degQ Algebraic Geometry Harpreet Singh Bedi
[email protected] 15 Aug 2019 Abstract Elementary Algebraic Geometry can be described as study of zeros of polynomials with integer degrees, this idea can be naturally carried over to ‘polynomials’ with rational degree. This paper explores affine varieties, tangent space and projective space for such polynomials and notes the differences and similarities between rational and integer degrees. The line bundles O (n),n Q are also constructed and their Cechˇ cohomology computed. ∈ Contents 1 Rational Degree 3 1.1 Rational degree via Direct Limit . ............. 4 2 Affine Algebraic Sets 5 2.1 Ideal ........................................... .......... 7 2.2 Nullstellensatz ................................. ............... 8 3 Noether Normalization 9 4 Rational functions and Morphisms 10 4.1 FiniteFields ....................................... .......... 11 4.1.1 degZ[1/p] viaDirectLimit .................................... 11 arXiv:2003.12586v1 [math.GM] 24 Mar 2020 5 Projective Geometry 13 5.1 GradedRingsandHomogeneousIdeals. ................ 13 6 Projective Nullstellensatz 14 6.1 Affinecone........................................ .......... 14 6.2 StandardAffineCharts .............................. ............. 15 7 Schemes 15 1 8 Proj and Twisting Sheaves O (n) 16 8.1 O (1) ................................................... .. 17 8.2 ComputingCohomology ............................... ........... 17 8.3 KunnethFormula .................................. ............ 21 9 Tangent Space 22 9.1 JacobianCriterion.................................