How to Make a One-Color Print in the Japanese Style
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dry Film Photoresist Tips and Tricks
Updated October 2017 Hints and Tips For Use First a couple of notes What is Dry Film. Dry Film is a photo-resist, when strong UV light hits it, where the light hits, it hardens and this hardened form resists etching solutions. The film is comprised of three parts, the blue layer is in the middle, this is the polymer which hardens with UV, on each side of this polymer is a protective transparent film. How do you use it? In very brief summary, one protective layer (the inside of curl generally) is removed, the now uncovered polymer side is attached to the PCB, the PCB is exposed to UV through a 'mask' which has transparent traces to allow UV to harden the “”traces image , the remaining protective layer is removed and the PCB is developed in a solution of washing soda (Sodium Carbonate), then the PCB is etched. The rest of this document gives you all the steps, tips and tricks which I have learned in using Dry Film! Be sure to read it, save yourself lots of experimenting! Practice, Practice, Practice. I advise cutting some small squares of film a couple of cm squared and using these to get the hang of affixing it to a board and developing, use some moderately dense small (section of) artwork with the finest traces you want to do, with the narrowest spaces you want to do etc. You might want to practice 5 or 10 times before doing it for real. If you mess one up, just clean it off, and start again. -
Tensile Properties of Paper and Paperboard (Using Constant Rate of Elongation Apparatus) (Revision of T 494 Om-01)
WI 050808.09 T 494 DRAFT NO. 2 DATE June 13, 2006 TAPPI WORKING GROUP CHAIRMAN D Muchorski SUBJECT CATEGORY Physical Properties RELATED METHODS See “Additional Information” CAUTION: This Test Method may include safety precautions which are believed to be appropriate at the time of publication of the method. The intent of these is to alert the user of the method to safety issues related to such use. The user is responsible for determining that the safety precautions are complete and are appropriate to their use of the method, and for ensuring that suitable safety practices have not changed since publication of the method. This method may require the use, disposal, or both, of chemicals which may present serious health hazards to humans. Procedures for the handling of such substances are set forth on Material Safety Data Sheets which must be developed by all manufacturers and importers of potentially hazardous chemicals and maintained by all distributors of potentially hazardous chemicals. Prior to the use of this method, the user must determine whether any of the chemicals to be used or disposed of are potentially hazardous and, if so, must follow strictly the procedures specified by both the manufacturer, as well as local, state, and federal authorities for safe use and disposal of these chemicals. Tensile properties of paper and paperboard (using constant rate of elongation apparatus) (Revision of T 494 om-01) (Underlines indicated changes/corrections since last draft) 1. Scope 1.1 This test method describes the procedure, using constant-rate-of-elongation equipment, for determining four tensile breaking properties of paper and paperboard: tensile strength, stretch, tensile energy absorption, and tensile stiffness. -
Printing Presses in the Graphic Arts Collection
Printing Presses in the Graphic Arts Collection THE NATIONAL MUSEUM OF AMERICAN HISTORY 1996 This page blank Printing Presses in the Graphic Arts Collection PRINTING, EMBOSSING, STAMPING AND DUPLICATING DEVICES Elizabeth M. Harris THE NATIONAL MUSEUM OF AMERICAN HISTORY, SMITHSONIAN INSTITUTION WASHINGTON D.C. 1996 Copies of this catalog may be obtained from the Graphic Arts Office, NMAH 5703, Smithsonian Institution, Washington D.C. 20560 Contents Type presses wooden hand presses 7 iron hand presses 18 platen jobbers 29 card and tabletop presses 37 galley proof and hand cylinder presses 47 printing machines 50 Lithographic presses 55 Copperplate presses 61 Braille printers 64 Copying devices, stamps 68 Index 75 This page blank Introduction This catalog covers printing apparatus from presses to rubber stamps, as well as some documentary material relating to presses, in the Graphic Arts Collection of the National Museum of American History. Not listed here are presses outside the accessioned collections, such as two Vandercook proof presses (a Model 4T and a Universal III) that are now earning an honest living in the office printing shop. At some future time, no doubt, they too will be retired into the collections. The Division of Graphic Arts was established in 1886 as a special kind of print collection with the purpose of representing “art as an industry.” For many years collecting was centered around prints, together with the plates and tools that made them. Not until the middle of the twentieth century did the Division begin to collect printing presses systematically. Even more recently, the scope of collecting has been broadened to include printing type and type-making apparatus. -
Corrugated 101! ! !Corrugated Vs
Corrugated 101! ! !Corrugated vs. Cardboard! • The term "cardboard box" is commonly misused when referring to a corrugated box. The correct technical term is "corrugated fiberboard carton.”! • Cardboard boxes are really chipboard boxes, and used primarily for packaging lightweight products, such as cereal or board games.! • Corrugated fiberboard boxes are widely utilized in retail packaging, shipping cartons, product displays and many other applications ! requiring lightweight, but sturdy materials.! !Corrugated Composition! Corrugated fiberboard is comprised of linerboard and heavy paper medium. Linerboard is the flat, outer surface that adheres to the medium. The medium is the wavy, fluted paper between the liners. Both are made of a special kind of heavy paper called !containerboard. Board strength will vary depending on the various linerboard and medium combinations.! • Single Face: Medium glued to 1 linerboard; flutes exposed! • Single Wall: Medium between 2 liners! • Double Wall: Varying mediums layered between 3 liners! !• Triple Wall: Varying mediums layered between 4 liners! !Flute Facts! !Corrugated board can be created with several different flute profiles. The five most common flute profiles are:! • A-Flute: Original corrugated flute design. Contains about 33 flutes per foot.! • B-Flute: Developed primarily for packaging canned goods. Contains about 47 flutes per foot and measures 1/8" thick! • C-Flute: Commonly used for shipping cartons. Contains about 39 flutes per foot and measures 5/32" thick! • E-Flute: Contains about 90 flutes per foot and measures 1/16" thick! • F-Flute: Developed for small retail packaging. Contains about 125 flutes per foot and measures 1/32" thick! • Generally, larger flute profiles deliver greater vertical compression strength and cushioning. -
Manufacturing of Paperboard and Corrugated Board Packages
Lecture 9: Manufacturing of paperboard and corrugated board packages Converting operations: printing, die-cutting, folding, gluing, deep-drawing After lecture 9 you should be able to • describe the most important converting operations in paper and paperboard package manufacturing • discuss important runnability considerations in paperboard package handling • relate factors affecting runnability to pppaperboard app earance and pyphysical performance quality parameters 1 Literature • Pulp and Paper Chemistry and Technology - Volume 4, Paper Products Physics and Technology, Chapter 10 • Paperboard Reference Manual, p. 157-225 • Fundamentals of packaging technology Chapters 4, 6, 15 and 18 Paperboard Packaging Design is the result of • Personal creativity plus – Knowledge and understanding of packaging materials, including: • Structural properties • Graphic capabilities • Converting processes and converting properties • Customer packaging systems • Marketing objectives • Distribution requirements • Retail outlet expectations • Needs and desires of end user • How end user will use the product • Many people may contribute to the design 2 Overall, the design must provide: • Containment of product • Protection of product • Ease in handling through distribution • Prevention of product spoilage • Tamper evidence • Consumer convenience • Brand identification • Communications for the consumer: – Instructions for product use – Coding for quality assurance, expiration dates – Dietary and nutritional information The design should consider: 1. Converting -
How to Make a Collage 4 Free Mixed Media Collage Techniques Presented by Cloth Paper Scissors®
how to make a collage 4 free mixed media collage techniques presented by cloth paper scissors® 1 3 4 2 collage to order: objects of my desire: 1 create with words 3 making sewn paper SUSAN BLACK collage collections JENNY COCHRAN LEE the elements of collage: 2 putting it all together reverse collage painting: NICOLE PAISLEY MARTENSEN 4 a bright spot on a winter day HOLLY CHRISTINE MOODY In “Objects of My Desire: Making Sewn Paper Collage Collections,” Jenny Cochran Lee explores how to How to Make a Collage: turn paper scraps into collage art 4 Free Mixed Media treasures. Collage Techniques presented by Finally, Holly Christine Moody Cloth Paper Scissors® offers an easy collage project that ONLINE EDITOR Cate Prato will help you whittle down your decorative paper stash in a fun CREATIVE SERVICES way. In “Reverse Collage Painting,” DIVISION ART DIRECTOR Larissa Davis PHOTOGRAPHER Larry Stein you make a paper collage on a substrate, apply gel medium, Projects and information are for inspiration and personal use only. Interweave Press is not responsible hat is collage art? A and then paint over it. The magic for any liability arising from errors, omissions, or whole lot of fun! At happens when you swipe away mistakes contained in this eBook, and readers should proceed cautiously, especially with respect to technical the most basic level, some of the paint to reveal the information. wyou can make a collage with paper, collage designs below. © F+W Media, Inc. All rights reserved. F+W Media glue, and a substrate like a canvas grants permission for any or all pages in this eBook to With How to Make a Collage: 4 Free or watercolor paper. -
4. Printing and Converting Performance
4. Printing and converting performance Paperboard converting 147 Clean edges and surfaces 155 Handling paperboard 158 Offset lithography 160 UV-offset 161 Waterless offset 162 Hybrid offset 162 Flexography 163 Screen printing 164 Digital printing 165 Gravure printing 166 Hot foil stamping 169 Embossing 171 Die-cutting & creasing 174 Lasercutting 178 Scoring 182 Creasabilty & foldability 186 Gluing 194 Binding in practice - the last link 199 Heat sealing 206 Packaging operation 203 Deep drawing 212 146 Reference Manual | IGGESUND PAPERBOARD Paperboard converting Paperboard converting Paperboard has the ability to achieve or exceed the same The increasing demands in the brand promotion process excellent image reproduction as for the best fine papers. for graphic design and the use of non-print surface enhance- Paperboard offers equal possibilities to achieve new, ment are creating innovative shapes and multi-sensory ex- challenging shapes as competing packaging materials. periences for the consumer or user who hand les the product. However, increasing demands on performance of the An understanding of the interaction between paper- material in various converting processes have become board properties and converting effi ciency is essential for evident when speeds in both printing processes and post- designers and converters, since the ultimate design of the press converting have increased. Additionally, the accept- product together with the choice of paperboard will impact ance level for impurities or slight deviations in quality in the on crucial conversion factors like printability, fl atness, and fi nal product has dropped noticeably as a result of both creasing/folding properties. Considering all the variables, end-user demands and the use of modern quality control it is probably true to say that consistency in the behaviour equipment in the various converting machines. -
ARTWORK Guidelines for Medical Packaging Graphic Design
6153C West Mulford St. Niles, IL 60714 USA Our Quality, Our Performace, Toll Free Phone: 855-966-6100 Fax: 847-966-6168 Your Success. peelmaster.com ARTWORK Guidelines for Medical Packaging Graphic Design • Background • Print in the heat seal area – Avoid if possible • Close registration and “traps” – Discouraged, but possible • Screens and halftones – Recommended screen: 80 line; gradients/vignettes discouraged • Small type – 6 pt. or larger recommended • Color specifications – Use Pantone uncoated for paper, Tyvek®; Pantone coated for films • Large solids – Large solid area of print are discouraged • Metallic Inks – Discouraged, and may incur extra expense • Electronic artwork – Vector based format (see page 2 for further details) Background: Because medical packaging materials (particularly Tyvek®) can be of uneven thicknesses, there are some limitations on printing that graphic designers should take into consideration when designing artwork for medical packaging. PeelMaster is one of the best printers in the medical packaging business, and can provide expert assistance in your design process. No matter what the challenge, we will give our best efforts. However, often it is possible to reduce or eliminate potential problems with proper design in the first place. For this reason, to assist you, we have assembled the following guidelines: 1. PeelMaster uses a web-fed (roll-to-roll) flexographic printing process. 2. We can print up to 4 colors in register on one side of the web, or can print in register on both sides, 2 colors on one side, one color on the other. (Note: Most medical packaging is one or two colors. If more colors are needed, up to 4 colors can be printed on each side of the web–in two print passes–but the image on one side will randomly located on the package.) 3. -
PACKAGING Folding Carton & Corrugated
WEDNESDAY, NOV. 4, 2020 GUIDE TO DAY EIGHT: PACKAGING Folding Carton & Corrugated INSIDE: CONNECTED PACKAGING DELIVERING GENUINE CONSUMER ENGAGEMENT IS YOUR BRAND READY? THE STATE OF THE FOLDING CARTON & CORRUGATED MARKETS FIVE PACKAGING AND DESIGN TRENDS FOR 2020 TODAY’S SPONSOR: POWERED BY: WELCOME Welcome to this special publication for attendees of the 2020 PRINTING United Digital Experience. In June, PRINTING United announced the decision to transition from an in-person event in Atlanta, Ga. to a comprehensive digital platform. The PRINTING United Digital Ex- perience, taking place Oct. 26 – Nov. 12, o ers attendees three weeks of live, guided programming, educational sessions, and panel discussions with the experts; along with access to a complete online exhibitor showcase featuring information about the newest industry technology, case studies, whitepapers, the chance to speak with exhibitor repre- sentatives, and more. Today is Day Eight of this 14-day event. Focused on the package printing market — spe- cifi cally the folding carton and corrugated segments — attendees have a packed sched- ule of content and product demos (see the detailed agenda on page 4). According to the Digital Printing for Folding Carton Converting study by PRINTING United Alliance and Keypoint Intelligence, the folding carton segment represents about $18 billion in annual print value in the U.S. and Canada. The Fibre Box Association reports that the U.S. corrugated packaging market represents about $35.2 billion in annual print value. For both of these markets, however, it is estimated that 99% of the products are printed via analog technologies. There is a signifi cant amount of opportunity for digital printing going forward. -
Tyvek ® Printing Guide
, China 兽桃 Mask Bag, designed by Shou Tao Tao Mask Bag, designed by Shou DuPont™ Tyvek ® Graphics EMEA Printability Guide Water Resistant Paper-like Light Tear Resistant Recyclable Printable DuPont™ Tyvek ® Graphics EMEA Printability Guide DuPont™ Tyvek® is a popular printing substrate due to its light weight, smooth surface, high dimensional stability, opacity, toughness and durability. Uncoated Tyvek® can be printed using most digital and commercial printing processes. Some digital presses and some aqueous ink jet printers require a special coating. Tyvek® can be printed either sheet or web-fed. Tyvek® can be printed the same way as paper, although some of its physical properties do require special attention. To achieve excellent print quality, both the designer and printer must understand the unique properties and characteristics of Tyvek®. Tyvek® is made of continuous high-density polyethylene filaments. By using heat and pressure, these filaments are bonded into a base material for printing which turns out to be neither paper, cloth nor plastic film, but it integrates the advantages of those three materials. Tyvek® material has a melting point of 135°C and is a water-resistant and non-absorbent material with superior dimensional stability, high strength, and a smooth matt surface. Most traditional printing technologies can be used for Tyvek® printing, as well as some digital printing. The following Tyvek® printing quick reference guidelines have been summarized based on our current knowledge and the relevant contents will be updated -
Conservation of Coated and Specialty Papers
RELACT HISTORY, TECHNOLOGY, AND TREATMENT OF SPECIALTY PAPERS FOUND IN ARCHIVES, LIBRARIES AND MUSEUMS: TRACING AND PIGMENT-COATED PAPERS By Dianne van der Reyden (Revised from the following publications: Pigment-coated papers I & II: history and technology / van der Reyden, Dianne; Mosier, Erika; Baker, Mary , In: Triennial meeting (10th), Washington, DC, 22-27 August 1993: preprints / Paris: ICOM , 1993, and Effects of aging and solvent treatments on some properties of contemporary tracing papers / van der Reyden, Dianne; Hofmann, Christa; Baker, Mary, In: Journal of the American Institute for Conservation, 1993) ABSTRACT Museums, libraries, and archives contain large collections of pigment-coated and tracing papers. These papers are produced by specially formulated compositions and manufacturing procedures that make them particularly vulnerable to damage as well as reactive to solvents used in conservation treatments. In order to evaluate the effects of solvents on such papers, several research projects were designed to consider the variables of paper composition, properties, and aging, as well as type of solvent and technique of solvent application. This paper summarizes findings for materials characterization, degradative effects of aging, and some effects of solvents used for stain reduction, and humidification and flattening, of pigment-coated and modern tracing papers. Pigment-coated papers have been used, virtually since the beginning of papermaking history, for their special properties of gloss and brightness. These properties, however, may render coated papers more susceptible to certain types of damage (surface marring, embedded grime, and stains) and more reactive to certain conservation treatments. Several research projects have been undertaken to characterize paper coating compositions (by SEM/EDS and FTIR) and appearance properties (by SEM imaging of surface structure and quantitative measurements of color and gloss) in order to evaluate changes that might occur following application of solvents used in conservation treatments. -
Developing and Applying a Selection Model for Corrugated Box Precision Printing Machine Suppliers
mathematics Article Developing and Applying a Selection Model for Corrugated Box Precision Printing Machine Suppliers Chin-Tsai Lin and Cheng-Yu Chiang * Department of Business Administration, Ming Chuan University, 250 Zhong Shan N. Rd., Sec. 5, Taipei 111, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-04-2206-1660-630 Abstract: Corrugated box printing machines are precision equipment produced by markedly few manufacturers. They involve high investment cost and risk. Having a corrugated box precision printing machine (CBPPM) supplier with a good reputation enables a corrugated box manufacturer to maintain its competitive advantage. Accordingly, establishing an effective CBPPM supplier selection model is crucial for corrugated box manufacturers. This study established a two-stage CBPPM supplier selection model. The first stage involved the use of a modified Delphi method to construct a supplier selection hierarchy with five criteria and 14 subcriteria. In the second stage, an analytic network process was employed to calculate the weights of criteria and subcriteria and to determine the optimal supplier. According to the results, the five criteria in the model, in descending order of importance, are quality, commitment, cost, service attitude, and reputation. This model can provide insights for corrugated box manufacturers formulating their CBPPM supplier selection strategy. Keywords: corrugated box printing machine; modified Delphi method; analytic network process (ANP); supplier 1. Introduction Citation: Lin, C.-T.; Chiang, C.-Y. The global e-commerce market is rapidly developing, with exponential growth in Developing and Applying a Selection online and TV shopping as well as demand for global shipping. Because most products Model for Corrugated Box Precision purchased online or through TV shopping channels (e-commerce) are packaged using Printing Machine Suppliers.