Geomorphology of Ulu Peninsula James Ross Island Antarctica.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Geomorphology of Ulu Peninsula James Ross Island Antarctica.Pdf Journal of Maps ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjom20 Geomorphology of Ulu Peninsula, James Ross Island, Antarctica Stephen J. A. Jennings, Bethan J. Davies, Daniel Nývlt, Neil F. Glasser, Zbyněk Engel, Filip Hrbáček, Jonathan L. Carrivick, Bedřich Mlčoch & Michael J. Hambrey To cite this article: Stephen J. A. Jennings, Bethan J. Davies, Daniel Nývlt, Neil F. Glasser, Zbyněk Engel, Filip Hrbáček, Jonathan L. Carrivick, Bedřich Mlčoch & Michael J. Hambrey (2021) Geomorphology of Ulu Peninsula, James Ross Island, Antarctica, Journal of Maps, 17:2, 125-139, DOI: 10.1080/17445647.2021.1893232 To link to this article: https://doi.org/10.1080/17445647.2021.1893232 © 2021 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group on behalf of Journal of Maps Published online: 08 Mar 2021. Submit your article to this journal Article views: 135 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tjom20 JOURNAL OF MAPS 2021, VOL. 17, NO. 2, 125–139 https://doi.org/10.1080/17445647.2021.1893232 SCIENCE Geomorphology of Ulu Peninsula, James Ross Island, Antarctica Stephen J. A. Jennings a, Bethan J. Davies b, Daniel Nývlt a,c, Neil F. Glasser d, Zbyněk Engel e, Filip Hrbáček a, Jonathan L. Carrivick f, Bedřich Mlčochc and Michael J. Hambrey d aPolar-Geo-Lab, Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic; bCentre for Quaternary Research, Department of Geography, Royal Holloway University of London, Egham, UK; cCzech Geological Survey, Praha, Czech Republic; dCentre for Glaciology, Department of Geography and Earth Sciences, Aberystwyth University, Wales, UK; eDepartment of Physical Geography and Geoecology, Faculty of Science, Charles University, Praha, Czech Republic; fSchool of Geography, University of Leeds, Leeds, UK ABSTRACT ARTICLE HISTORY This study presents a 1:25,000 geomorphological map of the northern sector of Ulu Peninsula, Received 29 September 2020 James Ross Island, Antarctic Peninsula. The map covers an area of c. 250 km2, and documents Revised 17 February 2021 the landforms and surficial sediments of one of the largest ice-free areas in Antarctica, based on Accepted 17 February 2021 fi remote sensing and eld-based mapping. The large-scale landscape features are determined KEYWORDS by the underlying Cretaceous sedimentary and Neogene volcanic geology, which has been Geomorphology; sculpted by overlying ice masses during glacial periods. Paraglacial and periglacial features palaeoglaciology; Ulu are superimposed upon remnant glacial features, reflecting the post-glacial evolution of the Peninsula; James Ross Island; landscape. The study area can be broadly separated into three geomorphological sectors, Antarctic Peninsula; according to the dominant contemporary Earth-surface processes; specifically, a glacierised Antarctica southern sector, a paraglacial-dominated eastern sector, and a periglacial-dominated central/northern sector. This map provides a basis for further interdisciplinary research, and insight into the potential future landscape evolution of other parts of the Antarctic Peninsula as the climate warms. 1. Introduction Geomorphological studies are particularly impor- tant in Antarctic landscapes because they can provide Prior to the beginning of the twenty-first century, the information that is difficult to ascertain by other Antarctic Peninsula was one of the most rapidly means. For example, the use of marine geological evi- warming parts of the World (Carrivick et al., 2012; dence from the continental shelf and terrestrial lacus- Oliva et al., 2017; Turner et al., 2005, 2016; Vaughan trine records for establishing ice sheet chronologies in et al., 2003), with the north-eastern Antarctic Penin- the Antarctic Peninsula region is sometimes proble- sula being particularly susceptible to changes in matic because of a large marine reservoir effect that atmospheric and ocean temperatures (Pritchard can impede accurate radiocarbon dating (Davies et al., 2012). These changes resulted in the accelera- et al., 2012b; Ingólfsson et al., 1992; Píšková et al., tion, thinning, and recession of glaciers in the area, 2019; Pudsey et al., 2006), albeit some accurate radio- as well as the collapse of several large ice shelves carbon chronologies have been successfully estab- (Cook et al., 2005; Cook & Vaughan, 2010; Engel lished (e.g. Charman et al., 2018; Dickens et al., et al., 2012; Glasser et al., 2009; Hodgson, 2011; Pritch- 2019; Sterken et al., 2012; Watcham et al., 2011). ard et al., 2012; Seehaus et al., 2018). To improve our Other approaches have relied on cosmogenic nuclide understanding of climatic and oceanic forcing in this dating techniques or glacial geology investigations region there is a need to understand how these dra- for assessing the vertical and dynamic changes in the matic changes fit into longer-term trends and pro- ice sheet over time. However, in ice-covered areas, cesses. One way to do this is to exploit the these methods are reliant upon the location of nuna- geomorphological record to determine past glacier taks, which can only provide spatially limited, pin- extents, glacier mass balance sensitivities, and controls point data (Balco et al., 2013). Furthermore, the on ice dynamics. Furthermore, an appreciation of the inheritance of cosmogenic isotopes poses a challenge paraglacial/periglacial evolution of the Antarctic land- for accurate cosmogenic exposure dating in Antarctica scape is crucial for assessing how glacierised land- (e.g. Bentley et al., 2006). scapes across the Antarctic Peninsula will respond to The comparatively large expanse of the deglaciated future climate-induced glacial recession and deglacia- region of the Ulu Peninsula provides an opportunity tion (Lee et al., 2017; Siegert et al., 2019). to study the history of the area on a larger scale than CONTACT Stephen J. A. Jennings [email protected] Polar-Geo-Lab, Department of Geography, Faculty of Science, Masaryk University, Kotlářská 2, Brno 611 37, Czech Republic © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of Journal of Maps This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrest- ricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 126 S. J. A. JENNINGS ET AL. is possible in other areas of the Antarctic Peninsula, in sandstone beds (Crame et al., 1991; Francis et al., an area that has been extensively studied (e.g. Glasser 2006; Ineson et al., 1986). These sediments are over- et al., 2014; Johnson et al., 2011; Kaplan et al., 2020; lain by multiple horizons of subaqueous/subglacial Nývlt et al., 2014). By investigating the preserved land- hyaloclastite breccias and massive subaerial basalts of forms, the Ulu Peninsula can be treated as a case study Neogene age. The volcanic rocks forming the James for assessing landform evolution in response to future Ross Island Volcanic Group (Smellie et al., 2008) climate change. and host beds of glacigenic strata are referred to as The aim of this paper and its associated geomor- the Hobbs Glacier Formation at the boundary with phological map is to supplement the previously Cretaceous strata (Davies et al., 2013; Hambrey published maps of the Ulu Peninsula (British Ant- et al., 2008; Hambrey & Smellie, 2006; Pirrie et al., arctic Survey, 2017; Czech Geological Survey, 1997), and the Mendel Formation (2011) between 2009; Davies et al., 2013; Kaplan et al., 2020; individual volcanic sequences. The hyaloclastite and Mlčoch et al., 2020; Smellie et al., 2013; Strelin & basalt flows form prominent cliffs exposing well-pre- Malagnino, 1992), as well as other more spatially- served lava-fed deltas (Smellie et al., 2008), and the limited geomorphological investigations (e.g. Carri- volcanic rocks form prominent mesa and cinder vick et al., 2012; Kňažková et al., 2020, 2021; Lund- cone landforms (Davies et al., 2012b; Nehyba & quist et al., 1995; Strelin et al., 2006). This study Nývlt, 2014; Nelson et al., 2009; Smellie et al., 2008). comprehensively maps the geomorphology of the Spatially limited outcrops of Neogene to Quaternary northern sector of Ulu Peninsula in much greater unlithified sediments of varying origin are also present detail than has previously been achieved, utilising overlying the Cretaceous strata (Mlčoch et al., 2020). a combination of geological and geomorphological It is the geology of the Ulu Peninsula which makes approaches. As the largest deglaciated area in the it an ideal location to study the terrestrial record of the Antarctic Peninsula region, with c. 250 km2 of ice- dynamics and recession of the Last Glacial Maximum free terrain mapped in this study, the unprece- Antarctic Peninsula Ice Sheet because it is distinctly dented detail and coverage of this study allows different from that of the nearby Antarctic Peninsula the relationships between different landforms to be (Glasser et al., 2014; Kaplan et al., 2020; Nývlt et al., analysed on a more comprehensive scale, revealing 2014). Erratics composed of lithologies that are absent information about past ice dynamics, the history as bedrock on Ulu Peninsula, and therefore must have of glacier recession, and paraglacial/periglacial land- originated from the mainland
Recommended publications
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • Czech Research in Antarctica
    Main Facts The Czech Johann Gregor Mendel Polar Station Building the Station CZECH RESEARCH IN ANTARCTICA james ross island precise position of the station the thawing landscape e island is located on the Atlantic side of the northernmost part of 63° 48’ 5.6’’S AND 57° 53’ 5.6’’W e entire island was covered by ice approximately 13,000 years ago. “Thanks to the building of the station we the Antarctic Peninsula, approximately between 63°45’ and 64°30’S, Conceived as a station to be operated in the Antarctic summer, from Since that time the ice covering the island thaws alternately slower and have become members of an elite club of 57°00’ and 58°30’W. the end of December to the beginning of March. At this time up to faster, although the island experienced periods when glaciation was countries doing research and other work in Antarctica. I’m delighted that the Czech Geologically the island is composed of cretaceous sediment (siltstone, fieen individuals can stay at the station. more extensive than today. Today the retreat of the ice has produced scientific programme was approved as sandstone, and conglomerate). On top of this surface appear volcanoes, e crew is quartered in the operational building, which is a wooden so-called “thawed oases”. Simply put, these are parts of the terrain that a high-quality project by the other countries which were active until the earlier Quaternary Period. Everything construction with perfect thermal insulation. e station is heated by seem to have been pulled from an enormous freezer and are gradually of the Antarctic Treaty.
    [Show full text]
  • Permafrost and Active Layer Research on James Ross Island: an Overview
    CZECH POLAR REPORTS 9 (1): 20-36, 2019 Permafrost and active layer research on James Ross Island: An overview Filip Hrbáček1*, Daniel Nývlt1, Kamil Láska1, Michaela Kňažková1, Barbora Kampová1, Zbyněk Engel2, Marc Oliva3, Carsten W. Mueller4 1Masaryk University, Faculty of Science, Department of Geography, Brno, Czech Republic 2Charles University, Faculty of Science, Department of Physical Geography and Geoecology, Praha, Czech Republic 3Department of Geography, Universitat de Barcelona, Barcelona, Spain 4Lehrstuhl für Bodenkunde, TU München, Freising-Weihenstephan 85356, Germany Abstract This study summarizes the current state of the active layer and permafrost research on James Ross Island. The analysis of climate parameters covers the reference period 2011– 2017. The mean annual air temperature at the AWS-JGM site was -6.9°C (ranged from -3.9°C to -8.2°C). The mean annual ground temperature at the depth of 5 cm was -5.5°C (ranged from -3.3°C to -6.7°C) and it also reached -5.6°C (ranged from -4.0 to -6.8°C) at the depth of 50 cm. The mean daily ground temperature at the depth of 5 cm correlated moderately up to strongly with the air temperature depending on the season of the year. Analysis of the snow effect on the ground thermal regime confirmed a low insulating effect of snow cover when snow thickness reached up to 50 cm. A thicker snow accumu- lation, reaching at least 70 cm, can develop around the hyaloclastite breccia boulders where a well pronounced insulation effect on the near-surface ground thermal regime was observed.
    [Show full text]
  • A New Glacier Inventory Forspatial 2009 and Reveals Temporal Variability Inresponse Glacier to Atmospheric Warming Innorthern the Antarctic Peninsula, 1988–2009 B
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | The Cryosphere Discuss., 5, 3541–3594, 2011 www.the-cryosphere-discuss.net/5/3541/2011/ The Cryosphere doi:10.5194/tcd-5-3541-2011 Discussions © Author(s) 2011. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal The Cryosphere (TC). Please refer to the corresponding final paper in TC if available. A new glacier inventory for 2009 reveals spatial and temporal variability in glacier response to atmospheric warming in the Northern Antarctic Peninsula, 1988–2009 B. J. Davies1, J. L. Carrivick2, N. F. Glasser1, M. J. Hambrey1, and J. L. Smellie3 1Centre for Glaciology, Institute for Geography and Earth Sciences, Aberystwyth University, Llandinam Building, Penglais Campus, Aberystwyth SY23 3DB, UK 2Department of Geography, University of Leeds, Leeds LS2 9JT, UK 3Department of Geology, University of Leicester, Leicester LE1 7RH, UK Received: 2 December 2011 – Accepted: 8 December 2011 – Published: 21 December 2011 Correspondence to: B. J. Davies ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 3541 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract The Northern Antarctic Peninsula has recently exhibited ice-shelf disintegration, glacier recession and acceleration. However, the dynamic response of land-terminating, ice- shelf tributary and tidewater glaciers has not yet been quantified or assessed for vari- 5 ability, and there are sparse published data for glacier classification, morphology, area, length or altitude. This paper firstly uses ASTER images from 2009 and a SPIRIT DEM from 2006 to classify the area, length, altitude, slope, aspect, geomorphology, type and hypsometry of 194 glaciers on Trinity Peninsula, Vega Island and James Ross Island.
    [Show full text]
  • Argentina in Antarctica Argentina Has Had Varied Military and Scientific Presence in the Antartic Continent
    Argentina in Antarctica Argentina has had varied military and scientific presence in the Antartic continent. The Operation 90 (1965) and the discovery of Antarctopelta oliveroi (1986) are proof of it. Operation 90: First argentine land expedition to the South Pole. In 1965, argentine army men decided to reach for the first time the South Pole by land from Belgrano Base, located at latitude 77º 46' South and longitude 38º 11' West on the Filchner barrier (430.000 km2 of ice, south from Weddell Sea). This expedition to the South Pole was denominated Operation 90 after the latitude 90º that indicated the geographic South Pole. The Pole's conquest was an old desire of general Hernán Pujato, pioneer in the activities of the Army in the Sixth Continent. In March, at the beginning of the long polar night, a forward patrol departed to raise a support construction at latitude 81º 04' South and longitude -40º 36' West, on the first foothills of the polar plateau. This facilities were denominated Sub-Lieutenant Sobral Advanced Scientific Base (founded on april 2nd, 1965). During the following months they prepared garments, equipments and specially vehicles: six snowcat tractors capable of transporting personnel, instruments and supplies. On october 26 the expedition departed under Colonel Jorge Edgard Leal's command, preceded by a polar dog sleigh patrol. On november 4 the men arrived at the said Sub-Lieutenant Sobral Base, where temperature was 33º C below zero. During the journey the sleighs had been damaged, forcing the group to stay several days for maintenance. However, difficulties had barely started: from that point on big cracks, sometimes hidden under very fragile snow bridges, would become invisible traps for the snowcats, in which only some supply sleighs would be lost.
    [Show full text]
  • Upper Cretaceous), Northern James Ross Island, Antarctic Peninsula
    Cretaceous Research 56 (2015) 550e562 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Calcareous nannofossils from the Santa Marta Formation (Upper Cretaceous), northern James Ross Island, Antarctic Peninsula * Rodrigo do Monte Guerra a, , Andrea Concheyro b, c, Jackie Lees d, Gerson Fauth a, Marcelo de Araujo Carvalho e, Renato Rodriguez Cabral Ramos e a ITT Fossil, Instituto Tecnologico de Micropaleontologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. UNISINOS, 950, B. Cristo Rei/CEP: 93.022- 000, Sao~ Leopoldo, RS, Brazil b Instituto Antartico Argentino (IAA), Buenos Aires, Argentina c IDEAN-CONICET, Departamento de Ci^encias Geologicas, Universidad de Buenos Aires, Pabellon II, Ciudad Universitaria, 1428, Buenos Aires, Argentina d Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK e Museu Nacional e Universidade Federal do Rio de Janeiro, Brazil article info abstract Article history: This study reports on the most stratigraphically extensive nannofloras yet recovered from the Lachman Received 26 March 2015 Crags Member of the Santa Marta Formation, James Ross Island, Antarctic Peninsula. The productive Received in revised form samples are dated as early Campanian. These ages are in accord with those provided by ammonites, 15 June 2015 foraminifera, ostracods and radiolarians from the same locality. The consistent and relatively abundant Accepted in revised form 16 June 2015 presence of Gephyrobiscutum diabolum throughout the productive part of the section, a species that has Available online 11 July 2015 previously only been documented from the Falkland Plateau, extends its geographic distribution to higher latitudes, at least to the Antarctic Peninsula area.
    [Show full text]
  • Late Cretaceous and Paleocene Decapod Crustaceans from James Ross Basin, Antarctic Peninsula Author(S): Rodney M
    Paleontological Society Late Cretaceous and Paleocene Decapod Crustaceans from James Ross Basin, Antarctic Peninsula Author(s): Rodney M. Feldmann, Dale M. Tshudy, Michael R. A. Thomson Source: Memoir (The Paleontological Society), Vol. 28, Supplement to Vol. 67, no. 1 of the Journal of Paleontology (Jan., 1993), pp. 1-41 Published by: Paleontological Society Stable URL: http://www.jstor.org/stable/1315582 Accessed: 16/01/2009 20:00 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=paleo. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. Paleontological Society is collaborating with JSTOR to digitize, preserve and extend access to Memoir (The Paleontological Society).
    [Show full text]
  • Geological Map of James Ross Island
    58°30'W 58°00' 57°30' 57°00'W Ė Ė 500 500 100 200 500 Cape Lachman 200 OUTCROP MAP Cape LONG 11 12 2.03 ± 0.04(2) 28 30 fs Well-met ISLAND 34 Vertigo Clif 1:125 000 Scale 3 P [1.27 ± 0.08(1)] Gregor Mendel 5.16 ± 0.83(5) 29 L L F Keltie Head L DEVIL ISLAND Station (Czech) 5.67 ± 0.03(6) 7 F 28 29 7 [recalculated 27 A 3 ? weighted mean L 7 L 4 LINE OF CROSS SECTION age] L Bibby 2 ? 0.99 ± 0.05(2) F 2.67 ± 0.13(2) 12 5 3 29 Point 20 14 F 28 L 29 L 4 L Geological Map of James Ross Island 30 8 L 15 5 18 ? L L 12 5.23 ± 0.57(1) 26 L 15 L L 7 3 5.32 ± 0.16(2) Berry Hill 8 L 11 30 38 15 15 L 1 ? 25 L 3 L 10 Johnson L 4 500 L 11 L 26 Sandwich 1. James Ross Island Volcanic Group San Carlos Mesa L Pirrie Col 30 Bengtson Clif 500 Point L 1 Bluff L L Cape Gordon 25 L 5.04 ± 0.04(2) 5.42 ± 0.08(2) L L Brandy Bay 7 ? L L 8 29 F 4.63 ± 0.57(1) 27 L 7 4 8 VEGA ISLAND 4.6 ± 0.4(4) 27 15 L 12 fs L 500 L BAS GEOMAP 2 Series, Sheet 5, Edition 1 F 3 L 27 29 Feb.
    [Show full text]
  • Abstract Book
    4th Interdisciplinary Antarctic Earth Sciences Conference Oct. 13-15, 2019 Antarctic deep field camp planning workshop Oct. 15-16, 2019 Camp Cedar Glen, Julian, CA Thanks to those who make our science possible and many others... AGENDA 2019 Interdisciplinary Antarctic Earth Sciences Conference Saturday, Oct. 12 4:00 pm Earliest possible check in at Camp Cedar Glen 5:00 8:00 Badge pick up @ Camp Cedar Glen, dinner and social at Julian Brewing Co. (Participants pay) Rides available. See Christine Kassab to load Sunday presentations. Sunday, Oct. 13 start End notes Title Authors 8:00 9:00 Breakfast with Safety Orientation from Camp staff. Badge pick up and load talks in Griffin Hall 9:00 9:10 Welcome Organizing Committee: B. Adams, B. Goehring, J. Isbell, K. Licht, K. Panter, L. Stearns, K. Tinto 9:10 9:20 NSF remarks Mike Jackson 9:20 9:35 Processes acting on Antarctic mantle: Implications for James M.D. Day flexure and volcanism 9:35 9:50 Sub-Ice Thermal Anomaly Mapping Using Phil Wannamaker, G. Hill, V. Magnetotellurics. Considering the U.S. Great Basin as Maris, J. Stodt, Y. Ogawa an Analog 9:50 10:10 INVITED: Pre-glacial and glacial uplift and incision Stuart N. Thomson, P. W. Reiners, history of the central Transantarctic Mountains J. He, S. R. Hemming, K.J. Licht reevaluated using multiple low-temperature thermochronometers 10:10 10:25 New single-crystal age determinations for basement K.W. Parsons, Willis Hames, S. rocks in the Miller Range of the Ross Orogen, Central Thomson Transantarctic Mountains 10:25 10:45 Break 10:45 11:05 INVITED: Antarctic Subglacial Limnology: John E.
    [Show full text]
  • Paleocene and Maastrichtian Calcareous Nannofossils from Clasts
    U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 019; doi:10.3133/of2007-1047.srp019 Paleocene and Maastrichtian calcareous nannofossils from clasts in Pleistocene glaciomarine muds from the northern James Ross Basin, western Weddell Sea, Antarctica D.K. Kulhanek Department of Geological Sciences, Florida State University, 108 Carraway Building, Tallahassee, FL 32306-4100, USA ([email protected]) Abstract Site NBP0602A-9, drilled during the SHALDRIL II cruise of the RV/IB Nathaniel B. Palmer, includes two holes located in the northern James Ross Basin in the western Weddell Sea, very close to the eastern margin of the Antarctic Peninsula. Sediment from both holes consists of very dark grey, pebbly, sandy mud, grading to very dark greenish grey, pebbly, silty mud in the lower 2.5 m of the second hole. In addition to abundant pebbles found throughout the cores, both holes contain numerous sedimentary clasts. Biostratigraphic analysis of diatom assemblages from the glaciomarine muds yields rare to few, poorly preserved diatoms. The mixed assemblage consists mostly of extant species, but also includes reworked taxa that range to the Miocene. The absence of Rouxia spp., however, suggests the sediment is late Pleistocene in age. The sedimentary clasts, on the other hand, are nearly barren of diatoms, but contain rare, moderately to well-preserved calcareous nannofossils. The clasts contain three distinct assemblages. Two clasts are assigned an early Maastrichtian age based on the presence of Biscutum magnum and Nephrolithus corystus, while one clast yields a late Maastrichtian age based on the presence of Nephrolithus frequens.
    [Show full text]
  • Palaeomagnetic, 40Ar/39Ar, and Stratigraphical Correlation Of
    Antarctic Science 17 (3), 409–417 (2005) © Antarctic Science Ltd Printed in the UK DOI: 10.1017/S0954102005002853 Palaeomagnetic, 40Ar/39Ar, and stratigraphical correlation of Miocene–Pliocene basalts in the Brandy Bay area, James Ross Island, Antarctica LEÓ KRISTJÁNSSON1*, MAGNÚS T. GUDMUNDSSON1, JOHN L. SMELLIE2, WILLIAM C. MCINTOSH3 and RICHARD ESSER3 1 Institute of Earth Sciences, University of Iceland, Reykjavík, Iceland 2British Antarctic Survey, NERC, High Cross, Madingley Rd, Cambridge CB3 0ET, UK 3New Mexico Geochronology Research Laboratory, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA *[email protected] Abstract: A revised stratigraphy of Cenozoic volcanic outcrops in the Brandy Bay area on James Ross Island is obtained by combining palaeomagnetic and stratigraphical anlysis with 40Ar/39Ar dating. The fieldwork was carried out between January and March 2002. Oriented palaeomagnetic samples were obtained from 17 volcanic units, the majority of samples being from lava-fed deltas. Individually the deltas are a few to several hundred metres thick and were formed during voluminous basaltic eruptions within an ice sheet or in a marine setting. Out of the sampled units, 15 carry a stable primary magnetization; six were of normal polarity and nine were reversely magnetized. Our 40Ar/39Ar dating constrains the emplacement of most of the Brandy Bay basalts to the Gilbert chron, with the youngest dated unit having an age of 3.95 Ma and the oldest 6.16 Ma. The mean palaeomagnetic field direction from 14 units has an inclination I = -76° α and declination D = 352°, 95 = 7°. The results further suggest that the lava caps on some of the deltas have high remanent intensity and should generate recognizable aeromagnetic anomalies.
    [Show full text]
  • Geological Exploration of Cockburn Island, Antarctic Peninsula
    vol. 23, no. 1, pp. xxx–xxx, 2002 Geological exploration of Cockburn Island, Antarctic Peninsula JEFFREY D. STILWELL School of Earth Sciences, James Cook University, Townsville, Queensland 4811, Australia <[email protected]> ABSTRACT: Cockburn Island is one of the most historically significant places on the Ant− arctic continent. The isle was first surveyed in early 1843 during Captain James Ross’ fa− mous expedition, but the early explorers failed to recognise its geological and palaeonto− logical significance. Cockburn Island is exceptional for it has the only succession of Upper Cretaceous, Eocene and Miocene–Pliocene rocks on the continent, which is now known to contain an admirable and diverse fossil record of fauna and flora. These fossil assemblages are providing exciting new information on the evolutionary history of Antarctica. At least 22 species of Late Cretaceous macroinvertebrates and vertebrates have been recognised, whereas the Eocene record is slightly more diverse at 28 macroinvertebrate taxa recorded. The Pliocene macrofossil record is depauperateatsome 11 species, butmicrofossils (dia− toms, ostracods, foraminifera) are represented by at least 94 taxa. The palaeoecologic and palaeobiogeographic significance of fossil assemblages is explored in this paper. Further, a checklist of fossils is presented herein, for the first time, as is a bibliography of the geology and palaeontology of the island. Key words: Antarctica, Cockburn Island, geology, palaeontology, history, bibliography. Introduction Cockburn Island (Figs 1, 2, 12), a small butprominentisle some 5 km northof Cape Bodman on Seymour Island at the boundary of Admiralty Sound and Erebus and Terror Gulf at latitude 64°13’S and longitude 56°50’E, has the honourable dis− tinction of being one the first places to be visited by early Antarctic explorers dur− ing the first half of the nineteenth century.
    [Show full text]