Targeting Tau Degradation by Small Molecule Inhibitors for Treatment of Tauopathies Mackenzie Martin University of South Florida, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Targeting Tau Degradation by Small Molecule Inhibitors for Treatment of Tauopathies Mackenzie Martin University of South Florida, Mmarti24@Health.Usf.Edu University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 6-2-2016 Targeting Tau Degradation by Small Molecule Inhibitors for Treatment of Tauopathies Mackenzie Martin University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Biochemistry Commons, and the Neurosciences Commons Scholar Commons Citation Martin, Mackenzie, "Targeting Tau Degradation by Small Molecule Inhibitors for Treatment of Tauopathies" (2016). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6314 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Targeting Tau Degradation by Small Molecule Inhibitors for Treatment of Tauopathies by Mackenzie Dwayne Martin A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy with a concentration in Neuroscience Department of Molecular Medicine College of Medicine University of South Florida Major Professor: Chad Dickey, Ph.D. Daniel Lee, Ph.D. Yu Chen, Ph.D. Danielle Gulick, Ph.D. Date of Approval: June 1, 2016 Keywords: autophagy, aggregates, chaperones, Hsp70 Copyright © 2016, Mackenzie Dwayne Martin DEDICATION I dedicate this dissertation to all my family especially Sandra and Fernando Martin and Maya and Jason Jerald as well as to my best friend, David Knight, for all the love and support you have given throughout my life. Thank you!!! ACKNOWLEDGEMENTS I would like to thank my advisor, mentor and friend, Dr. Chad Dickey, for his guidance, support, patience, understanding and encouragement throughout graduate school. I would also like to thank Dr. Yu Chen, Dr. Daniel Lee, and Dr. Danielle Gulick for having served on my committee. Their time, efforts, and questions were greatly valued. I would like to also thank all of our collaborators that have helped in numerous projects. In addition I would like to express my appreciation and thanks for my lab colleagues and their continued motivation and drive to help me become a better scientist. Finally, I would like to thank the University of South Florida and all persons who have helped give me the opportunity to complete my graduate studies. TABLE OF CONTENTS List of Tables ................................................................................................................... iv List of Figures .................................................................................................................. v Abstract .......................................................................................................................... vii Chapter One: Rationale for Targeting Tau Degradation for Treatment of Tauopathies ............................................................................................................... 1 1.1 Tau Biology..................................................................................................... 1 1.2 Tau Aggregation ............................................................................................. 3 1.3 Tau Degradation ............................................................................................. 5 1.4 Tau Therapeutics ............................................................................................ 7 1.5 Conclusion .................................................................................................... 11 1.6 References ................................................................................................... 12 Chapter Two: Synthesis, Stereochemical Analysis, and Derivatization of Myricanol Provide New Probes That Promote Autophagic Tau Clearance .............. 22 2.1 Abstract ........................................................................................................ 22 2.2 Introduction ................................................................................................... 23 2.3 Results and Discussion ................................................................................ 25 2.3.1 Synthesis of 1................................................................................ 35 2.3.2 Enantiomers of 1 ........................................................................... 36 2.3.3 (-)-aS,11R-Myricanol (3) is the enantiomer responsible for anti-tau activity .............................................................................. 38 2.3.4 (-)-aS,11R-Myricanol (3) significantly accelerates tau clearance and selectively reduces distinct tau species ................. 40 2.3.5 (-)-aS,11R-Myricanol (3) clears tau through a non- proteasomal pathway .................................................................... 41 2.3.6 (-)-aS,11R-Myricanol (3) clears tau via autophagy ........................ 42 2.3.7 Synthesis of 16 and a cyclized tetralin derivative thereof, 13. ....... 43 2.3.8 Tau levels are decreased by 16-like tetralin derivative 13 ............. 44 2.4 Materials and Methods ................................................................................. 45 2.4.1 Methods ........................................................................................ 45 2.4.2 Reagents ....................................................................................... 45 2.4.3 Cell Culture ................................................................................... 46 2.4.4 Ex Vivo Slice Cultures ................................................................... 46 2.4.5 Western Blotting ............................................................................ 47 2.4.6 Densitometry (Quant) .................................................................... 47 2.4.7 SILAC/Proteomic Analysis ............................................................ 47 2.4.8 Statistics ........................................................................................ 48 i 2.5 References ................................................................................................... 48 Chapter Three: Inhibitory Activity Against Both Hsp70 Activity and Tau Aggregation In Vitro Best Predicts Cellular and Neuronal Tau Lowering Activity of Small Molecules ...................................................................................... 53 3.1 Abstract ........................................................................................................ 53 3.2 Introduction ................................................................................................... 54 3.3 Results and Discussion ................................................................................ 56 3.3.1 Summary of published Hsp70 inhibitors ........................................ 61 3.3.2 Diverse Hsp70 inhibitor scaffolds have differing effects on tau levels. ...................................................................................... 64 3.3.3 Summary of published tau aggregation inhibitor scaffolds. ........... 65 3.3.4 Diverse tau aggregation inhibitor scaffolds have differing effects on tau levels. ..................................................................... 67 3.3.5 Diverse Hsp70 inhibitor scaffolds have differing effects on tau aggregation in vitro. ................................................................. 68 3.3.6 Tau aggregation inhibitor scaffolds do not inhibit Hsp70 ATPase activity. ............................................................................ 69 3.3.7 Determination of LDH cytotoxicity of Hsp70 and Tau aggregation inhibitors in HEK293T cells. ...................................... 70 3.4 Materials and Methods ................................................................................. 70 3.4.1 Cell Culture ................................................................................... 70 3.4.2 Aggregation Kinetics (Thioflavin T) Assay And Immunoblot .......... 71 3.4.3 Hsp70 ATPase Assay. .................................................................. 71 3.4.4 Lactate Dehydrogenase (LDH) Assay ........................................... 72 3.4.5 Western Blotting ............................................................................ 72 3.5 References ................................................................................................... 73 Chapter Four: Final Perspectives .................................................................................. 78 4.1 Structure-Activity Relationship of Rhodacyanine Derivatives ....................... 80 4.2 References ................................................................................................... 83 Appendix A: Copyright Permissions .............................................................................. 84 Appendix B: Supporting Information for Chapter Two .................................................. 85 B.1 Synthetic racemic 1 reduces tau levels in a tauopathy cell model with low micromolar potency ................................................................................ 85 B.2 LC-MS spectra of 3-treated cell lysates........................................................ 86 B.3 Top activated and inactivated upstream regulators as determined by IPA software. ................................................................................................ 87 B.4 Top canonical pathways as determined by IPA software. ...........................
Recommended publications
  • Aldrich FT-IR Collection Edition I Library
    Aldrich FT-IR Collection Edition I Library Library Listing – 10,505 spectra This library is the original FT-IR spectral collection from Aldrich. It includes a wide variety of pure chemical compounds found in the Aldrich Handbook of Fine Chemicals. The Aldrich Collection of FT-IR Spectra Edition I library contains spectra of 10,505 pure compounds and is a subset of the Aldrich Collection of FT-IR Spectra Edition II library. All spectra were acquired by Sigma-Aldrich Co. and were processed by Thermo Fisher Scientific. Eight smaller Aldrich Material Specific Sub-Libraries are also available. Aldrich FT-IR Collection Edition I Index Compound Name Index Compound Name 3515 ((1R)-(ENDO,ANTI))-(+)-3- 928 (+)-LIMONENE OXIDE, 97%, BROMOCAMPHOR-8- SULFONIC MIXTURE OF CIS AND TRANS ACID, AMMONIUM SALT 209 (+)-LONGIFOLENE, 98+% 1708 ((1R)-ENDO)-(+)-3- 2283 (+)-MURAMIC ACID HYDRATE, BROMOCAMPHOR, 98% 98% 3516 ((1S)-(ENDO,ANTI))-(-)-3- 2966 (+)-N,N'- BROMOCAMPHOR-8- SULFONIC DIALLYLTARTARDIAMIDE, 99+% ACID, AMMONIUM SALT 2976 (+)-N-ACETYLMURAMIC ACID, 644 ((1S)-ENDO)-(-)-BORNEOL, 99% 97% 9587 (+)-11ALPHA-HYDROXY-17ALPHA- 965 (+)-NOE-LACTOL DIMER, 99+% METHYLTESTOSTERONE 5127 (+)-P-BROMOTETRAMISOLE 9590 (+)-11ALPHA- OXALATE, 99% HYDROXYPROGESTERONE, 95% 661 (+)-P-MENTH-1-EN-9-OL, 97%, 9588 (+)-17-METHYLTESTOSTERONE, MIXTURE OF ISOMERS 99% 730 (+)-PERSEITOL 8681 (+)-2'-DEOXYURIDINE, 99+% 7913 (+)-PILOCARPINE 7591 (+)-2,3-O-ISOPROPYLIDENE-2,3- HYDROCHLORIDE, 99% DIHYDROXY- 1,4- 5844 (+)-RUTIN HYDRATE, 95% BIS(DIPHENYLPHOSPHINO)BUT 9571 (+)-STIGMASTANOL
    [Show full text]
  • Targeting Fibrosis in the Duchenne Muscular Dystrophy Mice Model: an Uphill Battle
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427485; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Targeting fibrosis in the Duchenne Muscular Dystrophy mice model: an uphill battle 2 Marine Theret1#, Marcela Low1#, Lucas Rempel1, Fang Fang Li1, Lin Wei Tung1, Osvaldo 3 Contreras3,4, Chih-Kai Chang1, Andrew Wu1, Hesham Soliman1,2, Fabio M.V. Rossi1 4 1School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical 5 Genetics, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada 6 2Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Minia 7 University, Minia, Egypt 8 3Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 9 Darlinghurst, NSW, 2010, Australia 10 4Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE- 11 ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 12 Santiago, Chile 13 # Denotes Co-first authorship 14 15 Keywords: drug screening, fibro/adipogenic progenitors, fibrosis, repair, skeletal muscle. 16 Correspondence to: 17 Marine Theret 18 School of Biomedical Engineering and the Biomedical Research Centre 19 University of British Columbia 20 2222 Health Sciences Mall, Vancouver, British Columbia 21 Tel: +1(604) 822 0441 fax: +1(604) 822 7815 22 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427485; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Aldrich Aldehydes and Ketones
    Aldrich Aldehydes and Ketones Library Listing – 1,311 spectra Subset of Aldrich FT-IR Spectral Libraries related to aldehydes and ketones. The Aldrich Material-Specific FT-IR Library collection represents a wide variety of the Aldrich Handbook of Fine Chemicals' most common chemicals divided by similar functional groups. These spectra were assembled from the Aldrich Collection of FT-IR Spectra and the data has been carefully examined and processed by Thermo. The molecular formula, CAS (Chemical Abstracts Services) registry number, when known, and the location number of the printed spectrum in The Aldrich Library of FT-IR Spectra are available. Aldrich Aldehydes and Ketones Index Compound Name Index Compound Name 182 ((1R)-ENDO)-(+)-3- 314 (7AS)-(+)-5,6,7,7A-TETRAHYDRO- BROMOCAMPHOR, 98% 7A- METHYL-1,5-INDANDIONE, 183 ((1S)-ENDO)-(-)-3- 99% BROMOCAMPHOR, 98% 97 (DIETHYLAMINO)ACETONE, 96% 274 (+)-3- 96 (DIMETHYLAMINO)ACETONE, 99% (TRIFLUOROACETYL)CAMPHOR, 145 (R)-(+)-3- 98% METHYLCYCLOHEXANONE, 98% 231 (+)-DIHYDROCARVONE, 98%, 135 (R)-(+)-3- MIXTURE OF ISOMERS METHYLCYCLOPENTANONE , 99% 1076 (+)-RUTIN HYDRATE, 95% 397 (R)-(+)-CITRONELLAL, 96% 830 (+)-USNIC ACID, 98% 229 (R)-(+)-PULEGONE, 98% 136 (+/-)-2,4- 248 (R)-(-)-4,4A,5,6,7,8-HEXAHYDRO- DIMETHYLCYCLOPENTANONE, 4A- METHYL-2(3H)- 99%, MIXTURE OF CIS AND TRANS NAPHTHALENONE, 97% 758 (+/-)-2- 232 (R)-(-)-CARVONE, 98% (METHYLAMINO)PROPIOPHENON 358 (S)-(+)-2- E HYDROCHLORIDE, 99% METHYLBUTYRALDEHYDE, 97% 275 (-)-3- 250 (S)-(+)-3,4,8,8A-TETRAHYDRO-8A- (TRIFLUOROACETYL)CAMPHOR, METHYL- 1,6(2H,7H)-
    [Show full text]
  • Quinalizarina | C14H8O6 - Pubchem
    2/2/2021 Quinalizarina | C14H8O6 - PubChem RESUMEN COMPUESTO Quinalizarina PubChem CID 5004 Estructura 2D 3D Encuentra estructuras similares Seguridad química Environmental Irritant Hazard Hoja de datos del resumen de seguridad química de laboratorio (LCSS) Fórmula molecular C 14 H 8 O 6 quinalizarina 1,2,5,8-tetrahidroxiantraquinona 81-61-8 Sinónimos Alizarinbordeaux Alizarine Burdeos B Más... Peso molecular 272,21 g / mol Modificar Crear Fecha s 2021-01-31 2005-03-25 Quinalizarin is a tetrahydroxyanthraquinone having the four hydroxy groups at the 1-, 2-, 5- and 8-positions. It has a role as an EC 2.7.11.1 (non-specific serine/threonine protein kinase) inhibitor. ChEBI https://pubchem.ncbi.nlm.nih.gov/compound/Quinalizarin 1/30 2/2/2021 Quinalizarina | C14H8O6 - PubChem 1 Structures 1.1 2D Structure Chemical Structure Depiction PubChem 1.2 3D Conformer PubChem 1.3 Crystal Structures PDBe Ligand Code TXQ PDBe Structure Code 3FL5 PDBe Conformer Protein Data Bank in Europe (PDBe) https://pubchem.ncbi.nlm.nih.gov/compound/Quinalizarin 2/30 2/2/2021 Quinalizarina | C14H8O6 - PubChem 2 Names and Identifiers 2.1 Computed Descriptors 2.1.1 IUPAC Name 1,2,5,8-tetrahydroxyanthracene-9,10-dione Computed by LexiChem 2.6.6 (PubChem release 2019.06.18) PubChem 2.1.2 InChI InChI=1S/C14H8O6/c15-6-3-4-7(16)11-10(6)12(18)5-1-2-8(17)13(19)9(5)14(11)20/h1-4,15-17,19H Computed by InChI 1.0.5 (PubChem release 2019.06.18) PubChem 2.1.3 InChI Key VBHKTXLEJZIDJF-UHFFFAOYSA-N Computed by InChI 1.0.5 (PubChem release 2019.06.18) PubChem 2.1.4 Canonical SMILES
    [Show full text]
  • Quinalizarin As a Potent, Selective and Cell Permeable Inhibitor of Protein
    Quinalizarin as a potent, selective and cell permeable inhibitor of protein kinase CK2 Giorgio Cozza, Marco Mazzorana, Elena Papinutto, Jenny Bain, Matthew Elliott, Giovanni Di Maira, Alessandra Gianoncelli, Mario A. Pagano, Stefania Sarno, Maria Ruzzene, et al. To cite this version: Giorgio Cozza, Marco Mazzorana, Elena Papinutto, Jenny Bain, Matthew Elliott, et al.. Quinalizarin as a potent, selective and cell permeable inhibitor of protein kinase CK2. Biochemical Journal, Port- land Press, 2009, 421 (3), pp.387-395. 10.1042/BJ20090069. hal-00479150 HAL Id: hal-00479150 https://hal.archives-ouvertes.fr/hal-00479150 Submitted on 30 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 11 May 2009 as manuscript BJ20090069 QUINALIZARIN AS A POTENT, SELECTIVE AND CELL PERMEABLE INHIBITOR OF PROTEIN KINASE CK2. Giorgio COZZA *, Marco MAZZORANA *† , Elena PAPINUTTO †, Jenny BAIN §, Matthew ELLIOTT §, Giovanni DI MAIRA *† , Alessandra GIANONCELLI *, Mario A. PAGANO *† , Stefania SARNO *† , Maria
    [Show full text]
  • Cystathionine-Β-Synthase: Molecular Regulation and Pharmacological Inhibition
    biomolecules Review Cystathionine-β-synthase: Molecular Regulation and Pharmacological Inhibition Karim Zuhra 1 , Fiona Augsburger 1 , Tomas Majtan 2 and Csaba Szabo 1,* 1 Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; [email protected] (K.Z.); fi[email protected] (F.A.) 2 Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; [email protected] * Correspondence: [email protected] Received: 14 April 2020; Accepted: 27 April 2020; Published: 30 April 2020 Abstract: Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used “CBS inhibitors” (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models. Keywords: hydrogen sulfide; cancer; Down syndrome; pharmacology; homocysteine; cystathionine 1.
    [Show full text]
  • Tepzz 77889A T
    (19) TZZ T (11) EP 2 277 889 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 26.01.2011 Bulletin 2011/04 C07K 1/00 (2006.01) C12P 21/04 (2006.01) C12P 21/06 (2006.01) A01N 37/18 (2006.01) (2006.01) (2006.01) (21) Application number: 10075466.2 G01N 31/00 C07K 14/765 C12N 15/62 (2006.01) (22) Date of filing: 23.12.2002 (84) Designated Contracting States: • Novozymes Biopharma UK Limited AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Nottingham NG7 1FD (GB) IE IT LI LU MC NL PT SE SI SK TR (72) Inventors: (30) Priority: 21.12.2001 US 341811 P • Ballance, David James 24.01.2002 US 350358 P Berwyn, PA 19312 (US) 28.01.2002 US 351360 P • Turner, Andrew John 26.02.2002 US 359370 P King of Prussia, PA 19406 (US) 28.02.2002 US 360000 P • Rosen, Craig A. 27.03.2002 US 367500 P Laytonsville, MD 20882 (US) 08.04.2002 US 370227 P • Haseltine, William A. 10.05.2002 US 378950 P Washington, DC 20007 (US) 24.05.2002 US 382617 P • Ruben, Steven M. 28.05.2002 US 383123 P Brookeville, MD 20833 (US) 05.06.2002 US 385708 P 10.07.2002 US 394625 P (74) Representative: Bassett, Richard Simon et al 24.07.2002 US 398008 P Potter Clarkson LLP 09.08.2002 US 402131 P Park View House 13.08.2002 US 402708 P 58 The Ropewalk 18.09.2002 US 411426 P Nottingham 18.09.2002 US 411355 P NG1 5DD (GB) 02.10.2002 US 414984 P 11.10.2002 US 417611 P Remarks: 23.10.2002 US 420246 P •ThecompletedocumentincludingReferenceTables 05.11.2002 US 423623 P and the Sequence Listing can be downloaded from the EPO website (62) Document number(s) of the earlier application(s) in •This application was filed on 21-09-2010 as a accordance with Art.
    [Show full text]
  • Aldrich Aldehydes and Ketones
    Aldrich Aldehydes and Ketones Library Listing – 1,311 spectra Subset of Aldrich FT-IR Spectral Libraries related to aldehydes and ketones. The Aldrich Material-Specific FT-IR Spectral Libraries collection represents a wide variety of the Aldrich Handbook of Fine Chemicals' most common chemicals divided by similar functional groups. These spectra were assembled from the Aldrich Collections of FT-IR Spectra Editions I or II, and the data has been carefully examined and processed by Thermo Fisher Scientific. Aldrich Aldehydes and Ketones Index Compound Name Index Compound Name 182 ((1R)-ENDO)-(+)-3- 314 (7AS)-(+)-5,6,7,7A-TETRAHYDRO- BROMOCAMPHOR, 98% 7A- METHYL-1,5-INDANDIONE, 183 ((1S)-ENDO)-(-)-3- 99% BROMOCAMPHOR, 98% 97 (DIETHYLAMINO)ACETONE, 96% 274 (+)-3- 96 (DIMETHYLAMINO)ACETONE, 99% (TRIFLUOROACETYL)CAMPHOR, 145 (R)-(+)-3- 98% METHYLCYCLOHEXANONE, 98% 231 (+)-DIHYDROCARVONE, 98%, 135 (R)-(+)-3- MIXTURE OF ISOMERS METHYLCYCLOPENTANONE , 99% 1076 (+)-RUTIN HYDRATE, 95% 397 (R)-(+)-CITRONELLAL, 96% 830 (+)-USNIC ACID, 98% 229 (R)-(+)-PULEGONE, 98% 136 (+/-)-2,4- 248 (R)-(-)-4,4A,5,6,7,8-HEXAHYDRO- DIMETHYLCYCLOPENTANONE, 4A- METHYL-2(3H)- 99%, MIXTURE OF CIS AND TRANS NAPHTHALENONE, 97% 758 (+/-)-2- 232 (R)-(-)-CARVONE, 98% (METHYLAMINO)PROPIOPHENON 358 (S)-(+)-2- E HYDROCHLORIDE, 99% METHYLBUTYRALDEHYDE, 97% 275 (-)-3- 250 (S)-(+)-3,4,8,8A-TETRAHYDRO-8A- (TRIFLUOROACETYL)CAMPHOR, METHYL- 1,6(2H,7H)- 98% NAPHTHALENEDIONE, 9 761 (-)-LOBELINE HYDROCHLORIDE, 249 (S)-(+)-4,4A,5,6,7,8-HEXAHYDRO- 98% 4A-METHYL- 2(3H)- 151 (-)-MENTHONE,
    [Show full text]
  • Novel Modulation of Adenylyl Cyclase Type 2 Jason Michael Conley Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations Fall 2013 Novel Modulation of Adenylyl Cyclase Type 2 Jason Michael Conley Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Medicinal-Pharmaceutical Chemistry Commons Recommended Citation Conley, Jason Michael, "Novel Modulation of Adenylyl Cyclase Type 2" (2013). Open Access Dissertations. 211. https://docs.lib.purdue.edu/open_access_dissertations/211 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School ETD Form 9 (Revised 12/07) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Jason Michael Conley Entitled NOVEL MODULATION OF ADENYLYL CYCLASE TYPE 2 Doctor of Philosophy For the degree of Is approved by the final examining committee: Val Watts Chair Gregory Hockerman Ryan Drenan Donald Ready To the best of my knowledge and as understood by the student in the Research Integrity and Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. Approved by Major Professor(s): ____________________________________Val Watts ____________________________________ Approved by: Jean-Christophe Rochet 08/16/2013 Head of the Graduate Program Date i NOVEL MODULATION OF ADENYLYL CYCLASE TYPE 2 A Dissertation Submitted to the Faculty of Purdue University by Jason Michael Conley In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2013 Purdue University West Lafayette, Indiana ii For my parents iii ACKNOWLEDGEMENTS I am very grateful for the mentorship of Dr.
    [Show full text]
  • Cell Proliferation
    molecules Article Structure–Activity Relationships and Biological Evaluation of 7-Substituted Harmine Analogs for Human β-Cell Proliferation 1,2, 3, 3 2 2 Kunal Kumar y, Peng Wang y, Ethan A. Swartz , Susmita Khamrui , Cody Secor , Michael B. Lazarus 1,2 , Roberto Sanchez 1,2, Andrew F. Stewart 3 and Robert J. DeVita 1,2,* 1 Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; [email protected] (K.K.); [email protected] (M.B.L.); [email protected] (R.S.) 2 Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; [email protected] (S.K.); [email protected] (C.S.) 3 Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; [email protected] (P.W.); [email protected] (E.A.S.); [email protected] (A.F.S.) * Correspondence: [email protected]; Tel.: +212-659-5542 These authors contributed equally to this work. y Received: 25 March 2020; Accepted: 20 April 2020; Published: 23 April 2020 Abstract: Recently, we have shown that harmine induces β-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. We explore structure–activity relationships of the 7-position of harmine for both DYRK1A kinase inhibition and β-cell proliferation based on our related previous structure–activity relationship studies of harmine in the context of diabetes and β-cell specific targeting strategies. 33 harmine analogs of the 7-position substituent were synthesized and evaluated for biological activity.
    [Show full text]