Commutative Algebra and Algebraic Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Math 296. Homework 3 (Due Jan 28) 1
Math 296. Homework 3 (due Jan 28) 1. Equivalence Classes. Let R be an equivalence relation on a set X. For each x ∈ X, consider the subset xR ⊂ X consisting of all the elements y in X such that xRy. A set of the form xR is called an equivalence class. (1) Show that xR = yR (as subsets of X) if and only if xRy. (2) Show that xR ∩ yR = ∅ or xR = yR. (3) Show that there is a subset Y (called equivalence classes representatives) of X such that X is the disjoint union of subsets of the form yR for y ∈ Y . Is the set Y uniquely determined? (4) For each of the equivalence relations from Problem Set 2, Exercise 5, Parts 3, 5, 6, 7, 8: describe the equivalence classes, find a way to enumerate them by picking a nice representative for each, and find the cardinality of the set of equivalence classes. [I will ask Ruthi to discuss this a bit in the discussion session.] 2. Pliability of Smooth Functions. This problem undertakes a very fundamental construction: to prove that ∞ −1/x2 C -functions are very soft and pliable. Let F : R → R be defined by F (x) = e for x 6= 0 and F (0) = 0. (1) Verify that F is infinitely differentiable at every point (don’t forget that you computed on a 295 problem set that the k-th derivative exists and is zero, for all k ≥ 1). −1/x2 ∞ (2) Let ϕ : R → R be defined by ϕ(x) = 0 for x ≤ 0 and ϕ(x) = e for x > 0. -
LECTURE 6: FIBER BUNDLES in This Section We Will Introduce The
LECTURE 6: FIBER BUNDLES In this section we will introduce the interesting class of fibrations given by fiber bundles. Fiber bundles play an important role in many geometric contexts. For example, the Grassmaniann varieties and certain fiber bundles associated to Stiefel varieties are central in the classification of vector bundles over (nice) spaces. The fact that fiber bundles are examples of Serre fibrations follows from Theorem ?? which states that being a Serre fibration is a local property. 1. Fiber bundles and principal bundles Definition 6.1. A fiber bundle with fiber F is a map p: E ! X with the following property: every ∼ −1 point x 2 X has a neighborhood U ⊆ X for which there is a homeomorphism φU : U × F = p (U) such that the following diagram commutes in which π1 : U × F ! U is the projection on the first factor: φ U × F U / p−1(U) ∼= π1 p * U t Remark 6.2. The projection X × F ! X is an example of a fiber bundle: it is called the trivial bundle over X with fiber F . By definition, a fiber bundle is a map which is `locally' homeomorphic to a trivial bundle. The homeomorphism φU in the definition is a local trivialization of the bundle, or a trivialization over U. Let us begin with an interesting subclass. A fiber bundle whose fiber F is a discrete space is (by definition) a covering projection (with fiber F ). For example, the exponential map R ! S1 is a covering projection with fiber Z. Suppose X is a space which is path-connected and locally simply connected (in fact, the weaker condition of being semi-locally simply connected would be enough for the following construction). -
Projective, Flat and Multiplication Modules
NEW ZEALAND JOURNAL OF MATHEMATICS Volume 31 (2002), 115-129 PROJECTIVE, FLAT AND MULTIPLICATION MODULES M a j i d M . A l i a n d D a v i d J. S m i t h (Received December 2001) Abstract. In this note all rings are commutative rings with identity and all modules are unital. We consider the behaviour of projective, flat and multipli cation modules under sums and tensor products. In particular, we prove that the tensor product of two multiplication modules is a multiplication module and under a certain condition the tensor product of a multiplication mod ule with a projective (resp. flat) module is a projective (resp. flat) module. W e investigate a theorem of P.F. Smith concerning the sum of multiplication modules and give a sufficient condition on a sum of a collection of modules to ensure that all these submodules are multiplication. W e then apply our result to give an alternative proof of a result of E l-B ast and Smith on external direct sums of multiplication modules. Introduction Let R be a commutative ring with identity and M a unital i?-module. Then M is called a multiplication module if every submodule N of M has the form IM for some ideal I of R [5]. Recall that an ideal A of R is called a multiplication ideal if for each ideal B of R with B C A there exists an ideal C of R such that B — AC. Thus multiplication ideals are multiplication modules. In particular, invertible ideals of R are multiplication modules. -
1 Affine Varieties
1 Affine Varieties We will begin following Kempf's Algebraic Varieties, and eventually will do things more like in Hartshorne. We will also use various sources for commutative algebra. What is algebraic geometry? Classically, it is the study of the zero sets of polynomials. We will now fix some notation. k will be some fixed algebraically closed field, any ring is commutative with identity, ring homomorphisms preserve identity, and a k-algebra is a ring R which contains k (i.e., we have a ring homomorphism ι : k ! R). P ⊆ R an ideal is prime iff R=P is an integral domain. Algebraic Sets n n We define affine n-space, A = k = f(a1; : : : ; an): ai 2 kg. n Any f = f(x1; : : : ; xn) 2 k[x1; : : : ; xn] defines a function f : A ! k : (a1; : : : ; an) 7! f(a1; : : : ; an). Exercise If f; g 2 k[x1; : : : ; xn] define the same function then f = g as polynomials. Definition 1.1 (Algebraic Sets). Let S ⊆ k[x1; : : : ; xn] be any subset. Then V (S) = fa 2 An : f(a) = 0 for all f 2 Sg. A subset of An is called algebraic if it is of this form. e.g., a point f(a1; : : : ; an)g = V (x1 − a1; : : : ; xn − an). Exercises 1. I = (S) is the ideal generated by S. Then V (S) = V (I). 2. I ⊆ J ) V (J) ⊆ V (I). P 3. V ([αIα) = V ( Iα) = \V (Iα). 4. V (I \ J) = V (I · J) = V (I) [ V (J). Definition 1.2 (Zariski Topology). We can define a topology on An by defining the closed subsets to be the algebraic subsets. -
Modules Embedded in a Flat Module and Their Approximations
International Journal of Recent Development in Engineering and Technology Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 2, Issue 3, March 2014) Modules Embedded in a Flat Module and their Approximations Asma Zaffar1, Muhammad Rashid Kamal Ansari2 Department of Mathematics Sir Syed University of Engineering and Technology Karachi-75300S Abstract--An F- module is a module which is embedded in a Finally, the theory developed above is applied to flat flat module F. Modules embedded in a flat module approximations particularly the I (F)-flat approximations. demonstrate special generalized features. In some aspects We start with some necessary definitions. these modules resemble torsion free modules. This concept generalizes the concept of modules over IF rings and modules 1.1 Definition: Mmod-A is said to be a right F-module over rings whose injective hulls are flat. This study deals with if it is embedded in a flat module F ≠ M mod-A. Similar F-modules in a non-commutative scenario. A characterization definition holds for a left F-module. of F-modules in terms of torsion free modules is also given. Some results regarding the dual concept of homomorphic 1.2 Definition: A ring A is said to be an IF ring if its every images of flat modules are also obtained. Some possible injective module is flat [4]. applications of the theory developed above to I (F)-flat module approximation are also discussed. 1.3 Definition [Von Neumann]: A ring A is regular if, for each a A, and some another element x A we have axa Keyswords-- 16E, 13Dxx = a. -
Asymptotic Behavior of the Length of Local Cohomology
ASYMPTOTIC BEHAVIOR OF THE LENGTH OF LOCAL COHOMOLOGY STEVEN DALE CUTKOSKY, HUY TAI` HA,` HEMA SRINIVASAN, AND EMANOIL THEODORESCU Abstract. Let k be a field of characteristic 0, R = k[x1, . , xd] be a polynomial ring, and m its maximal homogeneous ideal. Let I ⊂ R be a homogeneous ideal in R. In this paper, we show that λ(H0 (R/In)) λ(Extd (R/In,R(−d))) lim m = lim R n→∞ nd n→∞ nd e(I) always exists. This limit has been shown to be for m-primary ideals I in a local Cohen Macaulay d! ring [Ki, Th, Th2], where e(I) denotes the multiplicity of I. But we find that this limit may not be rational in general. We give an example for which the limit is an irrational number thereby showing that the lengths of these extention modules may not have polynomial growth. Introduction Let R = k[x1, . , xd] be a polynomial ring over a field k, with graded maximal ideal m, and I ⊂ R d n a proper homogeneous ideal. We investigate the asymptotic growth of λ(ExtR(R/I ,R)) as a function of n. When R is a local Gorenstein ring and I is an m-primary ideal, then this is easily seen to be equal to λ(R/In) and hence is a polynomial in n. A theorem of Theodorescu and Kirby [Ki, Th, Th2] extends this to m-primary ideals in local Cohen Macaulay rings R. We consider homogeneous ideals in a polynomial ring which are not m-primary and show that a limit exists asymptotically although it can be irrational. -
MTH 304: General Topology Semester 2, 2017-2018
MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds.......................... -
A Review of Commutative Ring Theory Mathematics Undergraduate Seminar: Toric Varieties
A REVIEW OF COMMUTATIVE RING THEORY MATHEMATICS UNDERGRADUATE SEMINAR: TORIC VARIETIES ADRIANO FERNANDES Contents 1. Basic Definitions and Examples 1 2. Ideals and Quotient Rings 3 3. Properties and Types of Ideals 5 4. C-algebras 7 References 7 1. Basic Definitions and Examples In this first section, I define a ring and give some relevant examples of rings we have encountered before (and might have not thought of as abstract algebraic structures.) I will not cover many of the intermediate structures arising between rings and fields (e.g. integral domains, unique factorization domains, etc.) The interested reader is referred to Dummit and Foote. Definition 1.1 (Rings). The algebraic structure “ring” R is a set with two binary opera- tions + and , respectively named addition and multiplication, satisfying · (R, +) is an abelian group (i.e. a group with commutative addition), • is associative (i.e. a, b, c R, (a b) c = a (b c)) , • and the distributive8 law holds2 (i.e.· a,· b, c ·R, (·a + b) c = a c + b c, a (b + c)= • a b + a c.) 8 2 · · · · · · Moreover, the ring is commutative if multiplication is commutative. The ring has an identity, conventionally denoted 1, if there exists an element 1 R s.t. a R, 1 a = a 1=a. 2 8 2 · ·From now on, all rings considered will be commutative rings (after all, this is a review of commutative ring theory...) Since we will be talking substantially about the complex field C, let us recall the definition of such structure. Definition 1.2 (Fields). -
General Topology
General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry). -
Arxiv:1703.06832V3 [Math.AC]
REGULARITY OF FI-MODULES AND LOCAL COHOMOLOGY ROHIT NAGPAL, STEVEN V SAM, AND ANDREW SNOWDEN Abstract. We resolve a conjecture of Ramos and Li that relates the regularity of an FI- module to its local cohomology groups. This is an analogue of the familiar relationship between regularity and local cohomology in commutative algebra. 1. Introduction Let S be a standard-graded polynomial ring in finitely many variables over a field k, and let M be a non-zero finitely generated graded S-module. It is a classical fact in commutative algebra that the following two quantities are equal (see [Ei, §4B]): S • The minimum integer α such that Tori (M, k) is supported in degrees ≤ α + i for all i. i • The minimum integer β such that Hm(M) is supported in degrees ≤ β − i for all i. i Here Hm is local cohomology at the irrelevant ideal m. The quantity α = β is called the (Castelnuovo–Mumford) regularity of M, and is one of the most important numerical invariants of M. In this paper, we establish the analog of the α = β identity for FI-modules. To state our result precisely, we must recall some definitions. Let FI be the category of finite sets and injections. Fix a commutative noetherian ring k. An FI-module over k is a functor from FI to the category of k-modules. We write ModFI for the category of FI-modules. We refer to [CEF] for a general introduction to FI-modules. Let M be an FI-module. Define Tor0(M) to be the FI-module that assigns to S the quotient of M(S) by the sum of the images of the M(T ), as T varies over all proper subsets of S. -
Math 250A: Groups, Rings, and Fields. H. W. Lenstra Jr. 1. Prerequisites
Math 250A: Groups, rings, and fields. H. W. Lenstra jr. 1. Prerequisites This section consists of an enumeration of terms from elementary set theory and algebra. You are supposed to be familiar with their definitions and basic properties. Set theory. Sets, subsets, the empty set , operations on sets (union, intersection, ; product), maps, composition of maps, injective maps, surjective maps, bijective maps, the identity map 1X of a set X, inverses of maps. Relations, equivalence relations, equivalence classes, partial and total orderings, the cardinality #X of a set X. The principle of math- ematical induction. Zorn's lemma will be assumed in a number of exercises. Later in the course the terminology and a few basic results from point set topology may come in useful. Group theory. Groups, multiplicative and additive notation, the unit element 1 (or the zero element 0), abelian groups, cyclic groups, the order of a group or of an element, Fermat's little theorem, products of groups, subgroups, generators for subgroups, left cosets aH, right cosets, the coset spaces G=H and H G, the index (G : H), the theorem of n Lagrange, group homomorphisms, isomorphisms, automorphisms, normal subgroups, the factor group G=N and the canonical map G G=N, homomorphism theorems, the Jordan- ! H¨older theorem (see Exercise 1.4), the commutator subgroup [G; G], the center Z(G) (see Exercise 1.12), the group Aut G of automorphisms of G, inner automorphisms. Examples of groups: the group Sym X of permutations of a set X, the symmetric group S = Sym 1; 2; : : : ; n , cycles of permutations, even and odd permutations, the alternating n f g group A , the dihedral group D = (1 2 : : : n); (1 n 1)(2 n 2) : : : , the Klein four group n n h − − i V , the quaternion group Q = 1; i; j; ij (with ii = jj = 1, ji = ij) of order 4 8 { g − − 8, additive groups of rings, the group Gl(n; R) of invertible n n-matrices over a ring R. -
Ring (Mathematics) 1 Ring (Mathematics)
Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.