Hymenoscyphus Pseudoalbidus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
B COMMISSION IMPLEMENTING REGULATION (EU) 2019/2072 of 28 November 2019 Establishing Uniform Conditions for the Implementatio
02019R2072 — EN — 06.10.2020 — 002.001 — 1 This text is meant purely as a documentation tool and has no legal effect. The Union's institutions do not assume any liability for its contents. The authentic versions of the relevant acts, including their preambles, are those published in the Official Journal of the European Union and available in EUR-Lex. Those official texts are directly accessible through the links embedded in this document ►B COMMISSION IMPLEMENTING REGULATION (EU) 2019/2072 of 28 November 2019 establishing uniform conditions for the implementation of Regulation (EU) 2016/2031 of the European Parliament and the Council, as regards protective measures against pests of plants, and repealing Commission Regulation (EC) No 690/2008 and amending Commission Implementing Regulation (EU) 2018/2019 (OJ L 319, 10.12.2019, p. 1) Amended by: Official Journal No page date ►M1 Commission Implementing Regulation (EU) 2020/1199 of 13 August L 267 3 14.8.2020 2020 ►M2 Commission Implementing Regulation (EU) 2020/1292 of 15 L 302 20 16.9.2020 September 2020 02019R2072 — EN — 06.10.2020 — 002.001 — 2 ▼B COMMISSION IMPLEMENTING REGULATION (EU) 2019/2072 of 28 November 2019 establishing uniform conditions for the implementation of Regulation (EU) 2016/2031 of the European Parliament and the Council, as regards protective measures against pests of plants, and repealing Commission Regulation (EC) No 690/2008 and amending Commission Implementing Regulation (EU) 2018/2019 Article 1 Subject matter This Regulation implements Regulation (EU) 2016/2031, as regards the listing of Union quarantine pests, protected zone quarantine pests and Union regulated non-quarantine pests, and the measures on plants, plant products and other objects to reduce the risks of those pests to an acceptable level. -
The Phylogenetic Relationships of Torrendiella and Hymenotorrendiella Gen
Phytotaxa 177 (1): 001–025 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.177.1.1 The phylogenetic relationships of Torrendiella and Hymenotorrendiella gen. nov. within the Leotiomycetes PETER R. JOHNSTON1, DUCKCHUL PARK1, HANS-OTTO BARAL2, RICARDO GALÁN3, GONZALO PLATAS4 & RAÚL TENA5 1Landcare Research, Private Bag 92170, Auckland, New Zealand. 2Blaihofstraße 42, D-72074 Tübingen, Germany. 3Dpto. de Ciencias de la Vida, Facultad de Biología, Universidad de Alcalá, P.O.B. 20, 28805 Alcalá de Henares, Madrid, Spain. 4Fundación MEDINA, Microbiología, Parque Tecnológico de Ciencias de la Salud, 18016 Armilla, Granada, Spain. 5C/– Arreñales del Portillo B, 21, 1º D, 44003, Teruel, Spain. Corresponding author: [email protected] Abstract Morphological and phylogenetic data are used to revise the genus Torrendiella. The type species, described from Europe, is retained within the Rutstroemiaceae. However, Torrendiella species reported from Australasia, southern South America and China were found to be phylogenetically distinct and have been recombined in the newly proposed genus Hymenotorrendiel- la. The Hymenotorrendiella species are distinguished morphologically from Rutstroemia in having a Hymenoscyphus-type rather than Sclerotinia-type ascus apex. Zoellneria, linked taxonomically to Torrendiella in the past, is genetically distinct and a synonym of Chaetomella. Keywords: ascus apex, phylogeny, taxonomy, Hymenoscyphus, Rutstroemiaceae, Sclerotiniaceae, Zoellneria, Chaetomella Introduction Torrendiella was described by Boudier and Torrend (1911), based on T. ciliata Boudier in Boudier and Torrend (1911: 133), a species reported from leaves, and more rarely twigs, of Rubus, Quercus and Laurus from Spain, Portugal and the United Kingdom (Graddon 1979; Spooner 1987; Galán et al. -
The Ascomycota
Papers and Proceedings of the Royal Society of Tasmania, Volume 139, 2005 49 A PRELIMINARY CENSUS OF THE MACROFUNGI OF MT WELLINGTON, TASMANIA – THE ASCOMYCOTA by Genevieve M. Gates and David A. Ratkowsky (with one appendix) Gates, G. M. & Ratkowsky, D. A. 2005 (16:xii): A preliminary census of the macrofungi of Mt Wellington, Tasmania – the Ascomycota. Papers and Proceedings of the Royal Society of Tasmania 139: 49–52. ISSN 0080-4703. School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia (GMG*); School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia (DAR). *Author for correspondence. This work continues the process of documenting the macrofungi of Mt Wellington. Two earlier publications were concerned with the gilled and non-gilled Basidiomycota, respectively, excluding the sequestrate species. The present work deals with the non-sequestrate Ascomycota, of which 42 species were found on Mt Wellington. Key Words: Macrofungi, Mt Wellington (Tasmania), Ascomycota, cup fungi, disc fungi. INTRODUCTION For the purposes of this survey, all Ascomycota having a conspicuous fruiting body were considered, excluding Two earlier papers in the preliminary documentation of the endophytes. Material collected during forays was described macrofungi of Mt Wellington, Tasmania, were confined macroscopically shortly after collection, and examined to the ‘agarics’ (gilled fungi) and the non-gilled species, microscopically to obtain details such as the size of the -
Clavibacter Michiganensis Subsp
Bulletin OEPP/EPPO Bulletin (2016) 46 (2), 202–225 ISSN 0250-8052. DOI: 10.1111/epp.12302 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 7/42 (3) Diagnostics Diagnostic PM 7/42 (3) Clavibacter michiganensis subsp. michiganensis Specific scope Specific approval and amendment This Standard describes a diagnostic protocol for Approved in 2004-09. Clavibacter michiganensis subsp. michiganensis.1,2 Revision adopted in 2012-09. Second revision adopted in 2016-04. The diagnostic procedure for symptomatic plants (Fig. 1) 1. Introduction comprises isolation from infected tissue on non-selective Clavibacter michiganensis subsp. michiganensis was origi- and/or semi-selective media, followed by identification of nally described in 1910 as the cause of bacterial canker of presumptive isolates including determination of pathogenic- tomato in North America. The pathogen is now present in ity. This procedure includes tests which have been validated all main areas of production of tomato and is quite widely (for which available validation data is presented with the distributed in the EPPO region (EPPO/CABI, 1998). Occur- description of the relevant test) and tests which are currently rence is usually erratic; epidemics can follow years of in use in some laboratories, but for which full validation data absence or limited appearance. is not yet available. Two different procedures for testing Tomato is the most important host, but in some cases tomato seed are presented (Fig. 2). In addition, a detection natural infections have also been recorded on Capsicum, protocol for screening for symptomless, latently infected aubergine (Solanum dulcamara) and several Solanum tomato plantlets is presented in Appendix 1, although this weeds (e.g. -
Preliminary Classification of Leotiomycetes
Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades. -
Implementation of Recommendations on Invasive Alien Species / Mise En Œuvre Des Recommandations Sur Les Espèces Exotiques Envahissantes
Strasbourg, 13 May 2011 T-PVS/Inf (2011) 3 [Inf03a_2011.doc] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Bern Convention Group of Experts on Invasive Alien Species / Groupe d’experts de la Convention de Berne sur les espèces exotiques envahissantes St. Julians, Malta (18-20 May 2011) / St Julians, Malte (18-20 mai 2011) __________ Implementation of recommendations on Invasive Alien Species / Mise en œuvre des recommandations sur les espèces exotiques envahissantes National reports and contributions / Rapports nationaux et Contributions-- Document prepared by the Directorate of Culture and of Cultural and Natural Heritage This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. T-PVS/Inf (2011) 3 - 2 - CONTENTS / SOMMAIRE __________ 1. Armenia / Arménie ................................................................................................................ 3 2. Belgium / Belgique ................................................................................................................ 7 3. France / France....................................................................................................................... 16 4. Ireland / Irlande...................................................................................................................... ²19 5. Italy / Italie............................................................................................................................ -
048 (3) Plenodomus Tracheiphilus (Formerly Phoma Tracheiphila)
Bulletin OEPP/EPPO Bulletin (2015) 45 (2), 183–192 ISSN 0250-8052. DOI: 10.1111/epp.12218 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 7/048 (3) Diagnostics Diagnostic PM 7/048 (3) Plenodomus tracheiphilus (formerly Phoma tracheiphila) Specific scope Specific approval and amendment This Standard describes a diagnostic protocol for First approved in 2004–09. Plenodomus tracheiphilus (formerly Phoma tracheiphila).1 Revision approved in 2007–09 and 2015–04. Phytosanitary categorization: EPPO A2 list N°287; EU 1. Introduction Annex designation II/A2. Plenodomus tracheiphilus is a mitosporic fungus causing a destructive vascular disease of citrus named ‘mal secco’. 3. Detection The name of the disease was taken from the Italian words ‘male’ = disease and ‘secco’ = dry. The disease first 3.1 Symptoms appeared on the island of Chios in Greece in 1889, but the causal organism was not determined until 1929. Symptoms appear in spring as leaf and shoot chlorosis fol- The principal host species is lemon (Citrus limon), but lowed by a dieback of twigs and branches (Fig. 2A). On the the fungus has also been reported on many other citrus spe- affected twigs, immersed, flask-shaped or globose pycnidia cies, including those in the genera Citrus, Fortunella, appear as black points within lead-grey or ash-grey areas Poncirus and Severina; and on their interspecific and (Fig. 3B). On fruits, browning of vascular bundles can be intergenic hybrids (EPPO/CABI, 1997 – Migheli et al., observed in the area of insertion of the peduncle. 2009). -
Inf26erev 2011 Code of Conduct Zoos+Aquaria IAS FINAL
Strasbourg, 8 October 2012 T-PVS/Inf (2011) 26 revised [Inf26erev_2011.doc] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Standing Committee 32nd meeting Strasbourg, 27-30 November 2012 __________ EUROPEAN CODE OF CONDUCT ON ZOOLOGICAL GARDENS AND AQUARIA AND INVASIVE ALIEN SPECIES Code, rationale and supporting information - FINAL VERSION – (October 2012) Report prepared by Mr Riccardo Scalera, Mr Piero Genovesi, Mr Danny de man, Mr Bjarne Klausen, Ms Lesley Dickie This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. T-PVS/Inf (2011) 26 rev. - 2 – INDEX 1. INTRODUCTION ...........................................................................................................................3 1.1 Why a Code of Conduct ? ......................................................................................................4 2. SCOPE AND AIM ..........................................................................................................................6 3. BACKGROUND .............................................................................................................................7 3.1 The History of Zoological Gardens and Aquaria.....................................................................7 3.2 Zoological Gardens and Aquaria as pathways for IAS............................................................7 3.2.1 IAS originating from zoological gardens and aquaria ....................................................8 -
Data Requirements for the Authorisation of a New
European and Mediterranean Plant Protection Organization Organisation Européenne et Méditerranéenne pour la Protection des Plantes 14/19647 Examples of zonal efficacy evaluation Clarification of efficacy data requirements for the authorization of an insecticide against aphids, thrips and whiteflies in ornamental plants in greenhouses in the EU Proposed by Claudia Jilesen, National Plant Protection Organization, the Netherlands, February 2014 This document is intended to assist applicants and evaluators to interpret EPPO Standard PP 1/278 Principles of zonal data production and evaluation. Expert judgement should be applied in all cases. The focus of this paper is in particular on the number and location of trials for the justification of effectiveness, phytotoxicity and resistance issues. There is a need to provide clarification of these areas as part of the zonal authorization process for plant protection products (as defined in EU Regulation 1107/2009 (EC, 2009). Regulation EC 1107/2009 specifies that the assessment of plant protection products should be conducted on a zonal basis. Article 33 of EC 1107/2009 considers that in the case of an application for use in greenhouses, only one Member State evaluates the application, taking account of all zones. All trials should be carried out under Good Experimental Practice (GEP) and using all relevant general EPPO Standards. Efficacy trials should be performed according to relevant EPPO Standards PP 1/23 Aphids on ornamental plants, PP 1/160 Thrips on glasshouse crops and 1/36 Whiteflies (Trialeurodes vaporariorum, Bemisia tabaci) on protected crops (available at http://pp1.eppo.int/). The most common and harmful sucking insects in ornamental plants are aphids, thrips and whiteflies and this example applies only to them. -
Regulated Non-Quarantine and Protected Zone Pests Regulated Non-Quarantine Pests (RNQP) What Is a Regulated Non-Quarantine Pest(RNQP) Defined As?
Authorised Professional Operator Assessment Module 4 – Regulated non-quarantine and Protected Zone Pests Regulated non-quarantine pests (RNQP) What is a Regulated non-quarantine pest(RNQP) defined as? ‘A non-quarantine pest whose presence in plants for planting affects the intended use of those plants with an economically unacceptable impact and which is therefore regulated within the EU territory’ Meaning: ▪ RNQPs a level of pest infestation may be tolerated (Threshold Limits) ▪ Specific pests present in EU and transmitted through specific plants for planting ▪ Feasible and effective measures are available to prevent presence An Roinn Talmhaíochta, Bia agus Mara │ Department of Agriculture, Food and the Marine RNQP & their threshold limits Symptoms of virus infection Solanum tuberosum Threshold for Threshold Threshold for L. the direct for the the direct progeny of pre-basic direct progeny of seed progeny of certified seed potatoes basic seed potatoes potatoes PBTC PB 0% 0.5% 4,0% 10,0% Thanatephorus Solanum tuberosum 0% 1,0% 5,0% 5,0% cucumeris L. affecting affecting affecting tubers tubers over tubers over over more more than more than than 10% 10% of their 10% of their of their surface surface This graphic surfaceis unreadable, can you link to Spongospora Solanum tuberosumsame0% or recreate1,0% across two rows?3,0% 3,0% subterranea ( L. affecting affecting affecting tubers tubers over tubers over over more more than more than than 10% 10% of their 10% of their of their surface surface surface Body Level One Body Level Two Body Level Three Body Level Four Body Level Five 3 An Roinn Talmhaíochta, Bia agus Mara | Department of Agriculture, Food and the Marine RNQP & their threshold limits Leaf roll virus Solanum tuberosum 0% 0.1% 0.8% 6,0% L. -
Hymenoscyphus Fraxineus
Hymenoscyphus fraxineus Synonyms: Chalara fraxinea Kowalski (anamorph), Hymenoscyphus pseudoalbidus (teleomorph). Common Name(s) Ash dieback, ash decline Type of Pest Fungal pathogen Taxonomic Position Class: Leotiomycetes, Order: Helotiales, Family: Helotiaceae Reason for Inclusion in Figure 1. Mature Fraxinus excelsior showing Manual extensive shoot, twig, and branch dieback. CAPS Target: AHP Prioritized Epicormic shoot formation is also present. Photo Pest List – 2010-2016 credit: Andrin Gross. Background An extensive dieback of ash (Fig. 1) was observed from 1996 to 2006 in Lithuania and Poland. Trees were dying in all age classes, irrespective of site conditions and regeneration conditions. A fungus, described as a new species Chalara fraxinea, was isolated from shoots and some roots (Kowalski, 2006). The fungal pathogen varied from other species of Chalara by its small, short cylindrical conidia extruded in chains or in slimy droplets, morphological features of the phialophores, and by colony characteristics. Initial taxonomic studies concerning Chalara fraxinea established that its perfect state was the ascomycete Hymenoscyphus albidus (Gillet) W. Phillips, a fungus that has been known from Europe since 1851. Kowalski and Holdenrieder (2009b) provide a description and photographs of the teleomorphic state, Hymenoscyphus albidus. A molecular taxonomic study of Hymenoscyphus albidus indicated that there was significant evidence for the existence of two morphologically very similar taxa, H. albidus, and a new species, Hymenoscyphus pseudoalbidus (Queloz et al., 2010). Furthermore, studies suggested that H. albidus was likely a non-pathogenic species, whereas H. pseudoalbidus was the virulent species responsible for the current ash dieback epidemic in Europe (Queloz et al., 2010). A survey in Denmark showed that expansion of H. -
Taxonomic Study of Lambertella (Rutstroemiaceae, Helotiales) and Allied Substratal Stroma Forming Fungi from Japan
Taxonomic Study of Lambertella (Rutstroemiaceae, Helotiales) and Allied Substratal Stroma Forming Fungi from Japan 著者 趙 彦傑 内容記述 この博士論文は全文公表に適さないやむを得ない事 由があり要約のみを公表していましたが、解消した ため、2017年8月23日に全文を公表しました。 year 2014 その他のタイトル 日本産Lambertella属および基質性子座を形成する 類縁属の分類学的研究 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2013 報告番号 12102甲第6938号 URL http://hdl.handle.net/2241/00123740 Taxonomic Study of Lambertella (Rutstroemiaceae, Helotiales) and Allied Substratal Stroma Forming Fungi from Japan A Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Agricultural Science (Doctoral Program in Biosphere Resource Science and Technology) Yan-Jie ZHAO Contents Chapter 1 Introduction ............................................................................................................... 1 1–1 The genus Lambertella in Rutstroemiaceae .................................................................... 1 1–2 Taxonomic problems of Lambertella .............................................................................. 5 1–3 Allied genera of Lambertella ........................................................................................... 7 1–4 Objectives of the present research ................................................................................. 12 Chapter 2 Materials and Methods ............................................................................................ 17 2–1 Collection and isolation