Ecosystem Carbon Dynamics in Logged Forest of Malaysian Borneo

Total Page:16

File Type:pdf, Size:1020Kb

Ecosystem Carbon Dynamics in Logged Forest of Malaysian Borneo Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2009 Ecosystem carbon dynamics in logged forest of Malaysian Borneo Saner, P G Abstract: The tropical rainforest of Borneo is heavily disturbed by logging, to date less than half of the original forest cover remains. To counteract such development logged forest is rehabilitated to regenerate its natural protective function. In this thesis we consider the carbon budget of logged forest and the ecology of the trees that are planted for rehabilitation. We show that the logged forest under study differs from unlogged forest due to the lack of the dominant trees and hence the organic carbon thatis stored in their biomass. Besides this difference our results indicate that logged forest can maintain its protective function for carbon storage and is therefore worth preserving. The dominant trees, known as dipterocarps, belong to the Dipterocarpaceae family and are keystone species of the lowland forests of Borneo. On the basis of experimental work we study the carbon dynamics of selected dipterocarp species at the seedling stage. With plant physiological measurements of the carbohydrate stores we demonstrate how seedlings adapt to a changing light environment. Our results show that photosynthates are invested into growth or carbohydrate reserves, irrespective of the tree species under study. Further, experimental evidence suggests that the ectomycorrhizal association (plant-fungi-symbiosis) is crucial for the growth of seedlings and should therefore be considered for forest rehabilitation measures. In contrast we could not find evidence for a complex ectomycorrhiza-network between dipterocarp trees and seedlings inlogged forest. Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-25404 Dissertation Published Version Originally published at: Saner, P G. Ecosystem carbon dynamics in logged forest of Malaysian Borneo. 2009, University of Zurich, Faculty of Science. ECOSYSTEM CARBON DYNAMICS IN LOGGED FOREST OF MALAYSIAN BORNEO Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Philippe Gérard Saner aus Beinwil (SO) Promotionskomitee: Prof. Dr. Andrew Hector (Leitung der Dissertation) Prof. Dr. Bernhard Schmid Prof. Dr. Michael Scherer-Lorenzen Dr. Simon Egli Zürich 2009 Contents Contents 1 Summary .....................................................................................................................1 2 Zusammenfassung........................................................................................................7 3 General Introduction ...................................................................................................13 3.1 Scientific background .........................................................................................................14 3.2 Thesis outline .....................................................................................................................17 3.3 References ..........................................................................................................................20 4 Chapter One ................................................................................................................23 4.1 Introduction to the Sabah Biodiversity Experiment ............................................................23 4.2 Lowland mixed dipterocarp forest ......................................................................................24 4.3 Dipterocarp ecology ...........................................................................................................25 4.4 Timber extraction ..............................................................................................................26 4.5 Forest rehabilitation ...........................................................................................................28 4.6 Malua Forest Reserve .........................................................................................................29 4.7 The Sabah Biodiversity Experiment ....................................................................................33 4.7.1 Landscape, geology and soil classification ...........................................................................34 4.7.2 Rainfall ..............................................................................................................................35 4.8 Acknowledgements ............................................................................................................37 4.9 References ..........................................................................................................................38 5 Chapter Two ................................................................................................................41 5.1 Carbon Baseline Estimation of the Sabah Biodiversity Experiment ....................................41 5.2 Abstract .............................................................................................................................42 5.3 Introduction ......................................................................................................................43 5.4 Material and Methods ........................................................................................................46 5.4.1 The Malua Forest Reserve ..................................................................................................46 5.4.2 The Sabah Biodiversity Experiment ....................................................................................46 5.4.3 Tree inventory ....................................................................................................................47 5.4.4 Tree diversity ......................................................................................................................48 5.4.5 Above-ground tree biomass ................................................................................................49 5.4.6 Wood density .....................................................................................................................50 5.4.7 Above-ground non-tree biomass ........................................................................................51 5.4.8 Standing litter and fine roots ..............................................................................................52 5.4.9 Litterfall .............................................................................................................................52 5.4.10 Deadwood .........................................................................................................................53 5.4.11 Soil organic carbon ............................................................................................................53 5.4.12 Carbon estimation .............................................................................................................54 5.4.13 Statistical analysis and graphical presentation .....................................................................54 5.5 Results ...............................................................................................................................55 5.5.1 Tree diversity ......................................................................................................................55 5.5.2 Carbon baseline estimation ................................................................................................57 Contents 5.5.3 Above-ground tree biomass ................................................................................................57 5.5.4 Above-ground non-tree biomass .........................................................................................62 5.5.5 Litterfall .............................................................................................................................62 5.5.6 Soil organic carbon ............................................................................................................64 5.6 Discussion..........................................................................................................................65 5.6.1 Tree carbon storage ............................................................................................................65 5.6.2 Tree diversity ......................................................................................................................66 5.6.3 Carbon baseline estimation ................................................................................................68 5.7 Acknowledgements ............................................................................................................71 5.8 Appendix ...........................................................................................................................73 5.9 References ..........................................................................................................................80 6 Chapter Three ..............................................................................................................87 6.1 Reduced Soil Respiration in Gaps in Logged Lowland Dipterocarp Forest .........................87 6.2 Abstract .............................................................................................................................88 6.3 Introduction
Recommended publications
  • Research Paper Vegetation Diversity in the High-Severity Burned Over Forest Areas in East Kalimantan, Indonesia
    Academia Journal of Agricultural Research 3(9): 213-218, September 2015 DOI: 10.15413/ajar.2015.0150 ISSN: 2315-7739 ©2015 Academia Publishing Research Paper Vegetation diversity in the high-severity burned over forest areas in East Kalimantan, Indonesia Accepted 26th August, 2015 ABSTRACT Sutrisno Hadi Purnomo1, Ariffien Bratawinata2, B.D.A.S. Simarangkir2 and The forests in Kalimantan, Indonesia were burned several times. Almost half of the Paulus Matius2 forest area was burned and the vegetation in the forest was destroyed. This research is generally aimed at finding what disturbed the forest vegetation 1 Post Graduate Program of Forestry towards its rehabilitation process. Particularly, the purpose of this research was to Science, Mulawarman University, Samarinda, East Kalimantan, Indonesia. find out the diversity of species. The plot used in this research was a single plot, 2Faculty of Forestry, Mulawarman the scope was 100 × 100 m (1 ha). The result of the study found that there were 74 University, Samarinda, East Kalimantan, species at the trees and poles level, 108 species at the stakes level and 55 species Indonesia. at the seedlings level. *Corresponding author. E-mail: [email protected] Key words: Vegetation diversity, high severity burned. INTRODUCTION East Kalimantan, Indonesia is covered with low land 117°08 east longitude), Kutai Kartanegara district, East tropical rain forest which is dominated by different types of Kalimantan Province, Indonesia. The plot used in this trees from Dipterocarpaceae family. Tropical rain forest is research was a single plot, the scope was 100 × 100 m (1 enriched with its flora diversity compared to other forest ha).
    [Show full text]
  • Nazrin Full Phd Thesis (150246576
    Maintenance and conservation of Dipterocarp diversity in tropical forests _______________________________________________ Mohammad Nazrin B Abdul Malik A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy Faculty of Science Department of Animal and Plant Sciences November 2019 1 i Thesis abstract Many theories and hypotheses have been developed to explain the maintenance of diversity in plant communities, particularly in hyperdiverse tropical forests. Maintenance of the composition and diversity of tropical forests is vital, especially species of high commercial value. I focus on the high value dipterocarp timber species of Malaysia and Borneo as these have been extensive logged owing to increased demands from global timber trade. In this thesis, I explore the drivers of diversity of this group, as well as the determinants of global abundance, conservation and timber value. The most widely supported hypothesis for explaining tropical diversity is the Janzen Connell hypothesis. I experimentally tested the key elements of this, namely density and distance dependence, in two dipterocarp species. The results showed that different species exhibited different density and distance dependence effects. To further test the strength of this hypothesis, I conducted a meta-analysis combining multiple studies across tropical and temperate study sites, and with many species tested. It revealed significant support for the Janzen- Connell predictions in terms of distance and density dependence. Using a phylogenetic comparative approach, I highlight how environmental adaptation affects dipterocarp distribution, and the relationships of plant traits with ecological factors and conservation status. This analysis showed that environmental and ecological factors are related to plant traits and highlights the need for dipterocarp conservation priorities.
    [Show full text]
  • File 1091900019.Pdf
    t $ (o -B.]| $ s $ (} s G.} J G $ s, t t Z, -I I o %E o d qd E ** (o \ Lt t g, t, { I E .+ tr :r, fo r ua $-s *J { t :r, - u € as v { { + r €D $ .i i.' g tOZ 'g [-? I fuenuep 'elseuopul .uededr;llBg Alsrenlun IaJBW seleqes ? I1;s.lel!un uButJe,$elnn {ttsJeAl po! g uB!seuopul rol r{letco S I'IISHSAICOIg NO gSNgUgdN 03 TVNOITVNUSJ,NI Greenpeace action in Kalimantan, December 3, 2015; photo by Ulet Ifansasti Selected m will be will available at anuscripts Organized by Abs vol. vol. Sem Nas Sem 3 | no. 1 | 1 no. | ISSN Konf Intl Intl Konf : 2407 pp. 1 pp. Masy - - 80 53 69 | Biodiv Indon Biodiv Jan 201 6 SECRETARIAT ADDRESS 1. Sekretariat Masyarakat Biodiversitas Indonesia, Kantor Jurnal Biodiversitas, Jurusan Biologi Gd. A, Lt. 1, FMIPA UNS, Jl. Ir. Sutami 36A Surakarta 57126. Tel. +62-813-8506-6018. Email: [email protected]. Website: biodiversitas.mipa.uns.ac.id/S/2016/samarinda/home.html 2. Kantor UPT Layanan Internasional, Universitas Mulawarman. Gedung Pascasarjana Pertanian Tropika Basah Lt. 3 Universitas Mulawarman, Jln. Krayan Kampus Gunung Kelua, Samarinda 75123, Kalimantan Timur. Tel.: +62-812- 5569-3222 Organized by Selected manuscripts will be available at TIME SCHEDULE International Conference on Biodiversity Society for Indonesian Biodiversity (SIB) Balikpapan, Indonesia, 14-16 January 2016 TIME ACTIVITIES PERSON IN CHARGE SITE January 14, 2016 08.00-09.00 Registration Committee Lobby 09.00-09.15 Speech of the Committee Chairman of the committee R0 09.15-09.30 Speech of the International Office Head of International Office of R0 the Mulawarman University 09.30-09.45 Opening speech Rector of the Mulawarman R0 University 09.45-10.00 Photo Session and Coffee Break Committee R0, Lobby 10.00-12.00 Panel 1 Moderator R0 Prof.
    [Show full text]
  • The Genus Koilodepas Hassk. (Euphorbiaceae) in Malesia
    B I O D I V E R S I T A S ISSN: 1412-033X Volume 5, Nomor 2 Juli 2004 Halaman: 52-60 The Genus Koilodepas Hassk. (Euphorbiaceae) in Malesia MUZAYYINAH1,♥, EDI GUHARDJA2, MIEN A. RIFAI3, JOHANIS P. MOGEA3, PETER VAN WALZEN4 1Program Study of Biological Education, Department of PMIPA FKIP Sebelas Maret University Surakarta 57126, Indonesia. 2Department of Biology, Faculty of Mathematic and Sciences, Bogor Agriculture University, Bogor Indonesia 3"Herbarium Bogoriense", Department of Botany, Research Center of Biology -LIPI, Bogor 16013, Indonesia 4Rijksherbarium Leiden, The Netherlands. Received: 8th December 2003. Accepted: 17th May 2004. ABSTRACT The Malesian genus Koilodepas Hassk. has been revised based on the morphological and anatomical character using available herbarium collection in Herbarium Bogoriense and loan specimens from Kew Herbarium and Leiden Rijksherbarium. The present study is based on the observation of 176 specimens. Eight species has been recognized, namely K. bantamense, K. cordifolium, K. frutescns, K. homalifolium, K. laevigatum, K. longifolium, K. pectinatum, and two varieties within K. brevipes. The highest number of species is found in Borneo (5 species), three of them are found endemically in Borneo, K. cordisepalum endemically in Aceh, and K. homalifolium endemically in Papua New Guinea. A phylogenetic analysis of the genus, with Cephalomappa as outgroup, show that the species within the genus Koilodepas is in one group, starting with K. brevipes as a primitive one and K. bantamense occupies in an advance position. 2004 Jurusan Biologi FMIPA UNS Surakarta Keyword: Koilodepas Hassk., Malesia, outgroup, phylogenetic analysis, outgroup. INTRODUCTION Methods The methods of research were morphological and The genus Koilodepas belongs to the tribe Epipri- leaf-anatomical description.
    [Show full text]
  • Key to the Families and Genera of Malesian <I>Euphorbiaceae</I> in the Wide Sense
    Blumea 65, 2020: 53–60 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE https://doi.org/10.3767/blumea.2020.65.01.05 Key to the families and genera of Malesian Euphorbiaceae in the wide sense P.C. van Welzen1,2 Key words Abstract Identification keys are provided to the different families in which the Euphorbiaceae are split after APG IV. Presently, Euphorbiaceae in the strict sense, Pandaceae, Peraceae, Phyllanthaceae, Picrodendraceae and Euphorbiaceae Putranjivaceae are distinguished as distinct families. Within the families, keys to the different genera occurring in the keys Malesian area, native and introduced, are presented. The keys are to be tested and responses are very welcome. Pandaceae Peraceae Published on 3 April 2020 Phyllanthaceae Picrodendraceae Putranjivaceae INTRODUCTION KEY TO THE EUPHORBIACEOUS FAMILIES The Euphorbiaceae in the wide sense (sensu lato, s.lat.) were 1. Ovary with a single ovule per locule . 2 always a heterogeneous group without any distinct combination 1. Ovary with two ovules per locule ................... 4 of characters. The most typical features are the presence of uni- 2. Fruits drupes. Flowers of both sexes with petals . sexual simple flowers and fruits that fall apart in various carpel ...................................2. Pandaceae fragments and seeds, leaving the characteristic columella on the 2. Fruits capsules, sometimes drupes or berries, then flowers plant. However, some groups, like the Pandaceae and Putranji­ of both sexes lacking petals.......................3 vaceae, were morphologically already known to be quite unlike 3. Herbs, shrubs, lianas, trees, mono- or dioecious. Flowers in the rest of the Euphorbiaceae s.lat. (e.g., Radcliffe-Smith 1987). cauliflorous, ramiflorous, axillary, or terminal inflorescences The Putranjivaceae formerly formed the tribe Drypeteae in the ................................1.
    [Show full text]
  • Incidence of Extra-Floral Nectaries and Their Effect on the Growth and Survival of Lowland Tropical Rain Forest Trees
    Incidence of Extra-Floral Nectaries and their Effect on the Growth and Survival of Lowland Tropical Rain Forest Trees Honors Research Thesis Presented in Partial Fulfillment of the Requirements for graduation “with Honors Research Distinction in Evolution and Ecology” in the undergraduate colleges of The Ohio State University by Andrew Muehleisen The Ohio State University May 2013 Project Advisor: Dr. Simon Queenborough, Department of Evolution, Ecology and Organismal Biology Incidence of Extra-Floral Nectaries and their Effect on the Growth and Survival of Lowland Tropical Rain Forest Trees Andrew Muehleisen Evolution, Ecology & Organismal Biology, The Ohio State University, OH 43210, USA Summary Mutualistic relationships between organisms have long captivated biologists, and extra-floral nectaries (EFNs), or nectar-producing glands, found on many plants are a good example. The nectar produced from these glands serves as food for ants which attack intruders that may threaten their free meal, preventing herbivory. However, relatively little is known about their impact on the long-term growth and survival of plants. To better understand the ecological significance of EFNs, I examined their incidence on lowland tropical rain forest trees in Yasuni National Park in Amazonian Ecuador. Of those 896 species that were observed in the field, EFNs were found on 96 species (11.2%), widely distributed between different angiosperm families. This rate of incidence is high but consistent with other locations in tropical regions. Furthermore, this study adds 13 new genera and 2 new families (Urticaceae and Caricaceae) to the list of taxa exhibiting EFNs. Using demographic data from a long-term forest dynamics plot at the same site, I compared the growth and survival rates of species that have EFNs with those that do not.
    [Show full text]
  • Rehabilitation of Degraded Tropical Forest Ecosystems Project 3
    Rehabilitation of Degraded Tropical 1 Forest Ecosystems Project S. Kobayashi1 , J.W. Turnbull2 and C. Cossalter3 Abstract Tropical forests are being cleared at a rate of 16.9 million hectares per year and timber harvesting results in over 5 million hectares becoming secondary forests annually without adequate management. This decrease and degradation affect both timber production and many environmental values. Selective and clear cutting, and burning are major causes of land degradation. An assessment is needed of harvesting impacts that influence rehabilitation methods. The harvesting impacts on ecosystems vary with time and methods of logging, timber transporting methods, logged tree species, soil characteristics, topographies, local rainfall patterns etc., and must be assessed in a range of conditions with long term monitoring. Increased supply of wood from plantation forests has the potential to reduce pressure on natural forest resources as well as contributing to environmental care and economic advancement for landholders. Short-rotation plantations can result in changes in nutrient storage and cycling processes due to factors such as harvesting wood, fertilisation, erosion, leaching, and modified patterns of organic matter turnover. These factors can affect storage and supply of soil nutrients for tree growth and consequently the sustainability of plantation systems. Opportunities exist to manipulate soil organic matter through silvicultural practices but these must be technically feasible, economically viable and socially acceptable. The following research objectives are proposed: (1). evaluation of forest harvesting and fire impacts on the forest ecosystems, (2). development of methods to rehabilitate logged-over forests, secondary forests and degraded forest lands, (3). development of silvicultural techniques on plantation and degraded lands, (4).
    [Show full text]
  • Nomination File 1203
    Nomination of The Central Highlands of Sri Lanka: Its Cultural and Natural Heritage for inscription on the World Heritage List Submitted to UNESCO by the Government of the Democratic Socialist Republic of Sri Lanka 1 January 2008 Nomination of The Central Highlands of Sri Lanka: Its Cultural and Natural Heritage for inscription on the World Heritage List Submitted to UNESCO by the Government of the Democratic Socialist Republic of Sri Lanka 1 January 2008 Contents Page Executive Summary vii 1. Identification of the Property 1 1.a Country 1 1.b Province 1 1.c Geographical coordinates 1 1.e Maps and plans 1 1.f Areas of the three constituent parts of the property 2 1.g Explanatory statement on the buffer zone 2 2. Description 5 2.a Description of the property 5 2.a.1 Location 5 2.a.2 Culturally significant features 6 PWPA 6 HPNP 7 KCF 8 2.a.3 Natural features 10 Physiography 10 Geology 13 Soils 14 Climate and hydrology 15 Biology 16 PWPA 20 Flora 20 Fauna 25 HPNP 28 Flora 28 Fauna 31 KCF 34 Flora 34 Fauna 39 2.b History and Development 44 2.b.1 Cultural features 44 PWPA 44 HPNP 46 KCF 47 2.b.2 Natural aspects 49 PWPA 51 HPNP 53 KCF 54 3. Justification for Inscription 59 3.a Criteria under which inscription is proposed (and justification under these criteria) 59 3..b Proposed statement of outstanding universal value 80 3.b.1 Cultural heritage 80 3.b.2 Natural heritage 81 3.c Comparative analysis 84 3.c.1 Cultural heritage 84 PWPA 84 HPNP 85 KCF 86 3.c.2 Natural Heritage 86 3.d Integrity and authenticity 89 3.d.1 Cultural features 89 PWPA 89 HPNP 90 KCF 90 3.d.2 Natural features 91 4.
    [Show full text]
  • Leaf Vein Network Geometry Can Predict Levels of Resource Transport, Defence, and 21 Mechanical Support That Operate at Different Spatial Scales
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.19.206631; this version posted July 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Automated and accurate segmentation of leaf venation networks via deep 2 learning 3 4 H. Xu1+, B. Blonder2*+, M. Jodra2, Y. Malhi2, and M.D. Fricker3†+. 5 6 1Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus 7 Research Building, University of Oxford, Oxford, OX3 7DQ, UK 8 2Environmental Change Institute, School of Geography and the Environment, University of 9 Oxford, South Parks Road, Oxford, OX1 3QY, UK 10 3Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK 11 12 *: Current address: Department of Environmental Science, Policy, and Management, University 13 of California, 120 Mulford Hall, Berkeley, California, 94720, USA 14 15 +: These authors contributed equally 16 †: Author for correspondence: [email protected] 17 Word count: Total 6,490 Introduction 1,176 Materials and Methods 3,147 Results 1,426 Discussion 662 Acknowledgements 79 Number of Figures: 9 Number of tables: 0 Number of supplementary 9 figures: Number of supplementary 7 tables: 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.19.206631; this version posted July 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Botanical Assessment for Batu Punggul and Sg
    Appendix I. Photo gallery A B C D E F Plate 1. Lycophyte and ferns in Timimbang –Botitian. A. Lycopediella cernua (Lycopodiaceae) B. Cyclosorus heterocarpus (Thelypteridaceae) C. Cyathea contaminans (Cyatheaceae) D. Taenitis blechnoides E. Lindsaea parallelogram (Lindsaeaceae) F. Tectaria singaporeana (Tectariaceae) Plate 2. Gnetum leptostachyum (Gnetaceae), one of the five Gnetum species found in Timimbang- Botitian. A B C D Plate 3. A. Monocot. A. Aglaonema simplex (Araceae). B. Smilax gigantea (Smilacaceae). C. Borassodendron borneensis (Arecaceae). D. Pholidocarpus maiadum (Arecaceae) A B C D Plate 4. The monocotyledon. A. Arenga undulatifolia (Arecaceae). B. Plagiostachys strobilifera (Zingiberaceae). C. Dracaena angustifolia (Asparagaceae). D. Calamus pilosellus (Arecaceae) A B C D E F Plate 5. The orchids (Orchidaceae). A. Acriopsis liliifolia B. Bulbophyllum microchilum C. Bulbophyllum praetervisum D. Coelogyne pulvurula E. Dendrobium bifarium F. Thecostele alata B F C A Plate 6. Among the dipterocarp in Timimbang-Botitian Frs. A. Deeply fissured bark of Hopea beccariana. B Dryobalanops keithii . C. Shorea symingtonii C D A B F E Plate 7 . The Dicotyledon. A. Caeseria grewioides var. gelonioides (Salicaceae) B. Antidesma tomentosum (Phyllanthaceae) C. Actinodaphne glomerata (Lauraceae). D. Ardisia forbesii (Primulaceae) E. Diospyros squamaefolia (Ebenaceae) F. Nepenthes rafflesiana (Nepenthaceae). Appendix II. List of vascular plant species recorded from Timimbang-Botitian FR. Arranged by plant group and family in aphabetical order.
    [Show full text]
  • GARDENS' BULLETIN STRAITS SETTLEMENTS - =-=- ~=-=====:---.=====--==--==-= Vol
    THE GARDENS' BULLETIN STRAITS SETTLEMENTS - =-=- ~=-=====:---.=====--==--==-= Vol. VIII lOth October, 1934 Part 1 NOTES ON MALAYAN DIPTEROCARPACEAE-11. C. F. Sy'm'ington, B.Sc. This paper continues the series commenced by my "Notes on Malayan Dipterocarpacere-I" published by courtesy of the Director of Gardens, Straits Settlements in this Bulletin, Vol. VII, pt. 2 .(1933). As previously, the species dealt with have been selected in no systematic sequence but are those concerned in various problems that have demanded attention from time to time. I have first discussed the genus Scaphula Parker. The study of this group involved some more or less intensive work upon all our species of Anisopte1·a, the results of which are thought to be worthy of publication. Next I have endeavoured to clarify the position with regard to the much confused species H opea sangal, following my notes on which a description of its close ally H. semi- cuneata seems appropriate. • Finally I have had the pleasure of examining the dipterocarps collected in Sarawak by Mr. Richards of the Oxford University Exploration Club. Two of these collections [Balanoca1·pus longifiorus (Brandis) Foxw. and Hopea laxct Sym.] are of peculiar interest as they raise the whole question of the status of the anomalous genus Balanocarpus. Although I do not feel that my study of the plants concerned in this group is sufficiently complete for me to give an authoritative and final treatise upon it, it seems desirable that a statement of my opinions should be given in justification of the publication of these two new binomials. As in my previous paper the concluding paragraph of my notes under each species occurring in the Malay Peninsula is addressed in particular to Malayan Forest Officers.
    [Show full text]
  • Paleocene Wind-Dispersed Fruits and Seeds from Colombia and Their Implications for Early Neotropical Rainforests
    IN PRESS Acta Palaeobotanica 54(2): xx–xx, 2014 DOI: 10.2478/acpa-2014-0008 Paleocene wind-dispersed fruits and seeds from Colombia and their implications for early Neotropical rainforests FABIANY HERRERA1,2,3, STEVEN R. MANCHESTER1, MÓNICA R. CARVALHO3,4, CARLOS JARAMILLO3, and SCOTT L. WING5 1 Department of Biology, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA; e-mail: [email protected]; [email protected] 2 Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, Illinois 60022, USA 3 Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Balboa, Ancón, Panamá; e-mail: [email protected] 4 Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA; e-mail: [email protected] 5 Department of Paleobiology, NHB121, Smithsonian Institution, Washington, D.C. 20013-7012, USA; e-mail: [email protected] Received 24 May 2014; accepted for publication 18 September 2014 ABSTRACT. Extant Neotropical rainforests are well known for their remarkable diversity of fruit and seed types. Biotic agents disperse most of these disseminules, whereas wind dispersal is less common. Although wind-dispersed fruits and seeds are greatly overshadowed in closed rainforests, many important families in the Neotropics (e.g., Bignoniaceae, Fabaceae, Malvaceae, Orchidaceae, Sapindaceae) show numerous morphological adaptations for anemochory (i.e. wings, accessory hairs). Most of these living groups have high to moderate lev- els of plant diversity in the upper levels of the canopy. Little is known about the fossil record of wind-dispersed fruits and seeds in the Neotropics. Six new species of disseminules with varied adaptations for wind dispersal are documented here.
    [Show full text]