exclusive Economic Zone Gulf of Mexico - Cuba Yucatan U.S. DeDartment of the Interior Minerals Management Service Gulf of Mexico OCS Region OCS Study MMS 2000-049 Deepwater Gulf of Mexico Environmental and Socioeconomic Data Search and Literature Synthesis Volume I: Narrative Report Author Continental Shelf Associates, Inc. Prepared under MMS contract 1435-01 -98-CT-3091 6 by Continental Shelf Associates, Inc. 759 Parkway Street Jupiter, Florida 33477-9596 Published by U.S. Department of the Interior Minerals Management Service New Orleans Gulf of Mexico OCS Region July 2000 Disclaimer This report was prepared under contract between the Minerals Management Service (MMS) and Continental Shelf Associates, Inc. This report has been technically reviewed by the MMS, and has been approved for publication. Approval does not signifr that the contents necessarily reflect the views and policies of the MMS, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. It is, however, exempt from review and compliance with the MMS editorial standards. Report Availability Extra copies of this report may be obtained from the Public Information Office at the following address: U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Region Public Information Office (MS 5034) 1201 Elmwood Park Boulevard New Orleans, LA 70 123-2394 Telephone: (504) 736-2519 or 1 -800-200GULF Suggested Citation Continental Shelf Associates, Inc. 2000. -
Deadly Tornadoes in Poland from 1820 to 2015
APRIL 2017 T A S Z A R E K A N D G R O M A D Z K I 1221 Deadly Tornadoes in Poland from 1820 to 2015 MATEUSZ TASZAREK Department of Climatology, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, Poznan, and Skywarn Poland, Warsaw, Poland JAKUB GROMADZKI Faculty of Chemistry, University of Warsaw, Warsaw, Poland (Manuscript received 14 April 2016, in final form 9 October 2016) ABSTRACT Using historical sources derived from 12 Polish digital libraries, an investigation into killer tornado events was carried out. Although some of the cases took place more than 150 years ago, it was still possible to identify tornado phenomena and the course of events. This study has shown that historical sources contain dozens of tornado reports, sometimes with information precise enough to reconstruct the tornado damage paths. In total, 26 newly identified deadly tornado cases were derived from the historical sources and the information on 11 currently known was expanded. An average of 1–2 killer tornadoes with 5 fatalities may be depicted for each decade and this rate is decreasing over time. It was estimated that 5%–10% of significant tornadoes in Poland have caused fatalities and the average number of fatalities per significant tornado was roughly 0.27. Most of the cases were reported in late July and early August. The majority of deaths and injuries were associated with victims being lifted or crushed by buildings (usually a wooden barn). Most of these cases took place in rural areas but some tornadoes hit urban areas, causing a higher number of fatalities. -
Downloaded 09/26/21 02:02 AM UTC 454 Vol
locus on forecasting A Synoptic Analysis of the 25-26 January 1978 Blizzard Cyclone in the Central United States Ellen M. Salmon 1 and Phillip J. Smith Department of Geosciences, Purdue University, W. Lafayette, Ind. 47907 Abstract the blizzard except for analyses of snowfall and damage impact in Illinois included in a paper by Changnon Based on detailed surface analyses and National Meteorolog- and Changnon (1978). ical Center (NMC) facsimile products, the evolution of the The three primary objectives of the present study January 1978 midwestern blizzard-producing cyclone is described. The behavior of the storm is contrasted with the were to: 1) present a detailed analysis of the evolution actions of typical winter cyclones. Forecasts by the Limited- of the surface cyclone, 2) compare the behavior of the Area Fine Mesh (LFM) numerical model are compared with blizzard with that of typical winter cyclones, and 3) observed conditions. briefly compare predictions made by the Limited-Area An injection of polar air, resulting in the revitalization of Fine Mesh (LFM) numerical model with actual the baroclinic zone, and concurrent strong upper-air flow are found to be important factors in the dramatic intensification observed conditions. of the low. The movement and deepening of the low, although not unprecedented, were found to deviate substantially from normal winter cyclone behavior. Although LFM forecasts underestimated the deepening of the low, the amount of predicted intensification was substantial. 2. Data analysis and procedure This study was based primarily on detailed analyses of airways surface data for the central and eastern 1. Introduction United States, spanning the period 1800 GMT 26 January-1200 GMT 26 January 1978. -
Cyclone Climatology of the Great Lakes
Miscellaneous Publication 172 Cyclone Climatology of the Great Lakes by James R. Angel Midwestern Climate Center February 1996 Illinios State Water Survey Atmospheric Sciences Division Champaign, Illinois A Division of the Illinois Department of Natural Resources Miscellaneous Publication 172 CYCLONE CLIMATOLOGY OF THE GREAT LAKES by James Randal Angel, Ph.D. Midwestern Climate Center Illinois State Water Survey 2204 Griffith Drive Champaign IL 61820-7495 Title: Cyclone Climatology of the Great Lakes. Abstract: A historical cyclone dataset was constructed for the period 1900 to 1990 from those cyclones passing over the Great Lakes with a central pressure ≤992 mb. This dataset was used to address the following five research topics: a) the trends and fluctuations in the characteristics of cyclones, b) the balance between cyclone frequency and intensity, c) the sensitivity of cyclone characteristics to climate variables, particularly temperature and precipitation regimes, d) the preferred tracks of cyclones passing over the region and changes over time, and e) the influence of the Great Lakes on passing cyclones. This study documents a statistically significant increase in the frequency of strong cyclones over the Great Lakes during the 20th century in both November and December. There are indications that a balance exists between cyclone frequency and intensity. The two major source regions for Great Lakes cyclones are Colorado and Alberta, Canada. An analysis of changes in cyclone characteristics, temperature, and precipitation yields a positive relationship between cyclone frequency and precipitation. This research also provides climatological evidence (as opposed to case studies or models) of the important influence of the Great Lakes on passing cyclones.