The Impact of Small Benthic Passive Suspension Feeders in Shallow Marine Ecosystems: the Hydroids As an Example

Total Page:16

File Type:pdf, Size:1020Kb

The Impact of Small Benthic Passive Suspension Feeders in Shallow Marine Ecosystems: the Hydroids As an Example Commemorative volume for the 80th birthday of Willem Vervoort in 1997 The impact of small benthic passive suspension feeders in shallow marine ecosystems: the hydroids as an example Gili, J.-M., V. Alvà, R. Coma, C Orejas, F. Pagès, M. Ribes, M. Zabala, W. Arntz, J. Bouillon, F. Boero & R.G. Hughes Gili, J.-M., V. Alvà, R. Coma, C Orejas, F. Pagès, M. Ribes, M. Zabala, W. Arntz, J. Bouillon, F. Boero & R.G Hughes. The impact of small benthic passive suspension feeders in shallow marine ecosys• tems: the hydroids as an example. Zool. Verh. Leiden 323, 31.xii.1998:99-105, tabs 1-2.— ISSN 0024-1652/ISBN 90-73239-68-0. J.-M. Gili, V. Alvà, R. Coma, C. Orejas, F. Pages & M. Ribes, Institut de Ciències del Mar (CSIC), Plaça del Mar, 08039 Barcelona, Spain. M. Zabala, Departament d'Ecologia, Universität de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain. W. Arntz, Alfred-Wegener-Institut für Polar- und Meeresforschung, Columbusstrasse, 27658 Bremer• haven, Germany. J. Bouillon, Laboratoire de Biologie Marine, Faculté des Sciences, Université Libre de Bruxelles, Av. F.D. Roosevelt, Bruxelles, Belgium. F. Boero, Dipartimento di Biologia, Università di Lecce, 73100 Lecce, Italy. R.G. Hughes, School of Biological Sciences, Queen Mary and Westfield College, University of Lon• don, London El 4NS, United Kingdom. Key words: benthic passive suspension feeders; shallow marine ecosystems; hydroids. Benthic suspension feeders are abundant in littoral and shallow sub-littoral ecosystems, where they feed on the plankton and on organic matter suspended in the water column. Recent studies indicate that active suspension feeders with powerful water filtration mechanisms (e.g., bivalve molluscs) may exert an important influence on the abundance and production of phytoplankton, and probably zoo- plankton as well. Passive suspension feeders, such as hydrozoans, have received less attention, and their effect on shallow planktonic communities is poorly understood. This paper presents evidence that hydrozoans, which make only a minor contribution to benthic community biomass, capture large amounts of zooplankton and seston, and that they may play an important role in transferring energy from pelagic to benthic ecosystems over a wide range of latitudes. Recently, assessments of the individual components of food webs within or between different marine ecosystems have been attempted (Margalef, 1978; Paine, 1988; Goldwasser & Roughgarden, 1993). In particular, attention has focused energy transfer between the pelagic and benthic ecosystems (Bonsdorff & Blomqvist 1993). In the open ocean energy transfer flows vertically, gradually descending through the water column, with considerable reduction of surface production by the time it reach• es the bottom (Smetacek, 1984). In contrast, in shallow waters benthic organisms have more immediate access to planktonic production, because of the proximity of the photic layer, and because of tidal or wind vertical mixing. Benthic suspension feeders in shallow marine ecosystems are responsible for a large proportion of the energy flow from the plankton to the benthos (Parsons et al., 1979). For example, benthic organisms that are active suspension feeders, such as bivalves, have been shown to have a major impact on the planktonic ecosystems in which they feed (Jorgensen, 1990). They capture large amounts of phytoplankton and may regulate primary pro• duction directly, and regulate secondary production indirectly (Dame et al., 1980; 100 Gili et al. Benthic suspension feeders in shallow marine ecosystems. Zool. Verh. Leiden 323 (1998) Officer et al., 1982; Cohen et al., 1984). Models of energy flow have ignored passive suspension feeders such as hydrozoans and gorgonians because their impact has been assumed to be minor, on account of their negligible contribution to the biomass of benthic communities (Boero, 1984; Gili & Ros, 1985). It is clear from their diets that some passive suspension feeders, which capture small particles, zooplankters and organic matter, may also play a significant role in pelagic-benthic coupling (Sebens, 1987). Recent data on benthic hydrozoans in a number of different areas around the world have yielded capture rates for hydrozoans of over 105 prey items m"2 day"1 (Coma et al., 1995). This high level of feeding fuels the high rates of growth and reproduction shown by modular hydrozoans (Hale, 1973; Coma et al., 1996). This paper reviews the recent literature and presents the case that passive suspension feeders, even the most inconspicuous organisms such as hydrozoans, need to be taken into account when assessing energy flow into shallow benthic assemblages. In our recent studies of the feeding of benthic hydroids samples were taken regu­ larly, every 2 to 4 h over 24h periods. On each occasion a minimum of 50 hydranths were dissected and all the items present in the gastric cavity were identified and mea­ sured. Prey biomass was estimated and the mass-specific ingestion rate was calculat­ ed, as the percentage ratio between prey biomass ingested daily and hydranth bio­ mass. The dry weight of hydranths was measured by drying several replicates of 100- 200 hydranths to constant weight at 70° C. Daily capture rates (mean prey number hydranth"1 day"1) were calculated for each species on the basis of the number of items per hydranth sampled and prey digestion times (Gili et al., 1996a). Digestion times were studied in situ using incubation chambers or were estimated from other studies. Capture rates, mean number of prey items m"2 day'1, were estimated on the basis of the natural density of the species considered. To determine the composition and rela­ tive abundance of potential prey items, concurrent plankton samples were taken from around the hydrozoans (Coma et al., 1995). Table 1 presents the results for all the species. The diet of most species was varied, consisting largely of algal cells (e.g. Nemalecium lighti) and zooplankton (e.g. Eudendri­ um racemosum or Tubularia larynx). In some species particulate organic matter (POM) also contributed a significant portion of the diet (e.g. Campanularia everta = Orthopyxis crenata). Benthic organisms (e.g. nematodes or small bivalves) were found only occa­ sionally. The diet of Silicularia rosea was almost exclusively benthic diatoms, captured when the bottom sediment was disturbed and resuspended. The results confirm that benthic hydroids can feed on a great variety of prey. Apart from zooplankton they can feed on Bacteria, Protozoa, phytoplankton, detritus, and even on metabolites of algal origin or dissolved organic matter (see Bouillon, 1956-57; 1995). The maximum size of the prey ingested varied between species. Hydrozoans that fed on zooplankton, e.g., E. racemosum and T. larynx, were able to capture large prey items because the mouth of the hydranths is able to expand. The mean size of E. race­ mosum hydranths was 600 μιη (table 1), but this hydrozoan was able to capture crus­ taceans of up to 1000 μ m in size. The prey size in hydrozoans that fed on algal cells (e.g. S. rosea and N. lighti) did not exceed 50 μιη. The numbers of prey items per hydranth of Obelia geniculata, T. larynx and E. race­ mosum were proportional to the density of potential prey in the habitat, and conse­ quently the capture rates were highest when zooplankton abundance in the water Table 1. Different trophic features analysed for six species of hydroid following the same experimental methodology: for each species two diel cycles, collect­ ρ ed every 2 or 4 h, and a minimum of 1200 polyps per species, were examined (polyp size: diameter of expanded tentacle crown). Et Si­ Silicularia rosea Nemalecium lighti Campanularia everta Eudendrium racemosum Tubularia larynx Obelia geniculata σα 3 Meyen, 1834 (Hargitt, 1924) Clarke, 1876 (Cavolini, 1785) Ellis & Solander, 1786 (Linnaeus, 1758) §- η S Geographic area King George I. Panama Catalonia Catalonia Scotland Arauco Gulf •3 (South Shetland Is) (Caribbean Sea) (NW Mediterranean) (NW Mediterranean) (NE Atlantic) (SE Pacific) § Polyp size (mm) 0.4 0.3 0.25 0.6 1­1.2 0.3 cr» Habitat Tide pools Sublittoral Sublittoral Sublittoral Sublittoral Sublittoral Growth form reptant reptant reptant erect erect reptant/erect δ' Life cycle no medusa no medusa with medusoid form no medusa with well with well developed medusa developed medusa Ci­ Dominant prey Diatoms (95) Diatoms (32) POM (88) Copepod eggs (28) Copepod eggs (28) Faecal pellets (48) S s- (mean % of the diet) Eggs (2) POM (21) Copepod eggs (7) Copepod adults (22) Copepod adults (22) Copepod eggs (29) s- Invertebrate Invertebrate Cladocera (21) Diatoms (17) CD larvae (20) larvae(10) î Mean prey size 38.6 ± 0.32 50 54.8 350 710 47.7 3 (in μπι) and range (9.7­436.5) (5­325) (6­110) (40­1050) (520­930) (20­420) Observed mean prey 61.2 ±6.7 3.5 4.4 2.5 3.4 9.3 su number hydranth"1 * (818) (14) (8) (9) (26) (40) Estimated mean prey 225.8 35.7 18.6 5.4 36.0 ** 124.2 ** n> number hydranth"1 day"1 26.1 ** 8 «53 Estimated mean prey 4.4 χ 106 3.97 χ 105 4.3 χ 105 1.2 xlO5 4.5 χ 105 3.2 χ 106 3 number m"2 day"1 mg C removed m"2 day"1 66 6 6.4 12 225 48 Prey biomass hydranth"1 0.18 2.4 0.3 0.4 8.5 28.1 I day"1 (in μg) $ Diel mass­specific 12.6 136 19 39.1 89.9 113.2 3­ E* ingestion rate (in %) α 3 * Maximum prey number observed. 8 **Prey capture during reproductive period 00 H­k ο 102 Gili et al. Benthic suspension feeders in shallow marine ecosystems. Zool. Verh. Leiden 323 (1998) column was highest. The highest diel capture rates were recorded in O. geniculata, which inhabits the most productive waters of all the species studied.
Recommended publications
  • Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
    http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum
    [Show full text]
  • Oogenesis in Tubularia Larynx and Tubularia Indivisa (Hydrozoa, Athecata) Barry W
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 1984 OOGENESIS IN TUBULARIA LARYNX AND TUBULARIA INDIVISA (HYDROZOA, ATHECATA) BARRY W. SPRACKLIN University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation SPRACKLIN, BARRY W., "OOGENESIS IN TUBULARIA LARYNX AND TUBULARIA INDIVISA (HYDROZOA, ATHECATA)" (1984). Doctoral Dissertations. 1436. https://scholars.unh.edu/dissertation/1436 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • Evolution of Pycnogonid Life History Traits Eric Carl Lovely University of New Hampshire, Durham
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Winter 1999 Evolution of pycnogonid life history traits Eric Carl Lovely University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Lovely, Eric Carl, "Evolution of pycnogonid life history traits" (1999). Doctoral Dissertations. 1975. https://scholars.unh.edu/dissertation/1975 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • RECON: Reef Effect Structures in the North Sea, Islands Or Connections?
    RECON: Reef effect structures in the North Sea, islands or connections? Summary Report Authors: Coolen, J.W.P. & R.G. Jak (eds.). Wageningen University & Research Report C074/17A RECON: Reef effect structures in the North Sea, islands or connections? Summary Report Revised Author(s): Coolen, J.W.P. & R.G. Jak (eds.). With contributions from J.W.P. Coolen, B.E. van der Weide, J. Cuperus, P. Luttikhuizen, M. Schutter, M. Dorenbosch, F. Driessen, W. Lengkeek, M. Blomberg, G. van Moorsel, M.A. Faasse, O.G. Bos, I.M. Dias, M. Spierings, S.G. Glorius, L.E. Becking, T. Schol, R. Crooijmans, A.R. Boon, H. van Pelt, F. Kleissen, D. Gerla, R.G. Jak, S. Degraer, H.J. Lindeboom Publication date: January 2018 Wageningen Marine Research Den Helder, January 2018 Wageningen Marine Research report C074/17A Coolen, J.W.P. & R.G. Jak (eds.) 2017. RECON: Reef effect structures in the North Sea, islands or connections? Summary Report Wageningen, Wageningen Marine Research, Wageningen Marine Research report C074/17A. 33 pp. Client: INSITE joint industry project Attn.: Richard Heard 6th Floor East, Portland House, Bressenden Place London SW1E 5BH, United Kingdom This report can be downloaded for free from https://doi.org/10.18174/424244 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified. Photo cover: Udo van Dongen. © 2017 Wageningen Marine Research Wageningen UR Wageningen Marine Research The Management of Wageningen Marine Research is not responsible for resulting institute of Stichting Wageningen damage, as well as for damage resulting from the application of results or Research is registered in the Dutch research obtained by Wageningen Marine Research, its clients or any claims traderecord nr.
    [Show full text]
  • A Comparative Study of Populations of Ectopleura Crocea and Ectopleura Ralphi (Hydrozoa, Tubulariidae) from the Southwestern Atlantic Ocean
    Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Centro de Biologia Marinha - CEBIMar Artigos e Materiais de Revistas Científicas - CEBIMar 2014 A comparative study of populations of Ectopleura crocea and Ectopleura ralphi (Hydrozoa, Tubulariidae) from the Southwestern Atlantic Ocean http://www.producao.usp.br/handle/BDPI/46763 Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo Zootaxa 3753 (5): 421–439 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3753.5.2 http://zoobank.org/urn:lsid:zoobank.org:pub:B50B31BB-E140-4C6E-B903-1612B7B674AD A comparative study of populations of Ectopleura crocea and Ectopleura ralphi (Hydrozoa, Tubulariidae) from the Southwestern Atlantic Ocean MAURÍCIO ANTUNES IMAZU1, EZEQUIEL ALE2, GABRIEL NESTOR GENZANO3 & ANTONIO CARLOS MARQUES1,4 1Departamento de Zoologia, Instituto de Biociências, USP, CEP 05508–090 São Paulo, SP, Brazil. E-mail : [email protected] 2Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, USP, CEP 05508–090 São Paulo, SP, Brazil 3Estación Costera Nágera, Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, Instituto de Investiga- ciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Mar del Plata – CONICET, Argentina. E-mail: [email protected] 4Corresponding author Abstract Ectopleura crocea (L. Agassiz, 1862) and Ectopleura ralphi (Bale, 1884) are two of the nominal tubulariid species re- corded for the Southwestern Atlantic Ocean (SWAO), presumably with wide but disjunct geographical ranges and similar morphologies. Our goal is to bring together data from morphology, histology, morphometry, cnidome, and molecules (COI and ITS1+5.8S) to assess the taxonomic identity of two populations of these nominal species in the SWAO.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • The First Record of Bougainvillia Principis (Steenstrup, 1850) (Hydrozoa: Anthoathecata) from the White Sea
    Invertebrate Zoology, 2018, 15(4): 333–339 © INVERTEBRATE ZOOLOGY, 2018 The first record of Bougainvillia principis (Steenstrup, 1850) (Hydrozoa: Anthoathecata) from the White Sea A.A. Prudkovsky1, T.V. Neretina2,3 1 Dept. Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1–12, 119991 Moscow, Russia. E-mail: [email protected] 2 Pertsov White Sea Biological Station, Biological Faculty, Moscow State University M.V. Lomonos- ov, Leninskie Gory 1-12, 119991 Moscow, Russia. 3 Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia. ABSTRACT: Hydroids are common components of fouling communities in the sea, but they are often inconspicuous and easily overlooked. In such cases, the appearance of their medusae in plankton is an obvious indicator of the species’ presence in a locality. In this study, we present the first record of medusae Bougainvillia principis from the White Sea. We hypothesize that hydroids of the species B. principis inhabit the White Sea, as well, but they do not usually produce medusae and consequently the species does not exhibit sexual reproduction in the White Sea. How to cite this article: Prudkovsky A.A., Neretina T.V. 2018. The first record of Bougainvillia principis (Steenstrup, 1850) (Hydrozoa: Anthoathecata) from the White Sea // Invert. Zool. Vol.15. No.4. P. 333–339. doi: 10.15298/invertzool.15.4.02 KEY WORDS: Bougainvillia principis, medusa, first report, White Sea. Первая находка медузы Bougainvillia principis (Steenstrup, 1850) (Hydrozoa: Anthoathecata) в Белом море А.A. Прудковский1, Т.В. Неретина2,3 1 Кафедра зоологии беспозвоночных, Биологический факультет МГУ имени М.В.
    [Show full text]
  • The Genus Hybocodon (Cnidaria, Hydrozoa) in the Southwestern Atlantic Ocean, with a Revision of the Species Recorded from the Area
    Zootaxa 3523: 39–48 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:2FBB3DE3-5868-400C-A4BA-73D3365400FC The genus Hybocodon (Cnidaria, Hydrozoa) in the southwestern Atlantic Ocean, with a revision of the species recorded from the area CAROLINA S. RODRIGUEZ1,2,3, THAÍS P. MIRANDA4, ANTONIO C. MARQUES4, HERMES MIANZAN2,3,5 & GABRIEL GENZANO1,2,3 1 Estación Costera Nágera, FCEyN – UNMdP, Funes 3350, (7600) Mar del Plata, Argentina, email: [email protected]; [email protected] 2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) 3 Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - UNMdP, Funes 3250, (7600) Mar del Plata, Argentina 4 Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão Trav. 14, 101, 05508-090, São Paulo, SP, Brazil, email: [email protected]; [email protected] 5 Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), PO Box 175, (7600) Mar del Plata, Argentina, email: [email protected] Abstract The genus Hybocodon includes seven species, two of which (H. prolifer and H. unicus) have been recorded in the south- western Atlantic. These reports were based on the medusa stage and only a few diagnostic characters were described, ren- dering some of these records rather doubtful. Additionally, H. prolifer has a boreal distribution, suggesting that the reports of this species from the southern hemisphere could correspond to other Hybocodon species. Recently, we sampled benthic and planktonic specimens of Hybocodon in the southwestern Atlantic and two species were identified: polyps and medusae of Hybocodon chilensis Hartlaub, 1905, and medusae of Hybocodon unicus (Browne, 1902).
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Blötdjur Sidopalpssnäckor – Taggsäcksnäckor Mollusca: Cimidae –Asperspinidae
    Blötdjur Sidopalpssnäckor – taggsäcksnäckor Mollusca: Cimidae –Asperspinidae Denna volym omfattar samtliga svenska arter nationalnyckeln till sveriges flora och fauna Blötdjur Sidopalpssnäckor–taggsäcksnäckor Mollusca: Cimidae–Asperspinidae TEXT Kennet Lundin Klas Malmberg Fredrik Pleijel Bidrag har dessutom lämnats av Ted von Proschwitz BILD Fredrik Pleijel Klas Malmberg SLU Artdatabanken Sveriges lantbruksuniversitet • 19 Inledning et ligger ett skimmer av sagoväsen över nakensnäckor och deras havs- levande släkting ar. De befinner sig mellan poesi och verklighet. De är D osynliga ovan ytan men finns ändå och befolkar havets landskap som är lika verkligt och påtagligt som världen ovan. En av dem suddar ut gränsen mellan djur och växt. En är änglalik men har en djävulsk insida. Många är färgsprakande med utskott som innehåller apte- rade nässelkapslar, vilka de får från de nässeldjur de äter. Pussar du någon av dem så svider det rejält på läpparna. En är stor, vit och mjuk med ett skal dolt av tjocka mantelflikar och kom- mer bara upp ur den mjuka bottenleran för att lägga en äggmassa som liknar finska marmeladkulor. Ingen fisk äter dock den vita snäckan eftersom den har körtlar i huden som kan producera svavelsyra. Denna volym av Nationalnyckeln är den inledande volymen om under- klassen Hetrobranchia och omfattar marina bakgälade snäckor samt de lim- niska kamgälssnäckorna. Här finns övergripande presentationer av såväl un- derklassen Heterobranchia som av infraklasserna lägre Heterobranchia och Euthyneura med tillhörande arttexter och nycklar. Övriga taxa inom Hetero- branchia presenteras i en annan volym. Vetigastropoda PatellogastropodaVetigastropoda Gastropoda Neritimorpha Caenogastropoda Släktträd som visar evolution och släktskap mellan underklasser inom Gastropoda. Heterobranchia Källa: Cunha & Giribet 2019 ILLUSTRATION: JAN-ÅKE WINQVIST Draknuding Facelina bostoniensis.
    [Show full text]
  • A Review of Toxins from Cnidaria
    marine drugs Review A Review of Toxins from Cnidaria Isabella D’Ambra 1,* and Chiara Lauritano 2 1 Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy 2 Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-081-5833201 Received: 4 August 2020; Accepted: 30 September 2020; Published: 6 October 2020 Abstract: Cnidarians have been known since ancient times for the painful stings they induce to humans. The effects of the stings range from skin irritation to cardiotoxicity and can result in death of human beings. The noxious effects of cnidarian venoms have stimulated the definition of their composition and their activity. Despite this interest, only a limited number of compounds extracted from cnidarian venoms have been identified and defined in detail. Venoms extracted from Anthozoa are likely the most studied, while venoms from Cubozoa attract research interests due to their lethal effects on humans. The investigation of cnidarian venoms has benefited in very recent times by the application of omics approaches. In this review, we propose an updated synopsis of the toxins identified in the venoms of the main classes of Cnidaria (Hydrozoa, Scyphozoa, Cubozoa, Staurozoa and Anthozoa). We have attempted to consider most of the available information, including a summary of the most recent results from omics and biotechnological studies, with the aim to define the state of the art in the field and provide a background for future research. Keywords: venom; phospholipase; metalloproteinases; ion channels; transcriptomics; proteomics; biotechnological applications 1.
    [Show full text]
  • Hydroids and Hydromedusae of Southern Chesapeake Bay
    W&M ScholarWorks Reports 1971 Hydroids and hydromedusae of southern Chesapeake Bay Dale Calder Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, Oceanography Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Calder, D. (1971) Hydroids and hydromedusae of southern Chesapeake Bay. Special papers in marine science; No. 1.. Virginia Institute of Marine Science, William & Mary. http://doi.org/10.21220/V5MS31 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. LIST OF TABLES Table Page Data on Moerisia lyonsi medusae ginia ...................... 21 rugosa medusae 37 Comparison of hydroids from Virginia, with colonies from Passamaquoddy Bay, New Brunswick.. .................. Hydroids reported from the Virginia Institute of Marine Science (Virginia Fisheries Laboratory) collection up to 1959 ................................................ Zoogeographical comparisons of the hydroid fauna along the eastern United States ............................... List of hydroids from Chesapeake Bay, with their east coast distribution ...me..................................O 8. List of hydromedusae known from ~hesa~eakeBay and their east coast distribution .................................. LIST OF FIGURES Figure Page 1. Southern Chesapeake Bay and adjacent water^.............^^^^^^^^^^^^^^^^^^^^^^^^ 2. Oral view of Maeotias inexpectata ........e~~~~~e~~~~~~a~~~~~~~~~~~o~~~~~~e 3. rature at Gloucester Point, 1966-1967..........a~e.ee~e~~~~~~~aeaeeeeee~e 4. Salinity at Gloucester Point, 1966-1967..........se0me~BIBIeBIBI.e.BIBIBI.BIBIBIs~e~eeemeea~ LIST OF PLATES Plate Hydroids, Moerisia lyonsi to Cordylophora caspia a a e..a a * a 111 ...................
    [Show full text]