The Front Number Plate and Smokebox Door Front Number Plate and Smokebox Door
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mikado Messenger | Issue No. 66| April 2020 Ian Matthews Sanding the Filler, on the Tender Tank, Before It Is Painted
The Mikado Messenger | Issue No. 66| April 2020 Ian Matthews sanding the filler, on the tender tank, before it is painted - A1SLT Welcome to edition No. 66 of The Mikado Messenger, our monthly eNewsletter which aims to provide a regular progress update on the construction of new Gresley class No. 2007 Prince of Wales. Thanks to our supporters’ continued generosity, over £3.5m has now been donated or pledged – this equates to over 70% of the required £5m. This month see the launch of a brand new club - The Pony (Truck) Club - please see below for more information. Stephenson Engineering Ltd have sent us a fabulous video of the CNC machining programme that will be carried out on the coupling rods - it can be found in the Motion Update section, below. We are following Government guidelines with regards to the coronavirus, and whilst our office-based staff are now working from home, our workshop staff are continuing to work at Darlington Locomotive Works where they are taking all necessary precautions. However, as many of our supporters and volunteers are from vulnerable groups, the Works is currently closed to non-essential staff. In addition, Nene Valley Railway have cancelled all their events until the end of May 2020 so this means we can no longer hold the P2 Roadshow on Saturday 23rd May 2020 and the Supporters’ and Tornado Team day on Sunday 24th May 2020. We are sorry to have to make these changes. We hope you understand that the circumstances are beyond our control and the restrictions are very necessary at this challenging time. -
Lima 2-8-0 “Consolidation”, Developed for TS2013, by Smokebox
Union Pacific 4000 Class 4884-1 "Big Boy" circa 1948-49 Developed by Smokebox TM for Dovetail Games' Train Simulator © Smokebox 2021, all rights reserved Issue 1 Union Pacific 4000 Class 4884-1 "Big Boy" Steam Locomotive Page 2 Contents Introduction ....................................................................................................................................................... 7 32- and 64-bit TS ................................................................................................................................................ 7 Expert or Simple Controls mode, HUD and Automatic Fireman ....................................................................... 7 "All-in-one" .................................................................................................................................................... 7 Standard TS Automatic Fireman .................................................................................................................... 8 F4 HUD ........................................................................................................................................................... 8 High Detail (HD) and Standard Detail (SD) ........................................................................................................ 8 Recommended Settings ..................................................................................................................................... 9 Cab Layout ...................................................................................................................................................... -
Union Pacific No. 119
Union Pacific No. 119 Operating Manual Developed by Smokebox for Dovetail Games' Train Simulator 2018TM © Smokebox 2018, all rights reserved Issue 1 Train Simulator - Union Pacific No. 119 - Operating Manual Page 2 Contents Introduction....................................................................................................................................................... 4 Locomotive Technical Specifications................................................................................................................. 4 Positions of the Controls and Gauges in the Cab .............................................................................................. 5 Key Assignments................................................................................................................................................ 9 Animations....................................................................................................................................................... 12 Lights................................................................................................................................................................ 13 Sanding ............................................................................................................................................................ 13 Particle Effects................................................................................................................................................. 14 Other Special Effects ...................................................................................................................................... -
Types and Characteristics of Locomotives Dr. Ahmed A. Khalil Steam Locomotives - Operating Principle
Types and Characteristics of Locomotives Dr. Ahmed A. Khalil Steam Locomotives - Operating Principle: The wheel is connected to the rod by a crank. The rod is connected to the piston rod of the steam cylinder., thereby converting the reciprocating motion of the piston rod generated by steam power into wheel rotation. - Main Parts of a steam locomotive: 1. Tender — Container holding both water for the boiler and combustible fuel such as wood, coal or oil for the fire box. 2. Cab — Compartment from which the engineer and fireman can control the engine and tend the firebox. 3. Whistle — Steam powered whistle, located on top of the boiler and used as a signalling and warning device. 4. Reach rod — Rod linking the reversing actuator in the cab (often a 'johnson bar') to the valve gear. 5. Safety valve — Pressure relief valve to stop the boiler exceeding the operating limit. 6. Generator — Steam powered electric generator to power pumps, head lights etc, on later locomotives. 7. Sand box/Sand dome — Holds sand that can be deposited on the rails to improve traction, especially in wet or icy conditions. 8. Throttle Lever — Controls the opening of the regulator/throttle valve thereby controlling the supply of steam to the cylinders. 9. Steam dome — Collects the steam at the top of the boiler so that it can be fed to the engine via the regulator/throttle valve. 10. Air pump — Provides air pressure for operating the brakes (train air brake system). 11. Smoke box — Collects the hot gas that have passed from the firebox and through the boiler tubes. -
O-Steam-Price-List-Mar2017.Pdf
Part # Description Package Price ======== ================================================== ========= ========== O SCALE STEAM CATALOG PARTS LIST 2 Springs, driver leaf........................ Pkg. 2 $6.25 3 Floor, cab and wood grained deck............. Ea. $14.50 4 Beam, end, front pilot w/coupler pocket...... Ea. $8.00 5 Beam, end, rear pilot w/carry iron.......... Ea. $8.00 6 Bearings, valve rocker....................... Pkg.2 $6.50 8 Coupler pockets, 3-level, for link & pin..... Pkg. 2 $5.75 9 Backhead w/fire door base.................... Ea. $9.00 10 Fire door, working........................... Ea. $7.75 11 Journal, 3/32" bore.......................... Pkg. 4. $5.75 12 Coupler pockets, small, S.F. Street Railway.. Pkg.2 $5.25 13 Brakes, engine............................... Pkg.2 $7.00 14 Smokebox, 22"OD, w/working door.............. Ea. $13.00 15 Drawbar, rear link & pin..................... Ea. $5.00 16 Handles, firedoor............................ Pkg.2. $5.00 17 Shelf, oil can, backhead..................... Ea. $5.75 18 Gauge, backhead, steam pressure.............. Ea. $5.50 19 Lubricator, triple-feed, w/bracket, Seibert.. Ea. $7.50 20 Tri-cock drain w/3 valves, backhead.......... Ea. $5.75 21 Tri-cock valves, backhead, (pl. 48461)....... Pkg. 3 $5.50 23 Throttle, nonworking......................... Ea. $6.75 23.1 Throttle, non working, plastic............... Ea. $5.50 24 Pop-off, pressure, spring & arm.............. Ea. $6.00 25 Levers, reverse/brake, working............... Kit. $7.50 26 Tri-cock drain, less valves.................. Ea. $5.75 27 Seat boxes w/backs........................... Pkg.2 $7.50 28 Injector w/piping, Penberthy,................ Pkg.2 $6.75 29 Oiler, small hand, N/S....................... Pkg.2 $6.00 32 Retainers, journal........................... Pkg. -
FLYING SCOTSMAN’ LNER 4-6-2 1:32 SCALE • 45 Mm GAUGE
‘FLYING SCOTSMAN’ LNER 4-6-2 1:32 SCALE • 45 mm GAUGE ENGINEERING SAMPLE SHOWN Sir Nigel Gresley was renowned for his Pacific express locomo- SPECIFICATIONS tives, the first of which, the A1 class, entered service in 1922. The A3 was a modification of the A1 and over time all of the sur- Scale 1:32 viving A1s were rebuilt as A3s. No. 4472 “Flying Scotsman” was Gauge 45 mm built in 1923 and went on to become one of the most famous Mini. radius 6ft 6in. (2 m) steam locomotives in the world setting many records along the way. After the war it was renumbered 103 then, after the nation- Dimensions 26.5 x 3.5 x 5.25 in. alisation, carried the number 60103, remaining in service on the Construction Brass & stainless steel East Coast mainline until 1963. During its service career it cov- Electric Version ered over 2,000,000 miles and travelled non-stop from London Power 0~24V DC to Edinburgh in 8 hours. It was sold into private ownership, was Full cab interior design sent to America and Australia and is today under restoration at Features The National Railway Museum in York. Constant lighting Live Steam Version We are currently developing a 1:32 scale live steam version of our very successful electric LNER A3 Class “Flying Scotsman”. Power Live steam, butane fired The model is gas-fired with slide valves and has all the features Boiler Copper the Gauge 1 fraternity have come to expect from an Accucraft Valve gear Walschaerts valve gear locomotive. -
The Communication Cord Is Rather “P2 from Acorns Grow”
60163 TORNADO 2007 PRINCE OF WALES 3403 ANON New Steam for the Main Line Building Britain’s Most Powerful Steam Locomotive Recreating Gresley’s last design THE COMMUNICATION CORD No. 61 Spring 2021 Simon Apsley/Frewer & Co. Engineers A superb rendering by Simon Apsley of the 3D CAD of Prince of Wales's front end, cut away to show the Lentz gearbox and the double Kylchap exhaust in the smokebox. POETRY IN MOTION? by Graham Langer Despite the difficulties of the past year has involved Frewer and Co. Engineers of No. 2007 – in consequence he has the P2 project continues to forge ahead undertaking the Computational Fluid been sending us the most impressive and we have reached the stage of fine- Dynamics [CFD] analysis of the cylinder renderings of parts and sections of tuning the design for the cylinders and block steam passageways and one of the new P2, some of which we are valve gear so that construction can be their team, Simon Apsley, has got a delighted to feature in this edition of The put out to tender. Part of the process bit carried away with the 3D CADs Communication Cord. TCC 1 CONTENTS EDITORIAL by Graham Langer FROM THE CHAIR by Steve Davies PAGE 1 Poetry in motion? As I write this towards the use of coal. However, the n recent weeks time, from Leicester to Carlisle via the physically meeting. Video conferencing is PAGE 2 editorial Tornado sector produces a tiny percentage of we have all felt spectacular Settle & Carlisle Railway. It probably here to stay but punctuated by Contents is still “confined to the country’s greenhouse gasses and Idrawn even might seem premature to say this, but I periodic ‘actual’ meetings. -
A Brief History of Front-End Research and Latest Developments
A Brief History of Front-End Research and Latest Developments Ir. J.J.G. Koopmans Ph.D. Paper presented during the conference on “Developments in modern Steam Traction” in the National Railway Museum in York, 11th of December 2006. 1 Introduction This paper will cover some of the historic highlights of the development of front-ends during the last 200 years. It is also intended to give a phenomenal description of the functioning of a front-end. Illustration and proof of the examples is provided by some of the results of the tests with the RTM 54 steam locomotive. Notion The discussion is about the use of exhausted steam to create artificial draught in the boiler of steam locomotives. Figure 1 Terence Cuneo's painting of the first steam locomotive The history of the front-end started with Richard Trevithick, who mounted a blast pipe from the cylinders to the chimney, and turned its orifice upwards. The 20th century painting by Terence Cuneo, present in the Welsh National Museum, shows this detail together with the feedwater heater around the blast pipe. The picture shows the joyous moment it represents, but this author has some reservations about the way Trevithick is represented, walking with a spanner in his hand. Locomotive owners and engineers have a common and lasting tendency to be on the locomotive themselves! Some 60- years later the first serious research on the subject was started by Prof. Zeuner1. He used a simplified model of a front-end. During the tests he found that certain dimensional ratios in the front-end gave an asymptotic limit to its performance. -
New Haven Steam
New Haven Steam I‐4‐e #1385 W‐10‐c tender A detail study for modelers By Chris Adams, Charlie Dunn, Randy Hammill and the NHRHTA Photo Library Overview Scope is classes with HO Scale models available Focus is on prototype and applies to all scales Highlight variations within a class Highlight modifications over time Switchers Freight Passenger o T‐2‐b o K‐1‐b/d o G‐4 J‐1 I‐2 o Y‐3 o o o L‐1 o I‐4 o Y‐4 o R‐1 o I‐5 o R‐3‐a Common Modifications Headlights o <1917 ‐ Oil headlights o 1917‐1920 ‐ Pyle National (?) cylindrical headlights. Not all were replaced. o 1920‐1924 ‐ Pyle National (?) on new locomotives except R‐1‐a class #3310‐#3339. o ESSCo Golden Glow headlights starting in 1926. Brass number boards red for passenger locomotives, and black for freight and switchers. Pilots <1937 – Boiler tube. >1937 –Steel Strap –phased in over time. >1931 – Pilot plows applied to many (most?) locomotives, often removed in spring/summer Footboard pilots on many locomotives in local freight service (often on tender as well). Other c1927+ – Spoked pilot wheels replaced with disc wheels c1940’s – Compressed air clappers applied to many bells Headlights Oil Pyle National (?) ESSCo Golden Glow Pyle National vs. Golden Glow Pyle National Headlight from UP Big Boy ESSCo Golden Glow Headlight Note side mounted hinge Note top mounted hinge Pilots Boiler Tube Boiler Tube with pilot plow Foot board Steel Strap with pilot plow Steel Strap The New Haven Railroad and Tenders o The New Haven frequently swapped tenders o Turntable length limited size of early tenders o Large tenders were purchased for Shoreline service o Tender class changed when a stoker was installed. -
Theory of the Lempor Ejector As Applied to Produce Draught in Steam Locomotives
Introductory Note Note added February 1999. This theory refers to the fundamentals defining the main dimensions of the ejector. It requires the calculation (or the obtention by experimental procedures) of the boiler characteristics, a serious matter in itself. It also presupposes that a large number of details coming from a long experience are to be respected. It does not include the swirl of both of the steam jet and the gas intake. Finally, a still pending serious problem is that it assumes that the flow is steady, non-pulsating, a field open to future investigation. It is not a "kitchen recipe" guaranteeing good results without a good tuning up with measurements. However, the reader may try, provided that if success crowns his trial and error, the merit is to be credited to the theory. If not, the Author expects that the failure is not to be credited to the theory, but to the user. THEORY OF THE LEMPOR EJECTOR AS APPLIED TO PRODUCE DRAUGHT IN STEAM LOCOMOTIVES Summary This is a revision of the Porta-Taladiz theory of 1957, incorporating the effect of friction in the mixing chamber and other corrections. The theory is based on the principle of conservation of energy as applied by Strahl in 1913, with due corrections for the case under consideration. It serves for the design of an optimum ejector leaving a minimum correction of the blast pipe to be carried out in practice as usual since Stephenson’s times. It serves also to predict the behavior of a given ejector. As a matter of course, the accuracy of either the calculated or the measured performance of the boiler conditions the optimization of the ejector design. -
Full Page Photo
THE LIFE AND TIMES OF A DUKE Martyn J. McGinty AuthorHouse™ UK Ltd. 500 Avebury Boulevard Central Milton Keynes, MK9 2BE www.authorhouse.co.uk Phone: 08001974150 © 2011. Martyn J. McGinty. All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted by any means without the written permission of the author. First published by AuthorHouse 04/25/2011 ISBN: 978-1-4567-7794-4 (sc) ISBN: 978-1-4567-7795-1 (hc) ISBN: 978-1-4567-7796-8 (e) Front Cover Photo: Th e Duke at Didcot (Courtesy P. Treloar) Any people depicted in stock imagery provided by Th inkstock are models, and such images are being used for illustrative purposes only. Certain stock imagery © Th inkstock. Th is book is printed on acid-free paper. Because of the dynamic nature of the Internet, any web addresses or links contained in this book may have changed since publication and may no longer be valid. Th e views expressed in this work are solely those of the author and do not necessarily refl ect the views of the publisher, and the publisher hereby disclaims any responsibility for them. Born out of Tragedy and Riddles, his lineage traceable, unerasable, back through the great houses of Chapelon, Giffard, Stephenson, Belpaire and Watt, the Duke was laid to rust by the sea, a few meagre miles from the mills that shaped the steel that formed the frames that bore the machine that Crewe built. Time passed and the Duke was made well again by kindly strangers. -
Steam-Engine
CHAPTER IV. .J.1JE MODERN STEAM-ENGINE. "THOSE projects which abridge distance bnve done most for the civiliza ..tion and happiness of our species."-MACAULAY. THE SECOND PERIOD OF APPLIC.ATION-18OO-'4O. STE.AM-LOCOMOTION ON RAILROADS. lNTRODUCTORY.-The commencement of the nineteenth century found the modern steam-engine fully developed in .. :.... �::�£:��r:- ::::. Fro. 40.-The First Railroad-Car, 1S25. a.11 its principal features, and fairly at work in many depart ments of industry. The genius of Worcester, and Morland, and Savery, and Dcsaguliers, had, in the first period of the · STEA�l-LOCOMOTION ON RAILROADS. 145 application of the po,ver of steam to useful ,vork, effected a beginning ,vhich, looked upon from a point of vie,v vvhich · exhibits its importance as the first step to,vard the wonder ful results to-day familiar to every one, appears in its true light, and entitles those great men to even greater honor than has been accorded them. The results actually accom plishecl, ho,vever, were absolutely. insignificant in compari son with those ,vhich marked the period of development just described. Yet even the work of Watt and of his con temporaries ,vas but a 1nere prelude to the marvellous ad vances made in the succeeding period, to which ,ve are now come, and, in · extent and importance, was insignificant in co1nparison ,vith that accomplishecl by tl1eir successors in · the development of all mechanical industries by the appli cation of the steam-engine to the movement of every kind of machine. 'fhe firstof the two periods of application saw the steam engine adapted simply to tl1e elevation of water and t,he drainage of mines ; during the second period it ,vas adapted to every variety of use£ul ,vork, and introduced ,vherever the muscular strength of men and animals, or the power of ,vind and of falling ,vater, ,vl1ich had previously been the only motors, had found application.