Zircon Petrochronological Evidence for a Plutonic-Volcanic Connection in Porphyry Copper Deposits

Total Page:16

File Type:pdf, Size:1020Kb

Zircon Petrochronological Evidence for a Plutonic-Volcanic Connection in Porphyry Copper Deposits Research Collection Journal Article Zircon petrochronological evidence for a plutonic-volcanic connection in porphyry copper deposits Author(s): Buret, Yannick; Wotzlaw, Jörn-Frederik; Roozen, Stan; Guillong, Marcel; von Quadt, Albrecht; Heinrich, Christoph A. Publication Date: 2017-07-01 Permanent Link: https://doi.org/10.3929/ethz-b-000192355 Originally published in: Geology 45(7), http://doi.org/10.1130/G38994.1 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Zircon petrochronological evidence for a plutonic-volcanic connection in porphyry copper deposits Yannick Buret1, Jörn-Frederik Wotzlaw1, Stan Roozen1, Marcel Guillong1, Albrecht von Quadt1, and Christoph A. Heinrich1,2 1Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland 2Faculty of Mathematics and Natural Science, University of Zurich, 8006 Zurich, Switzerland ABSTRACT more-primitive magma into the base of the reservoir (Bachmann et al., Bridging the gap between the plutonic and volcanic realms is essen- 2002; Wotzlaw et al., 2013; Cooper and Kent, 2014). These findings are tial for understanding a variety of magmatic processes from caldera- consistent with recent studies suggesting that much of the ore-forming forming eruptions to the formation of magmatic-hydrothermal ore volatiles is derived from mafic magma that is injected into a cooler felsic deposits. Porphyry copper deposits are commonly associated with magma chamber (Tapster et al., 2016; Buret et al., 2016) and with geo- large and long-lived volcanic centers, but the temporal and dynamic chemical evidence from explosive volcanism in ancient and modern set- link between mineralized intrusions and volcanic eruptions has tings (Hattori and Keith, 2001; Nadeau et al., 2016). These observations remained controversial. Based on the combination of (1) high-precision suggest a plutonic-volcanic connection in PCDs, contributing to the general zircon U-Pb geochronology and trace element geochemistry with (2) question of how plutonic and volcanic regimes are linked (Bachmann et al., plagioclase textures, we discovered an intimate connection between 2007; Keller et al., 2015). It is generally thought that volcanism prevents an ignimbrite eruption and a nearby world-class porphyry deposit the formation of PCDs due to volatile dispersion into the atmosphere (e.g., (Bajo de la Alumbrera in the late Miocene Farallón Negro Volcanic Pasteris, 1996) and that ore formation occurs well after the termination Complex of Argentina). Our results indicate that the magmatic-hydro- of extensive volcanism (Halter et al., 2004; Sillitoe, 2010). However, the thermal deposit and explosive volcanism were derived from a common temporal separation between PCD formation and volcanism may have magma reservoir that evolved over a minimum duration of 217 ± 25 k.y. been overestimated due to dating uncertainties and because any coeval before the final eruption. We show that the volcanic pile represents volcanic materials above exposed porphyry deposits are usually eroded. the inverted magma reservoir, recording systematic differences in In this study, we discovered an unexpected temporal and genetic link plagioclase textures and juvenile clast content from bottom to top. between PCD formation and explosive volcanism, by combination of field This tight temporal and geochemical link suggests that deposit forma- geology with high-precision zircon dating using chemical abrasion–iso- tion and volcanic eruption were both triggered by the same injection tope dilution–thermal ionization mass spectrometry (CA-ID-TIMS) and of a volatile-saturated primitive magma into the base of the magma zircon trace element compositions obtained by laser ablation–inductively chamber. A time gap of 19 ± 12 k.y. between porphyry mineralization coupled plasma–mass spectrometry (LA-ICP-MS). We demonstrate a and the onset of explosive volcanism indicates a minimum duration direct link between explosive volcanism and PCD formation and show of magma reservoir rejuvenation that led to the explosive eruptive that both processes are triggered by the same event of mafic recharge into event. Catastrophic loss of volatiles by explosive volcanism terminated a large upper-crustal magma chamber. the ore-forming capacity of the upper-crustal magma chamber, as evidenced by the intrusion of a syn-eruptive barren quartz-feldspar GEOLOGIC SETTING porphyry. Our results demonstrate that porphyry copper deposits pro- The Farallón Negro Volcanic Complex (FNVC) in northwest Argentina vide critical information to understand how volatiles control the fate of (Fig. 1) is an ancient stratovolcano constructed over >3 m.y. (Llambías, hydrous magmas between pluton formation and explosive volcanism. 1972; Sasso and Clark, 1998; Halter et al., 2004) mainly through basaltic- andesitic to andesitic lava flows and breccias. This eruptive sequence was INTRODUCTION intruded by sub-volcanic intrusions between 9 Ma and 6 Ma, including Large andesitic stratovolcanoes are the source of hazardous eruptions, the ca. 7.1 Ma Bajo de la Alumbrera porphyry stock where mineraliza- but the dissected edifices of ancient volcanic centers also host some of the tion occurred between 7.1102 ± 0.0093 Ma and 7.0994 ± 0.0063 Ma (von most valuable economic ore deposits. Hydrothermal copper mineraliza- Quadt et al., 2011; Buret et al., 2016). During later stages of the volcanic tion commonly occurs as porphyry copper deposits (PCDs), which form complex evolution, the magmatic activity became more silicic, with dacitic through superposition of several small magmatic intrusions and associated compositions at ca. 7 Ma and rhyodacitic magmatism at ca. 6 Ma (Halter et hydrothermal fluid pulses within the base of volcanoes (Sillitoe, 1973, al., 2004). Previous studies suggested that the explosive eruption of a thick 2010; Proffett, 2003). Mass balance demands that these magmatic-hydro- sequence of dacitic tuff at Agua de Dionisio, in the northwestern segment of thermal bodies are sourced from larger, upper-crustal magma reservoirs the complex, resulted in partial caldera collapse (Halter et al., 2004). This (Burnham and Ohmoto, 1980; Dilles, 1987; Sillitoe, 2010; Chelle-Michou eruption was previously dated at 7.35 ± 0.25 Ma using biotite 40Ar/39Ar et al., 2014). However, the nature of these magma reservoirs during the geochronology, implying that the latest volcanic activity preceded PCD lead-up to PCD formation remains a topic of contention. Traditional mod- formation at Bajo de la Alumbrera by 350 k.y. (Halter et al., 2004). The els suggest that PCD formation occurs as the result of a cooling upper- Agua de Dionisio tuff represents a series of explosive andesitic to dacitic crustal magma reservoir, which exsolves and focuses the metal-charged volcanic events and is perfectly exposed as a 300-m-thick sequence (Figs. fluids toward the upper parts of the magma chamber (Dilles, 1987; Sillitoe, 1 and 2). Juvenile pumice clasts throughout the Agua de Dionisio eruptive 2010). This contradicts an increasing body of evidence that upper-crustal sequence contain phenocrysts of plagioclase, biotite, and amphibole, lesser magma chambers in arc settings are stored at near-solidus temperatures amounts of quartz, pyroxene, and sanidine, as well as accessory zircon, as highly crystalline bodies that remain rheologically immobile through- titanite, and apatite. These clasts contain 25%–50% crystals and a micro- out most of their lifetime before rejuvenation through the injection of lithic devitrified matrix. The lower 125 m (Fig. 2) of the section comprises GEOLOGY, July 2017; v. 45; no. 7; p. 623–626 | Data Repository item 2017203 | doi:10.1130/G38994.1 | Published online 01 May 2017 ©GEOLOGY 2017 The Authors.| Volume Gold 45 |Open Number Access: 7 | www.gsapubs.orgThis paper is published under the terms of the CC-BY license. 623 Downloaded from https://pubs.geoscienceworld.org/gsa/geology/article-pdf/45/7/623/998911/623.pdf by ETH-Bibliothek user on 15 April 2020 Extrusive rocks 360m (m) 350 SR62 - 360m Agua de Dionisio dacite (ca. 7 Ma) 6.4615 ± 0.0081 Ma Basaltic andesite - andesite (MSWD=2, n=5) 27.25° S (ca. 9.5 - 7.5 Ma) Intrusive rocks Agua de Rhyodacite (ca. 6 Ma) Dionisio Dacite (ca. 7 Ma) 300 Basaltic andesite - andesite SR59 - 270m (ca. 8.2 - 7.5 Ma) 240m 6.5188 ± 0.0060 Ma (MSWD=1.36, n=4) Alto de la 250 SR63 - 250m 27.30° S Blenda 6.5337 ± 0.0077 Ma (MSWD=0.4, n=3) o a SR73 - 220m 200 s 7.056 ± 0.010 Ma 220m (MSWD=0.75, n=3) FNVC Argentin lcanic W W Bajo de la W N Alumbrera Vo 2 km 150 Agua de Dionisi 66.70° 66.65° 66.60° Figure 1. Simplified geologic map of Farallón Negro Volcanic Complex - 130m (FNVC), Argentina, modified after Llambías (1972). Geochronological 175m SR65 constraints are from Sasso and Clark (1998) and Halter et al. (2004). 7.0524 ± 0.0098 Ma Sample locations given by stars (blue, Bajo de la Alumbrera porphy- 100 (MSWD=1.3, n=3) ries; green, quartz-feldspar porphyry intruding into the Alto de la Blenda stock; red, Agua de Dionisio volcanic section). 50 Figure 2. Stratigraphy and geochronology of Agua de Dionisio tuff SR43 - 45m 75m and porphyry intrusions of Farallón Negro Volcanic Complex (FNVC), 7.0712 ± 0.0089 Ma (MSWD=2.6, n=4) Argentina. Pre- and post-mineralization (P2 and P4) Bajo de la Alum- 0 brera porphyries were intruded at minimum depth of 3 km (Ulrich and - FN mine Heinrich,
Recommended publications
  • Muntean/Einaudi
    Economic Geology Vol. 95, 2000, pp. 1445–1472 Porphyry Gold Deposits of the Refugio District, Maricunga Belt, Northern Chile JOHN L. MUNTEAN†,* AND MARCO T. EINAUDI Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115 Abstract The porphyry gold deposits of the Refugio district and similar deposits in the Maricunga belt contain the lowest known copper to gold ratios (% Cu/ppm Au = ~0.03) of any porphyry-type deposit. The gold deposits are associated with subvolcanic andesitic to dacitic intrusions emplaced into coeval volcanic rocks. Both the Verde and Pancho deposits are zoned in space from a deeper zone of banded quartz veinlets associated with chlorite-magnetite-albite and/or pyrite-albite-clay alteration to a shallow zone of pyrite-albite-clay and local quartz-alunite ledges. Pancho contains an additional, deepest, porphyry copperlike zone, with quartz veinlets (A-veinlets) and potassic alteration. Relative to Verde, Pancho is telescoped, with all three zones present within a 400-m-vertical interval. The porphyry copperlike zone at Pancho is characterized by A-veinlets and pervasive potassic alteration, both restricted to intrusive rocks. A-veinlets range from hairline streaks of magnetite ± biotite with minor quartz and chalcopyrite, and K feldspar alteration envelopes to sugary quartz veinlets <1 cm in width with mag- netite and chalcopyrite and no alteration envelopes. Hypersaline liquid inclusions coexisting with vapor-rich in- clusions indicate temperatures above 600°C and salinities as high as 84 wt percent NaCl equiv. A pressure es- timate of 250 bars indicates a depth of 1,000 m, assuming lithostatic pressure.
    [Show full text]
  • Geology, Petrology and Geochemical Characteristics of Alteration Zones Within the Seridune Prospect, Kerman, Iran
    Geology, petrology and geochemical characteristics of alteration zones within the Seridune prospect, Kerman, Iran Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von M.Sc. Hassan Barzegar aus Shiraz, Iran Berichter: Univ.-Prof. Dr.rer.nat. Franz Michael Meyer Univ.-Prof. Dr.rer.nat. Ulrich Kramm Tag der mündlichen Prüfung: 27. August 2007 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar For Melika and Mojan FOREWORD This research project was fully facilitated by the Institute of Mineralogy and Economic Geology, Rheinisch Westfälischen Technischen Hochschule (RWTH) Aachen University and supported by the Research Department of National Iranian Copper Industries Company (NICICO). The Institute of Mineralogy and Economic Geology, RWTH Aachen University sponsored sample preparations and geochemical analyses. First, I would like to thank my supervisor, Prof. Dr. F. Michael Meyer, Head of the Department of Mineralogy and Economic Geology, RWTH Aachen University, for his worthy support, guidance, continued interest, encouragement during this work, and for many hours of his time spent in discussions; Dr. Jochen Kolb who gave me guidance and encouragement through each stage of the work, for his interest, time spent in discussions and proof-reading this thesis; Annika Dziggel, Ph.D for her assistance and discussion and Dr. Sven Sindern for his support and assistance in XRF analyses. This thesis is also benefited by the suggestions and guidance of Prof. Dr. Ulrich Kramm and Prof. Dr. Helge Stanjek. Their interests are highly appreciated. My sincere thanks go to manager of Exploration Office, Dr.
    [Show full text]
  • Bianchi, M., Heit, B., Jakovlev, A., Yuan, X., Kay, SM
    Originally published as: Bianchi, M., Heit, B., Jakovlev, A., Yuan, X., Kay, S.M., Sandvol, E., Alonso, R.N., Coira, B., Brown, L., Kind, R., Comte, D. (2013): Teleseismic tomography of the southern Puna plateau in Argentina and adjacent regions. ‐ Tectonophysics, 586, 65‐83 DOI: 10.1016/j.tecto.2012.11.016 *Manuscript Click here to download Manuscript: Bianchi-etal.doc Click here to view linked References Teleseismic tomography of the southern Puna plateau in Argentina and adjacent regions 1 2 3 M. Bianchi 1, B. Heit 1,*, A. Jakovlev 2, X. Yuan 1, S. M. Kay 3, E. Sandvol 4, R. N. Alonso 5, B. 4 5 6 Coira 6, R. Kind 1,7 7 8 9 1 Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany 10 11 12 13 2 Institute of Geology, SB RAS, Novosibirsk, Russia 14 15 16 3 Cornell University, EAS, Snee Hall, Ithaca, NY, 14850. 17 18 19 4 Department of Geological Sciences, University of Missouri, Columbia MO 65211 20 21 22 23 5 Universidad Nacional de Salta, Buenos Aires 177, 4400-Salta, Argentina 24 25 26 6 CONICET, Instituto de Geología y Minería, Universidad Nacional de Jujuy, Avda. Bolivia 1661, 27 28 29 4600-San Salvador de Jujuy, Argentina 30 31 32 7 Freie Universität Berlin, Maltesserstr. 74-100, 12227 Berlin, Germany 33 34 35 36 * Corresponding author, [email protected]. 37 38 39 40 41 42 43 ABSTRACT 44 45 46 An array of 74 seismological stations was deployed in the Argentine Puna and adjacent regions for 47 48 a period of two years.
    [Show full text]
  • Indium-Bearing Paragenesis from the Nueva Esperanza and Restauradora Veins, Capillitas Mine, Argentina
    Journal of Geosciences, 65 (2020), 97–109 DOI: 10.3190/jgeosci.304 Original paper Indium-bearing paragenesis from the Nueva Esperanza and Restauradora veins, Capillitas mine, Argentina María Florencia MÁRQUEZ-ZAVALÍA1,2*, Anna VYMAZALOVÁ3, Miguel Ángel GALLISKI1, Yasushi WATANABE4, Hiroyasu MURAKAMI5 1 IANIGLA, CCT-Mendoza (CONICET), Avda. A. Ruiz Leal s/n, Parque San Martin, CC330, (5500) Mendoza, Argentina; [email protected] 2 Mineralogía y Petrología, FAD, Universidad Nacional de Cuyo, Centro Universitario (5502) Mendoza, Argentina 3 Department of Rock Geochemistry, Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic 4 Faculty of International Resource Sciences, Mining Museum of Akita University, 28-2 Osawa, Tegata, Akita, 010-8502 Japan 5 Coal Business Planning Group, Coal Business Office, Resources & Power Company, JXTG Nippon Oil & Energy Corporation, 1-2, Otemachi 1-chome, Chiyoda-ku, Tokyo 100-8162 Japan * Corresponding author The Nueva Esperanza and Restauradora are two of the twenty-three veins described at Capillitas mine, an epithermal precious- and base-metal vein deposit located in northern Argentina. Capillitas is genetically linked to other minera- lizations of the Farallón Negro Volcanic Complex, which hosts several deposits. These include two world-class (La Alumbrera and Agua Rica) and some smaller (e.g., Bajo El Durazno) porphyry deposits, and a few epithermal deposits (Farallón Negro, Alto de la Blenda, Cerro Atajo and Capillitas). The main hypogene minerals found at these two ve- ins include pyrite, sphalerite, galena, chalcopyrite, tennantite-(Zn) and tennantite-(Fe). Accessory minerals comprise hübnerite, gold, silver, stannite, stannoidite and mawsonite, and also diverse indium- and tellurium-bearing minerals.
    [Show full text]
  • Lithospheric Delamination Beneath the Southern Puna Plateau Resolved by Local Earthquake Tomography
    Confidential manuscript submitted to replace this text with name of AGU journal Lithospheric delamination beneath the southern Puna plateau resolved by local earthquake tomography Jing Chen1,2, Sofia-Katerina Kufner2,3, Xiaohui Yuan2, Benjamin Heit2, Hao Wu1, Dinghui Yang1, Bernd Schurr2, and Suzanne Kay4 1Tsinghua University, Beijing, China. 2Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany. 3British Antarctica Survey, Cambridge, UK. 4Cornell University, Ithaca, USA Corresponding author: Jing Chen ([email protected]) Key Points: • A local earthquake tomography is performed in the southern Puna plateau and adjacent region • A high mantle Vp anomaly beneath Cerro Galan provides evidence for lithospheric delamination • A low Vp zone is observed beneath Ojos del Salado, reflecting the melt supplied by slab dehydration reaction at two depths This paper has been submitted for publication in Journal of Geophysical Research: Solid Earth. Confidential manuscript submitted to replace this text with name of AGU journal Abstract We present a local earthquake tomography to illuminate the crustal and uppermost mantle structure beneath the southern Puna plateau and to test the delamination hypothesis. Vp and Vp/Vs ratios were obtained using travel time variations recorded by 75 temporary seismic stations between 2007 and 2009. In the upper crust, prominent low Vp anomalies are found beneath the main volcanic centers, indicating the presence of magma and melt beneath the southern Puna plateau. In the lowlands to the southeast of the Puna plateau, below the Sierras Pampeanas, a high Vp body is observed in the crust. Beneath the Moho at around 90 km depth, a strong high Vp anomaly is detected just west of the giant backarc Cerro Galan Ignimbrite caldera with the robustness of this feature being confirmed by multiple synthetic tests.
    [Show full text]
  • Linked to Mineralisation Episode Are Included
    i Exploration and Mining Report 1073R PREDICTIVE MAGNETIC EXPLORATION MODELS FOR PORPHYRY, EPITHERMAL AND IRON OXIDE COPPER-GOLD DEPOSITS: IMPLICATIONS FOR EXPLORATION D.A. Clark, S. Geuna and P.W.Schmidt SHORT COURSE MANUAL FOR AMIRA P700 April 2003 RESTRICTED CIRCULATION This report is not to be cited in other documents without the consent of CSIRO Exploration and Mining ______________________ ii CSIRO Exploration and Mining PO Box 136, North Ryde, NSW, Australia iii iv Distribution List Copy No. AMIRA 1-8 Dr N. Phillips, Chief CSIRO Exploration and Mining 9 Mr D.A. Clark 10 Dr S. Geuna 11 Dr P.W. Schmidt 12 Records Section (North Ryde) 13 Copy no. ........................ of 19 copies v Page no. TABLE OF CONTENTS 1. INTRODUCTION 1 2. MAGNETIC PETROPHYSICS AND MAGNETIC PETROLOGY: 4 APPLICATION TO INTERPRETATION OF MAGNETIC SURVEYS AND IMPLICATIONS FOR EXPLORATION 3. MAGNETIC PETROLOGY OF IGNEOUS INTRUSIONS: 46 IMPLICATIONS FOR EXPLORATION AND MAGNETIC INTERPRETATION 4. METHODS OF DETERMINING MAGNETIC PROPERTIES WITHIN 95 MINERALISED SYSTEMS 5. GEOLOGICAL MODELS OF PORPHYRY COPPER (Mo, Au), 122 VOLCANIC-HOSTED EPITHERMAL AND IRON OXIDE COPPER- GOLD SYSTEMS 6. GEOLOGICAL AND GEOMAGNETIC FACTORS THAT 192 CONTROL MAGNETIC SIGNATURES OF PORPHYRY, EPITHERMAL AND IRON OXIDE COPPER-GOLD DEPOSITS 7. PETROPHYSICAL PROPERTIES OF VOLCANO-PLUTONIC 212 TERRAINS, PORPHYRY SYSTEMS, IRON OXIDE COPPER-GOLD SYSTEMS AND VOLCANIC-HOSTED EPITHERMAL SYSTEMS – P700 CASE STUDIES 8. MAGNETIC PROPERTIES OF PORPHYRY, EPITHERMAL AND 226 IRON OXIDE COPPER-GOLD DEPOSITS SYSTEMS - SYNTHESIS 9. MAGNETIC AND OTHER GEOPHYSICAL SIGNATURES OF 238 P700 STUDY AREAS 10. MAGNETIC SIGNATURES OF PORPHYRY, EPITHERMAL AND 274 IRON OXIDE COPPER-GOLD MINERALISATION - REVIEW AND SYNTHESIS 11.
    [Show full text]
  • Laser-Ablation ICP-MS Analysis of Silicate and Sulfide Melt Inclusions in an Andesitic Complex II Evidence for Magma Mixing and Magma Chamber Evolution
    Research Collection Journal Article Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex II Evidence for magma mixing and magma chamber evolution Author(s): Halter, Werner E.; Heinrich, Christoph A.; Pettke, Thomas Publication Date: 2004-06 Permanent Link: https://doi.org/10.3929/ethz-b-000050504 Originally published in: Contributions to Mineralogy and Petrology 147(4), http://doi.org/10.1007/s00410-004-0563-5 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Contrib Mineral Petrol (2004) 147: 397–412 DOI 10.1007/s00410-004-0563-5 ORIGINAL PAPER Werner E. Halter Æ Christoph A. Heinrich Thomas Pettke Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex II: evidence for magma mixing and magma chamber evolution Received: 17 December 2002 / Accepted: 16 January 2004 / Published online: 6 April 2004 Ó Springer-Verlag 2004 Abstract Laser-ablation microanalysis of a large suite of primarily the result of the mixing of partially crystallized silicate and sulfide melt inclusions from the deeply ero- magmas. The most mafic melt is trapped only in ded, Cu-Au-mineralizing Farallo´n Negro Volcanic amphibole, suggesting pressures exceeding 350 MPa, Complex (NW Argentina) shows that most phenocrysts temperatures of around 1,000 °C and water contents in in a given rock sample were not formed in equilibrium excess on 6 wt%. Upon mixing, amphibole crystallized with each other. Phenocrysts in the andesitic volcano with plagioclase from andesitic magma in the source were brought together in dominantly andesitic—dacitic region of porphyry intrusions at 250 MPa, 950 °C and extrusive and intrusive rocks by intense magma mixing.
    [Show full text]
  • Análisis Estructural Del Sistema Vetiforme Farallón Negro-Alto De La Blenda, Catamarca
    391 Revista de la Asociación Geológica Argentina 76 (4): 391-402 (2019) Número especial: TECTÓNICA Análisis estructural del sistema vetiforme Farallón Negro-Alto De La Blenda, Catamarca Matías S. WERNERT1, Juan M. GARCÍA1, J.M. y Diana I. MUTTI1 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Ciudad Autónoma de Buenos Aires. E-mail: [email protected] Editores invitados: Mariano Larrovere, Pablo Alasino y Sebastián Rocher RESUMEN El yacimiento epitermal Farallón Negro - Alto de la Blenda, datado en aproximadamente 5,5 Ma, pertenece al distrito minero Agua de Dionisio, ubicado en la provincia geológica Sierras Pampeanas. Se trata de cuerpos vetiformes, brechas y stockworks constituidos por sílice, carbonato (Ca - Mn) y óxidos de Mn con sulfuros de metales base y minerales preciosos. El arreglo vetiforme, de rumbo promedio NO-SE (305°), constituiría una estructura tipo mesh, entramado estructural aprovechado por la inyección de fluidos hidro- termales, que habría propiciado el espacio para la generación de jogs de dilatación y precipitación mineral con posterioridad a la cristalización de las rocas ígneas del distrito. Este diseño estructural sería compatible con un sistema de cizalla simple tipo Riedel transtensivo dextral, reconocido a partir de la medición de 1243 datos tomados en campo de estructuras de la comarca y microes- tructuras, en el que se define una zona de cizalla de dirección 290° y un esfuerzo σ1 ubicado en el azimut 335°. La geometría tipo mesh posee un control de juegos de cizallas menores (desde R hasta Y) y el de anisotropías estructurales previas del terreno, que en conjunto definengashes en echelón.
    [Show full text]
  • George E. Ericksen US Geological
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY NEOGENE-QUATERNARY VOLCANISM AND MINERALIZATION IN THE CENTRAL ANDES by George E. Ericksen U.S. Geological Survey, Reston, Va.; V. Raul Eyzaguirre, Lima, Peru; Fernando Urquidi B., American Embassy, La Paz, Bolivia; and Raul Sal as 0., Servicio Nacional de Geologia y Mineria, Santiago, Chile Open-File Report 87- 634 1987 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards ILLUSTRATIONS Page 1. Distribution of Neogene-Quaternary volcanic rocks in the central Andes .............................................. 1A 2. Known and inferred calderas in the central Andes ........... 3A 3. Distribution of metalliferous deposits associated with stratovolcanos and calderas in the central Andes ........... 12A 4. Distribution of native sulfur deposits associated with stratovolcanos in Bolivia and Chile ........................ 15A 5. Distribution of metalliferous deposits associated with dome complexes and with altered vent zones, breccias pipes, and thermal-spring systems not related to known volcanic land- forms ...................................................... 20A Tables Page Table 1. Mineral deposits associated with Neogene-Quaternary volcanic centers in the central Andes....................... 8A ABSTRACT Eruptive centers, which include calderas, stratovolcanos, and flow-dome complexes in the Neogene-Quaternary volcanic complex of the central Andean region of northwestern Argentina, western Boliva, northern Chile, and southern Peru, are potential targets for hydrothermal mineral deposits. This volcanic complex, consisting chiefly of rhyolitic ash-flow tuffs and andesitic lavas, p p extends over an area of about 300,000 knr within a 1,000,000 km area that is one of the world's great mineral provinces. Because many deposits of Cu, Pb, Zn, Sn, W, Sb, Bi, Ag, and Au in this area are of pre-Pliocene age, it had been believed that most of the Neogene-Quaternary volcanic rocks represented post-mineralization cover.
    [Show full text]
  • Constraints from U-Pb and Hf Isotopic Data of Detrital Zi
    Magmatic History and Crustal Genesis of South America: Constraints from U-Pb Ages and Hf Isotopes of Detrital Zircons in Modern Rivers Item Type text; Electronic Dissertation Authors Pepper, Martin Bailey Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 09:38:39 Link to Item http://hdl.handle.net/10150/347220 MAGMATIC HISTORY AND CRUSTAL GENESIS OF SOUTH AMERICA: CONSTRAINTS FROM U-Pb AGES AND Hf ISOTOPES OF DETRITAL ZIRCONS IN MODERN RIVERS by Martin Pepper __________________________ Copyright © Martin Pepper 2014 A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2014 1 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Martin Pepper, titled Magmatic History and Crustal Genesis of South America: Constraints from U-Pb ages and Hf isotopes of detrital zircons in modern rivers and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. _______________________________________________________________________ Date: (11/17/2014) Peter Reiners _______________________________________________________________________ Date: (11/17/2014) Paul Kapp _______________________________________________________________________ Date: (11/17/2014) George Zandt Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College.
    [Show full text]
  • Crustal Assimilation and Metallogenic Implications
    Geoscience Frontiers xxx (2016) 1e25 HOSTED BY Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Research paper Petrogenesis of Quebrada de la Mina and Altar North porphyries (Cordillera of San Juan, Argentina): Crustal assimilation and metallogenic implications Laura Maydagán a,b,*, Marta Franchini a,c,d, Massimo Chiaradia e, Verónica Bouhier a,b, Noelia Di Giuseppe a,d, Roger Rey f, Luis Dimieri b a Centro Patagónico de Estudios Metalogenéticos-CONICET, Argentina b INGEOSUR-CONICET, Departamento de Geología, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina c Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Av. Roca 1242, 8332 Roca, Argentina d Departamento de Geología y Petróleo, Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén, Argentina e Section of Earth and Environmental Sciences, University of Geneva, Switzerland f Minera Peregrine Argentina S.A, Santa Fe (Oeste) 117, Piso 4B, Edificio Derby, Ciudad San Juan, Argentina article info abstract Article history: We investigate the geology of Altar North (CueAu) and Quebrada de la Mina (Au) porphyry deposits Received 13 January 2016 located in San Juan Province (Argentina), close to the large Altar porphyry copper deposit (995 Mt, Received in revised form 0.35% Cu, 0.083 g/t Au), to present constraints on the magmatic processes that occurred in the parental 25 October 2016 magma chambers of these magmatic-hydrothermal systems. Altar North deposit comprises a Accepted 24 November 2016 plagioclase-amphibole-phyric dacite intrusion (Altar North barren porphyry) and a plagioclase- Available online xxx Æ Handling Editor: W.
    [Show full text]
  • Introduction
    Morphology and Alignment of Volcanic Vents: Puna Plateau, NW Argentina Senior Thesis Presented in Partial Fulfillment of the Requirements for a Bachelor of Sciences Degree at the Ohio State University By John Patrick Calhoun ***** The Ohio State University 2010 Approved by . Lindsay Schoenbohm, Advisor School of Earth Sciences 1 Introduction Morphology and alignment of monogenetic cinder cones and locations of flows can provide useful information about contemporary and past tectonic stress directions. This derivation of stress direction requires that the study sites are well preserved and/or relatively young (~7 Ma) in age, do not show radial patterns around a polygenetic volcano as is typical for isotropic stress fields, and are not controlled by local factors such as volcano topography, magma chamber shape and pressures, or surface loading (Nakamura, 1977; Paulsen and Wilson, 2010). The Altiplano-Puna plateau of NW Argentina contains many volcanic features and within the southern Puna there is an abundance of young mafic monogenetic cinder cones. These cones are excellent indicators of stress and hold crucial information about the state of tectonic stresses during eruption. Within the back-arc section in the Puna plateau is a distinct style of volcanism composed of small volume mafic cones and fissure flows ranging in composition from basalt to dacite (Kay et al., 1994; Kramer et al., 1999; Risse et al., 2008). The focus area of this study, the southern Puna, is geographically characterized by fault-bounded ranges and intervening, high elevation basins (Allmendinger et al., 1997; Coutand et al., 2001). Both recent and past research has provided remarkable insight into the relatively poorly understood processes of continental plateau evolution; this study aims to further that knowledge by providing morphologic data on 48 late Miocene-Recent (~7 Ma) small mafic monogenetic volcanoes from the southern Puna Plateau (~25°-27° S).
    [Show full text]