Late Cretaceous and Paleocene Decapod Crustaceans from James Ross Basin, Antarctic Peninsula Author(S): Rodney M

Total Page:16

File Type:pdf, Size:1020Kb

Late Cretaceous and Paleocene Decapod Crustaceans from James Ross Basin, Antarctic Peninsula Author(S): Rodney M Paleontological Society Late Cretaceous and Paleocene Decapod Crustaceans from James Ross Basin, Antarctic Peninsula Author(s): Rodney M. Feldmann, Dale M. Tshudy, Michael R. A. Thomson Source: Memoir (The Paleontological Society), Vol. 28, Supplement to Vol. 67, no. 1 of the Journal of Paleontology (Jan., 1993), pp. 1-41 Published by: Paleontological Society Stable URL: http://www.jstor.org/stable/1315582 Accessed: 16/01/2009 20:00 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=paleo. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. Paleontological Society is collaborating with JSTOR to digitize, preserve and extend access to Memoir (The Paleontological Society). http://www.jstor.org The Paleontological Society MEMOIR 28 LATE CRETACEOUS AND PALTEOCENEDECAPOD CRUSTACEANS FROM JAMES ROSS BASIN, ANTARCTIC PENINSULA 1RODNEY M. FELDMANN, 1DALE M. TSHUDY, AND 2MICHAEL R. A. THOMSON 'Department of Geology, Kent State University, Kent, Ohio 44242 U.S.A. and 2British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, United Kingdom Copyright ? 1993 by THE PALEONTOLOGICAL SOCIETY, INC. JANUARY 1993 CONTENTS GENUSRetrorsichela n. gen .................... 27 Retrorsichela laevis n. sp .................... 27 ABSTRACT ................................................ 1 INFRAORDERBrachyura Latreille, 1803 ................ 29 INTRODUCTION............................................ 1 SECTIONPodotremata Guinot, 1977 ................. 29 STRATIGRAPHICSETTING ................................... 1 SUBSECTIONDromiacea de Haan, 1833 ............ 29 GEN ERA L ............................................... 1 SUPERFAMILYDromioidea de Haan, 1833 ........ 29 SANTAMARTA FORMATION ............................... 3 FAMILYProsopidae von Meyer, 1860 ......... 29 LOPEZ DE BERTODANO FORMATION ........................ 3 SUBFAMILYPithonotinae Glaessner, 1933 .... 29 SOBRALFORMATION ..................................... 5 GENUSPlagiophthalmous Bell, 1863 ...... 29 CAPEMELVILLE FORMATION .............................. 5 Plagiophthalmous collinsi n. sp ........ 29 TAPHONOMY .............................................. 5 SUBSECTIONArchaeobrachyura Guinot, 1977 ....... 30 COLLECTINGLOCALITIES .................................... 6 SUPERFAMILYHomoloidea de Haan, 1839 ....... 30 DEPOSITORIES ............................................. 6 FAMILYPoupiniidae Guinot, 1991 ............ 30 SYSTEMATIC PALEONTOLOGY ................................ 7 GENUSRhinopoupinia n. gen .............. 30 ORDERDecapoda Latreille, 1803 ......................... 7 Rhinopoupinia bicornis n. sp. ............. 30 SUBORDERPleocyemata Burkenroad, 1963 ............... 7 SUPERFAMILYRaninoidea de Haan, 1841 .......... 31 INFRAORDERAstacidea Latreille, 1803 ................. 7 FAMILYRaninidae de Haan, 1841 .............. 31 FAMILYNephropidae Dana, 1852 ................... 7 GENUSCristafrons n. gen .................... 31 SUBFAMILYHomarinae Huxley, 1879 .............. 7 Cristafrons praescientis n. sp. ............... 33 GENUSHoploparia McCoy, 1849 ............... 7 SUPERFAMILYTymoloidea Alcock, 1896 ........... 34 Hoploparia stokesi (Weller, 1903) ............. 7 FAMILYTorynommidae Glaessner, 1980 ......... 34 Hoploparia antarctica Wilckens, 1907 ......... 12 GENUSTorynomma Woods, 1953 ............ 34 GENUSMetanephrops Jenkins, 1972 ............. 16 SUBGENUSTorynomma (Torynomma) Woods, 19 53 .................................. 34 Metanephropsjenkinsi Feldmann, 1989 ....... 16 australis n. 34 Metanephrops rossensis n. sp ................ 16 Torynomma (Torynomma) sp. SECTIONHeterotremata Guinot, 1977 ............... 35 INFRAORDERPalinura Latreille, 1803 .................. 19 SUPERFAMILYCalappoidea de Haan, 1833 ......... 35 SUPERFAMILYGlypheoidea Winckler, 1883 .......... 19 FAMILYCalappidae de Haan, 1833 .............. 35 FAMILYGlypheidae Winckler, 1883 ............... 19 GENUSNecrocarcinus Bell, 1863 .............. 35 GENUSGlyphea von Meyer, 1835 ............... 19 Necrocarcinus n. ................ 35 Glyphea australensis n. sp ................... 19 wrighti sp Necrocarcinus carinatus n. ............ 36 FAMILYMecochiridae van Straelen, 1925 .......... 22 sp SUMMARYAND CONCLUSIONS ............................... 37 GENUSMeyeria McCoy, 1849 .................. 22 ACKNOWLEDGMENTS ....................................... 38 Meyeria crofti Ball, 1960 ..................... 22 REFERENCES.............................................. 38 SUPERFAMILYPalinuroidea Latreille, 1803 ........... 22 A PPEN D IX ................................................ 40 FAMILYPalinuridae Latreille, 1802 ................ 22 GENUSLinuparus White, 1847 ................. 22 ILLUSTRATIONS Linuparus macellarii Tshudy and Feldmann, 19 8 8 .................................... 22 FIGURES INFRAORDERAnomura H. Milne Edwards, 1832 ........ 24 1 -Maps of the James Ross Island area showing the SUPERFAMILYThalassinoidea Latreille, 1831 ......... 24 distribution of stratigraphic units discussed in the text and the locations from which new occurrences of FAMILYCallianassidae Dana, 1852 ................ 24 decapod fossils are described .................................. 2 GENUSCallianassa Leach, 1814 ................ 24 2-Stratigraphic sections from selected sites in the James Ross Callianassa meridionalis 1960 ..... 24 cf. C. Ball, Island area showing the positions from which decapod SUPERFAMILYPaguroidea Latreille, 1803 ............. 24 fossil collections were made ........................... 4 FAMILYPaguridae Latreille, 1802 ................. 24 3- Hoploparia stokesi (W eller) ............................ 9 stokesi ............................ 10 GENUSPaguristes Dana, 1851 .................. 24 4-Hoploparia (W eller) 5--Hoploparia stokesi (W eller) ............................ 11 Paguristes santamartaensis n. sp ............. 24 6-Summary of stratigraphic changes in the morphology of SUPERFAMILYGalatheoidea Samouelle, 1819 ......... 25 Hoploparia stokesi (Weller) and interpreted bathymetric FAMILYGalatheidae Samouelle, 1819 ............. 25 framework for each unit ............................... 12 SUBFAMILYMunidopsinae Ortmann, 1898 ....... 25 7--Hoploparia antarctica Wilckens ........................ 14 antarctica Wilckens ........................ 15 GENUSMunidopsis Whiteaves, 1874 .......... 25 8-Hoploparia 9-Metanephrops rossensis n. sp .......................... 18 Munidopsisfoersteri n. sp ................. 25 10--Metanephrops rossensis n. sp .......................... 19 SUPERFAMILY?Galatheoidea Samouelle, 1819 ........ 27 11 -Metanephrops rossensis n. sp .......................... 19 FAMILYRetrorsichelidae n. fam .................. 27 12--Glyphea australensis n. sp ............................. 20 13-Line drawing of Glyphea australensis n. sp. showing the 27-Holotype of Torynomma (Torynomma) australis n. sp. ... 34 positions and orientations of measurements recorded in 28-Line drawing of Torynomma (Torynomma) australis n. sp., T ab le 3 .............................................. 21 showing the measurements taken, in mm ............... 35 14-Linuparus macellarii Tshudy and Feldmann ............. 23 29-Necrocarcinus spp .................................... 36 15--Callianassa cf. C. meridionalisBall .................... 24 30-Line drawing of Necrocarcinus wrighti n. sp., showing the 16-Paguristes santamartaensisn. sp ....................... 25 position and orientation of measurements taken on both 17-Munidopsis foersterin. sp ............................. 26 species of Necrocarcinus ............................... 37 18-Line drawing of Munidopsisfoersteri showing the measurements taken, in mm ........................... 26 TABLES 19-Retrorsichela laevis n. gen. and sp ..................... 28 1- Measurements (in mm) taken on specimens of Hoploparia 20-Line drawing of the carapace of Retrorsichela laevis n. gen. antarctica W ilckens ................................... 15 and sp., showing pattern of grooves described in text ..... 2-Measurements (in mm) taken on specimens of 21 -Holotype of Plagiophthalmous collinsi n. sp ............ 2 Metanephropsrossensis n. sp ......................... 17 22-Line drawing of Plagiophthalmous collinsi n. sp., showing 3-Measurements mm) taken on specimens of Glyphea the measurements made, in mm ....................... 3 (in australensisn. sp. .................................. 21 23-Dorsal and left lateral view of the carapace of the holotype 4--Measurements (in mm) taken on specimens of Retrorsichela of Rhinopoupinia bicornis n. sp ........................ laevis
Recommended publications
  • Fossil Polychaetes from the Upper Cretaceous Rock Formations of South India—
    FOSSIL POLYCHAETES FROM THE UPPER CRETACEOUS ROCK FORMATIONS OF SOUTH INDIA--PART II BY G. W. CHIPLONKAR AND P. M. TAPASWI (Maharashtra Association for the Cultivation of Science, Poona-4) Received October 29, 1972 (Communicated by Prof. T.S. Mahabale) ABSTRACT Eight polychaetan species are described here, three of which, viz., Burtinella concava (Sow.), Tubulostium eallosum Stol. T. discoidium Stol., described by Stoliczka as gastropod species, are now transferred to the Polyehaeta in the light of new information. Among the three species described here as new to science, one has for its proper placement, necessitated creation of the now genus, viz., Rotulispira falling under the subfamily Spirorbinae Chamborlin. Spirorbula Nielsen is repotted for the first time from South Indian Cretaceous. Family Terebellidae Grube represented by Terebellolites Desio, a heterogenous group, is also recorded for the first time from these deposits. INTRODUCTION IN the present communication eight more (Chiplonkar and Tapaswi, 1973, Pt. I) polychaetan species are described. As mentioned in Part I, we have followed, except where otherwise indicated, Regenhardt (1961) in his classification of the Serpulidae. CO-ORDINATES OF LOCALITIES CITED IN THE TEXT (1) Ariyalur 11 ° 07' 30" : 79 ° 04' 30", (2) Kallankurichchi 11° 09' : 79 ° 07' 30", (3) Mallur 11 ° 04' 30" : 79 ° 05', (4) Mettal 11 ° 05' 40" : 79 ° 00' 30", (5) Naicolum 11 ° 03' 30" : 78 ° 50' 30", (6) Odiyam 11 ° 13' : 78 ° 59"30", (7) Pondicherry 11 ° 56' : 79 ° 50', (8) Saradamangalam 11 ° 03' 30" : 78 ° 57', (9) Sillakkudi 11° 04' 30" : 79 ° 00' 30", (10) Uttattur 1! ° 04' : 78 ° 51', 202 The Upper Cretaceous Rock Formations of South IndiamH 203 ACKNOWLEDGEMENTS Dr.
    [Show full text]
  • Lobsters-Identification, World Distribution, and U.S. Trade
    Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More­ Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de­ temperature zones. From such partition­ food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob­ Nephropoidea), the squat lobsters the world because of species distribu­ ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al­ The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con­ lobsters, Homarus americanus, caught the purpose of reporting fishery statis­ tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish­ Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e.
    [Show full text]
  • Microplastics in Beaches of the Baja California Peninsula
    UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA Chemical Sciences and Engineering Department MICROPLASTICS IN BEACHES OF THE BAJA CALIFORNIA PENINSULA TERESITA DE JESUS PIÑON COLIN FERNANDO WAKIDA KUSUNOKI Sixth International Marine Debris Conference SAN DIEGO, CALIFORNIA, UNITED STATES 7 DE MARZO DEL 2018 OUTLINE OF THE PRESENTATION INTRODUCTION METHODOLOGY RESULTS CONCLUSIONS OBJECTIVE. The aim of this study was to investigate the occurrence and distribution of microplastics in sandy beaches located in the Baja California peninsula. STUDY AREA 1200 km long and around 3000 km of seashore METHODOLOGY SAMPLED BEACHES IN THE BAJA CALIFORNIA PENINSULA • . • 21 sampling sites. • 12 sites located in the Pacific ocean coast. • 9 sites located the Gulf of California coast. • 9 sites classified as urban beaches (U). • 12 sites classified as rural beaches (R). SAMPLING EXTRACTION METHOD BY DENSITY. RESULTS Bahía de los Angeles. MICROPLASTICS ABUNDANCE (R) rural. (U) urban. COMPARISON WITH OTHER PUBLISHED STUDIES Area CONCENTRATIÓN UNIT REFERENCE West coast USA 39-140 (85) Partícles kg-1 Whitmire et al. (2017) (National Parks) United Kigdom 86 Partícles kg-1 Thompson et al. (2004) Mediterranean Sea 76 – 1512 (291) Partícles kg-1 Lots et al. (2017) North Sea 88-164 (190) Particles Kg-1 Lots et al. (2017) Baja California Ocean Pacific 37-312 (179) Particles kg-1 This study Gulf of 16-230 (76) Particles kg-1 This study California MORPHOLOGY OF MICROPLASTICS FOUND 2% 3% 4% 91% Fibres Granules spheres films Fiber color percentages blue Purple black Red green 7% 2% 25% 7% 59% Examples of shapes and colors of the microplastics found PINK FILM CABO SAN LUCAS BEACH POSIBLE POLYAMIDE NYLON TYPE Polyamide nylon type reference (Browne et al., 2011).
    [Show full text]
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • Downloaded from Brill.Com09/30/2021 02:14:49PM Via Free Access B.M
    Contributions to Zoology, 72 (2-3) 83-84 (2003) SPB Academic Publishing bv, The Hague An interesting case of homonymy: Notopus de Haan, 1841 (Crustacea, Raninidae; Recent) and Notopus Leonardi, 1983 (ichnofossil; Devonian) ³ Barry+W.M. van Bakel¹, John+W.M. Jagt² & René+H.B. Fraaije 1 2 Schepenhoek 235, NL-5403 GB Uden, the Netherlands; Natuurhistorisch Museum Maastricht, de 3 Bosquetplein 6-7, P.O. Box 882, NL-6200 AW Maastricht, the Netherlands; Oertijdmuseum de Groene Poort, Bosscheweg 80, NL-5283 WB Boxtel, the Netherlands Keywords: Homonymy, Crustacea, ichnofossils, Notopus Abstract N. petri, involves an ichnofossil from the Devonian of Paran-, Brazil (Leeonardi, 1983: 236). Leonard! Upper Cretaceous strata in the type area of the Maastrichtian interpreted this as the imprint of the left front limb Stage Netherlands, NE have yielded (SE Belgium) compara- of an amphibian. Roek & Rage (1994), who restudied tively abundant and diverse raninid assemblages (Collins et al., Leonardos .original material, were of the opinion 1995; Fraaye & van Bakel, 1998). To date, seven species are that this ichnofossil taxon did not represent part of known: Eumorphocorystes sculptus, Pseudoraninella muelleri, but rather similar to Lyreidinapyriformis, Raninoides? quadrispinosus,Raniliformis an amphibian trackway, was asteroid chevrona, Raniliformis prebaltica and Raniliformis occlusa. traces of an or ophiuroid, comparable to These Maastricht occur mainly from the portion of the Asteriacites upper the ichnofossil genus von Schlotheim. Formation[Emael, Nekum andMeerssen members, Belemnitella Irrespective of the correct assignment of this junior and Belemnella (Neobelemnella) kazimiroviensis bio- ichnotaxon, Notopus Leonard!, 1983 (non de Haan, zones]. is in need of substitute the 1841) a name, more so with since ichnotaxon names compete (palaeo)zoo- taxa June Introduction logical (A.K.
    [Show full text]
  • Natural Communities of Michigan: Classification and Description
    Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council.
    [Show full text]
  • Flood Basalts and Glacier Floods—Roadside Geology
    u 0 by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher - Commissioner of Public Lands Kaleen Cottingham - Supervisor FLOOD BASALTS AND GLACIER FLOODS: Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 Kaleen Cottingham - Supervisor Division of Geology and Earth Resources WASHINGTON DEPARTMENT OF NATURAL RESOURCES Jennifer M. Belcher-Commissio11er of Public Lands Kaleeo Cottingham-Supervisor DMSION OF GEOLOGY AND EARTH RESOURCES Raymond Lasmanis-State Geologist J. Eric Schuster-Assistant State Geologist William S. Lingley, Jr.-Assistant State Geologist This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 3.24 Tax (WA residents only) ~ Total $ 3.50 Mail orders must be prepaid: please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources. Front Cover: Palouse Falls (56 m high) in the canyon of the Palouse River. Printed oo recycled paper Printed io the United States of America Contents 1 General geology of southeastern Washington 1 Magnetic polarity 2 Geologic time 2 Columbia River Basalt Group 2 Tectonic features 5 Quaternary sedimentation 6 Road log 7 Further reading 7 Acknowledgments 8 Part 1 - Walla Walla to Palouse Falls (69.0 miles) 21 Part 2 - Palouse Falls to Lower Monumental Dam (27.0 miles) 26 Part 3 - Lower Monumental Dam to Ice Harbor Dam (38.7 miles) 33 Part 4 - Ice Harbor Dam to Wallula Gap (26.7 mi les) 38 Part 5 - Wallula Gap to Walla Walla (42.0 miles) 44 References cited ILLUSTRATIONS I Figure 1.
    [Show full text]
  • Biomineralization of Polychaete Annelids in the Fossil Record
    minerals Review Biomineralization of Polychaete Annelids in the Fossil Record Olev Vinn Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; [email protected]; Tel.: +372-5067728 Received: 31 August 2020; Accepted: 25 September 2020; Published: 29 September 2020 Abstract: Ten distinct microstructures occur in fossil serpulids and serpulid tubes can contain several layers with different microstructures. Diversity and complexity of serpulid skeletal structures has greatly increased throughout their evolution. In general, Cenozoic serpulid skeletal structures are better preserved than Mesozoic ones. The first complex serpulid microstructures comparable to those of complex structures of molluscs appeared in the Eocene. The evolution of serpulid tube microstructures can be explained by the importance of calcareous tubes for serpulids as protection against predators and environmental disturbances. Both fossil cirratulids and sabellids are single layered and have only spherulitic prismatic tube microstructures. Microstructures of sabellids and cirratulids have not evolved since the appearance of calcareous species in the Jurassic and Oligocene, respectively. The lack of evolution in sabellids and cirratulids may result from the unimportance of biomineralization for these groups as only few species of sabellids and cirratulids have ever built calcareous tubes. Keywords: biominerals; calcite; aragonite; skeletal structures; serpulids; sabellids; cirratulids; evolution 1. Introduction Among polychaete annelids, calcareous tubes are known in serpulids, cirratulids and sabellids [1–3]. The earliest serpulids and sabellids are known from the Permian [4], and cirratulids from the Oligocene [5]. Only serpulids dwell exclusively within calcareous tubes. Polychaete annelids build their tubes from calcite, aragonite or a mixture of both polymorphs. Calcareous polychaete tubes possess a variety of ultrastructural fabrics, from simple to complex, some being unique to annelids [1].
    [Show full text]
  • Provenance and Post-Depositional Low-Temperature Evolution of the James Ross Basin Sedimentary Rocks (Antarctic Peninsula) Based
    Antarctic Science 21(6), 593–607 (2009) & Antarctic Science Ltd 2009 doi:10.1017/S0954102009990241 Provenance and post-depositional low-temperature evolution of the James Ross Basin sedimentary rocks (Antarctic Peninsula) based on fission track analysis MARTIN SVOJTKA1, DANIEL NY´ VLT2, MASAKI MURAKAMI1*, JITKA VA´ VROVA´ 3, JIRˇ ´I FILIP1 and PETR MIXA2 1Institute of Geology, Academy of Sciences, v.v.i., Rozvojova´ 269, 16500 Praha 6, Czech Republic 2Czech Geological Survey, Kla´rov 3, 118 21 Praha, Czech Republic 3Institute of Geochemistry, Charles University, Albertov 6, 12843 Praha 2, Czech Republic *current address: Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan [email protected] Abstract: Zircon and apatite fission track (AFT) thermochronology was applied to the James Ross Basin sedimentary rocks from James Ross and Seymour islands. The probable sources of these sediments were generated in Carboniferous to Early Paleogene times (,315 to 60 Ma). The total depths of individual James Ross Basin formations are discussed. The AFT data were modelled, and the thermal history model was reconstructed for samples from Seymour Island. The first stage after a period of total thermal annealing (when the samples were above 1208C) involved Late Triassic cooling (,230 to 200 Ma) and is followed by a period of steady cooling through the whole apatite partial annealing zone (PAZ, 60–1208C) to minimum temperature in Paleocene/Early Eocene. The next stage was the maximum burial of sedimentary rocks in the Eocene (,35 Ma, 1.1–1.8 km) and the final cooling and uplift of Seymour Island sedimentary rocks at ,35 to 20 Ma.
    [Show full text]
  • Cretaceous Stratigraphy of Seymour Island, East Antarctic Peninsula
    Cretaceous stratigraphy of Seymour Four profiles were measured on Seymour Island in areas of little tectonic disturbance, previously selected by photoin- Island, East Antarctic Peninsula terpretation (figure 1). A total of 250 samples were sys- tematically collected within these profiles at approximately 10- meter intervals. Good weather and invaluable support from the CARLOS MACELLARI and BRIAN T. HUBER helicopter pilots and the crew of the USCGC Glacier made it possible to visit and measure profiles on Snow Hill, Vega, and Institute of Polar Studies James Ross Islands in addition to the planned activities on Ohio State University Seymour Island. We hope these observations and samples will Columbus, Ohio 43210 provide valuable information regarding the correlation of dif- ferent Cretaceous outcrops within the James Ross Island area. They may be particularly helpful in establishing a detailed cor- relation between the Seymour and Snow Hill Island sequences. The Cretaceous stratigraphy of Seymour Island (Isla Vice- The oldest unit exposed on the island is the Lopez de Ber- comodoro Marambio in Argentine literature) has been de- todano Formation of Campanian (Howarth 1966; Olivero 1981) to scribed by Andersson (1906) and more recently by several possibly Maestrichtian (Spath 1953) age (figure 2). The max- authors (Elliot et al. 1975, Rinaldi 1982, and Rinaldi et al. 1972, imum measured thickness was encountered in profile 1(1,190 among others). However, no detailed sedimentological or strat- meters). Several minor units were recognized on the basis of igraphic account of these sediments has yet been published. As lithology, degree of cementation, and fossil content; many of one of the programs on the Seymour Island Expedition, we these were laterally continuous throughout the island.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Notopus Dorsipes (Linnaeus) in Singapore: First Record of the Brachyuran Superfamily Raninoidea (Crustacea: Decapoda) on the Sunda Shelf
    NATURE IN SINGAPORE 2012 5: 19–25 Date of Publication: 27 January 2012 © National University of Singapore NOTOPUS DORSIPES (LINNAEUS) IN SINGAPORE: FIRST RECORD OF THE BRACHYURAN SUPERFAMILY RANINOIDEA (CRUSTACEA: DECAPODA) ON THE SUNDA SHELF Martyn E. Y. Low1* and S. K. Tan2 1Department of Marine and Environmental Sciences, Graduate School of Engineering and Science University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan 2Raffles Museum of Biodiversity Research, National University of Singapore 6 Science Drive 2, Singapore 117546, Republic of Singapore (*Corresponding author: [email protected]) INTRODUCTION Recently, a brachyuran crab identified as Notopus dorsipes (Linnaeus, 1758), was found at Changi (north-east Singapore). This represents the first record of the superfamily Raninoidea de Haan, 1839, in Singapore and on the Sunda Shelf (Figs. 1, 2). The superfamily Raninoidea has a worldwide distribution and its members inhabit marine habitats from the intertidal zone to over 300 m deep (reviewed in Ahyong et al., 2009; see also Dawson & Yaldwyn, 1994). Fifty species of raninoids are currently assigned to 12 genera in six subfamilies (Ng et al., 2008). Notopus dorsipes belongs to a monotypic genus currently assigned to the subfamily Notopodinae Serène & Umali, 1972 (see Ng et al., 2008). Originally described as Cancer dorsipes by Linnaeus (1758), this species has had a confused nomenclatural history (see Holthuis, 1962). In order to stabilise the name Cancer dorsipes Linnaeus, Holthuis (1962: 55) designated a figure in Rumphius (1705: pl. 10: Fig. 3) as the lectotype of Notopus dorsipes (reproduced as Fig. 3). De Haan (1841) established the genus Notopus for Cancer dorsipes Linnaeus, the type species by monotypy.
    [Show full text]