A Technics Journa

Total Page:16

File Type:pdf, Size:1020Kb

A Technics Journa RCA 'VIEW a technics journa RÁDIO AND ELECTRONICS RESEARCH ENGINEERING VOLUME XII SEPTEMBER 1951 NO. 3 Part II www.americanradiohistory.com RCA REVIEW GEORGE M. K. BAKER CHAS. C. FOSTER, JR. THOMAS R. ROGERS Manager Editorial Manager Business Manager SUBSCRIPTIONS: United States, Canada, and Postal Union: One Year $2.00, Two Years $3.50, Three Years $4.50 Other Countries: One Year $2.40, Two Years $4.30, Three Years $5.70 SINGLE COPIES: United States: $.75 each. Other Countries: $.85 each Copyright, 1951, by RCA Laboratories Division, Radio Corporation of America Published quarterly in March, June, September, and December by RCA Laboratories Division, Radio Corporation of America, Princeton, New Jersey Entered as second class matter July 3, 1950, at the Post Office at Princeton, New Jersey, under the act of March 3, 1879 RADIO CORPORATION OF AMERICA DAVID SARNOPP, Chairman of the Board FRANK M. FoLSOM, President LEWIS MACCONNACH, Secretary ERNEST B. GORIN, Treasurer RCA LABORATORIES DIVISION C. B. JOLLIPPE, Executive Vice President PRINTED IN U.S.A. www.americanradiohistory.com RCA REVIEW a technical journal RADIO AND ELECTRONICS RESEARCH ENGINEERING Published quarterly by RADIO CORPORATION OF AMERICA RCA LABORATORIES DIVISION in cooperation with INC. RCA VICTOR DIVISION RCA COMMUNICATIONS, BROADCASTING COMPANY, INC. RADIOMARINE CORPORATION OF AMERICA NATIONAL INC. RCA INTERNATIONAL DIVISION RCA INSTITUTES, VOLUME XII SEPTEMBER, 1951 NUMBER 3 PART II CONTENTS PAGE Review 443 FOREWORD The Manager, RCA 445 Methods Suitable for Television Color Kinescopes E. W. HEROLD 466 A Three -Gun Shadow -Mask Color Kinescope H. B. LAW 487 A One -Gun Shadow -Mask Color Kinescope R. R. LAW 503 A 45- Degree Reflection -Type Color Kinescope P. K. WEIMER AND N. RYNN 527 A Grid -Controlled Color Kinescope S. V. FORGUE Development and Operation of a Line -Screen Color Kinescope 542 D. S. BOND, F. H NICOLL AND D. G. MOORE Phosphor- Screen Application in Color Kinescopes 568 N. S. FREEDMAN AND K. M. MCLAUGHLIN Three -Beam Guns for Color Kinescopes 583 H. C. MOODEY AND D. D. VAN ORMER Mechanical Design of Aperture -Mask Tri -Color Kinescopes 593 B. E. BARNES AND R. D. FAULKNER Effects of Screen Tolerances on Operating Characteristics of Aper- ture -Mask Tri -Color Kinescopes 603 D. D. VAN ORMER AND D. C. BALLARD Deflection and Convergence in Color Kinescopes 612 A. W. FRIEND AUTHORS........................ ............................... 645 Index RCA Review is regularly abstracted and indexed by Industrial Arts Science Abstracts (I.E.E.- Brit.), Engineering Index, Electronic Engineering Master Index, Abstracts and References (Wireless Engineer -Brit. and Proc. I.R.E.) and Digest -Index Bulletin. www.americanradiohistory.com RCA REVIEW BOARD OF EDITORS Chairman C. B. JOLLIFFE RCA Laboratories Division M. C. BATSF.L H. B. MARTIN RCA Victor Division Radiomarine Corporation of America G. L. BEERS H. F OLSON RCA Victor Division RCA Laboratories Division H. H. BEVERAGE D. F. SCHMIT RCA Laboratories Division RCA Victor Division I. F. BYRNES Radiomarine S. W. SEELEY Corporation of America RCA Laboratories Division D. D. COLE G. R. SHAW RCA Victor Division RCA Victor Division O. E. DUNLAP, JR. R. E. SHELBY Radio Corporation of America National Broadcasting Company, Inc. E. W. ENGSTROM S. M. THOMAS RCA Laboratories Division RCA Communications, Inc. A. N. GowsMITH G. L. VAN DEUSEN Consulting Engineer, RCA RCA Institutes, Inc. O. B. HANSON A. F. VAN National DYCK Broadcasting Company, Inc. RCA Laboratories Division E. A. LAFOaT I. WOLFF RCA International Division RCA Laboratories Division C. W. LATIMER V. K. ZWORYKIN RCA Communications, Inc. RCA Laboratories Division Secretary GEORGE M. K. BAKER RCA Laboratories Division REPUBLICATION AND TRANSLATION Original papers published herein may be referenced or abstracted with- out further authorization provided proper notation concerning authors and source is included. All rights of republication, including translation into foreign languages, are reserved by RCA Review. Requests for republication and translation privileges should be addressed to The Manager. www.americanradiohistory.com FOREWORD This issue comprises Part II of the September 1951 issue of RCA Review. It consists of 11 papers which originally appeared in the Proceedings of the Institute of Radio Engineers. Considerable effort is being expended by the industry on the study of color television systems. Because of the importance of the tri -color kinescope in a color system, it is felt that the information contained in these papers should be given the widest possible dissemination, and that re- publication for the benefit of RCA Review readers is war- ranted. RCA Review appreciates the courtesy shown by the Institute of Radio Engineers in granting permission to re- produce the material. The Manager, RCA Review www.americanradiohistory.com METHODS SUITABLE FOR TELEVISION COLOR KINESCOPES*t BY E. W. HEROLD Research Department, RCA Laboratories Division, Princeton, N. J. Summary -This paper is the first of a series which covers Radio Cor- poration of America work on color television cathode-ray picture reproducers (color kinescopes) for the home. Minimum reproducer requirements are here considered to be high-light brightness and resolution equal to or exceed- ing that achieved in the present United States black- and -white television system, and large -area three -color fidelity which encompasses the major part of the horseshoe -like area of the chromatièity diagram of the Inter- national Commission of Illumination (I.C.I.). Color phosphors with electron - beam excitation meet the requirements. One color- kinescope method, which requires the beam to be accurately positioned at all times during scanning on a screen of adjacent subele- mental color -phosphor areas, has practical disadvantages. In a second method,. using a similar type of kinescope, the beam position controls the color signal; although accurate scanning is not required, some of the dis- advantages are the same. A third method, which uses adjacent complete picture images, optically combined, has little to offer over the use of three separate color tubes. A phosphor screen, whose color can be changed by a difference in electron -beams velocity or current density, has' attractive fea- tures but is not available in practical form. Methods of considerable in- terest are those whereby either the electron beam is electrically controlled at the phosphor screen for changing color or whereby shadowing techniques are employed to produce a direction-sensitive color screen. All these meth- ods were investigated; subsequent papers of the series will describe some of the tubes which were built and will give information as to their design and operation. INTRODUCTION NVENTORS and scientists have been concerned with television reproduction in color ever since the late 1920's when a number of color television demonstrations were given using scanning -disc techniques.1.2 Although the patent literature and occasional publica- tions indicate that thought was being given to all- electronic means for * Decimal Classification: R583.1. t Reprinted from Proc. I.R.E., October, 1951. 1 J. L. Baird, July, 1928. See R. F. Tiltman, "Television in Natural Colors Demonstrated ", Radio News, Vol. 10, p. 320, October, 1928. 2 H. E. Ives, "Television in Color ", Bell Laboratories Record, Vol. 7, pp. 439 -444, July, 1929. 445 www.americanradiohistory.com 446 RCA REVIEW September 1961 color reproduction, the most successful work of the 1930's continued to use mechanical methods. This work reached its ultimate about 1940 when the field -sequential color television system using a rotating color disc was extensively demonstrated and publicized.$ Although the color -disc method, by adding the cathode -ray tube, eliminated some of the more complex moving parts of the mechanical scanning system, there were inherent limitations in reproduction, namely, the inability to provide color sequences at a sufficiently rapid rate for other than frame- or field -sequential methods and the inherently small -size picture which resulted from any practical direct -view receiver. Recognition of these limitations stimulated efforts toward electronic solutions. Work in this direction by the Radio Corporation of America led, early in 1940, to a demonstration to the Federal Communications Commission of color reproduction using three optically- superimposed images from three cathode -ray tubes, thereby eliminating all moving parts.' By 1942, J. L. Baird, in England, also demonstrated all -elec- tronic color pictures, but by means of a single cathode -ray tube produc- ing two adjacent images, optically combined to give a two -color effects His British patent application of 1942 and 19436 showed that he had more ingenious tubes in mind. One of these, using a two -sided phos- phor screen for a two -color picture, was actually demonstrated in principle by Baird in 1944. At the same time he described a more complex tube suitable for three colors.? RCA engineers also continued to study the single -tube color reproducer during this period, but it was not until after World War II that such factors as improved high - voltage and deflecting systems, metal kinescopes, aluminized phosphors, etc., provided the key to some of the problems. As a result of this progress, it finally became possible, early in 1950, to demonstrate a E P. C. Goldmark, et al, "Color Television ", Part I., Proc. I.R.E., Vol. 30, pp. 162 -182, April, 1942; and Part II, Proc. I.R.E., Vol. 31, pp. 465 -478, September, 1943. 4"See Television in Color- Members of F.C.C. Visit Plants of RCA and Philco ", The New York Times, p. 18, February 6, 1940; also "Television in Color Demonstrated by RCA ", The Philadelphia Inquirer, p. 18, Feb- ruary 6, 1940. 5 "J. L. Baird's Improved Colour Television ", Electronic Engineering, Vol. 15, p. 137, January, 1943. See also Wireless World, Vol. 49, p. 41, February, 1943. 6 J. L. Baird, British Patent 562,168 (provisional specification left July 25, 1942, complete specification left July 23, 1943). 7 "J. L. Baird's Telechrome ", Jour.
Recommended publications
  • Cathode-Ray Tube Displays for Medical Imaging
    DIGITAL IMAGING BASICS Cathode-Ray Tube Displays for Medical Imaging Peter A. Keller This paper will discuss the principles of cathode-ray crease the velocity of the electron beam for tube displays in medical imaging and the parameters increased light output from the screen; essential to the selection of displays for specific 4. a focusing section to bring the electron requirements. A discussion of cathode-ray tube fun- beam to a sharp focus at the screen; damentals and medical requirements is included. 9 1990bu W.B. Saunders Company. 5. a deflection system to position the electron beam to a desired location on the screen or KEY WORDS: displays, cathode ray tube, medical scan the beam in a repetitive pattern; and irnaging, high resolution. 6. a phosphor screen to convert the invisible electron beam to visible light. he cathode-ray tube (CRT) is the heart of The assembly of electrodes or elements mounted T almost every medical display and its single within the neck of the CRT is commonly known most costly component. Brightness, resolution, as the "electron gun" (Fig 2). This is a good color, contrast, life, cost, and viewer comfort are analogy, because it is the function of the electron gun to "shoot" a beam of electrons toward the all strongly influenced by the selection of a screen or target. The velocity of the electron particular CRT by the display designer. These beam is a function of the overall accelerating factors are especially important for displays used voltage applied to the tube. For a CRT operating for medical diagnosis in which patient safety and at an accelerating voltage of 20,000 V, the comfort hinge on the ability of the display to electron velocity at the screen is about present easily readable, high-resolution images 250,000,000 mph, or about 37% of the velocity of accurately and rapidly.
    [Show full text]
  • Popular Electronics Build a Subwoofer Let Your Home Theater Roar and Rumble
    PRIMESTAR. THE DBS ALTERNATIVE Popular Electronics Build A Subwoofer Let your home theater roar and rumble The Truth About Speaker Cables What's really inside those expensive audiophile cables? Designing Speaker Crossovers Create your own great -sounding speakers d SBk'BDCCH.xux.xx 5-DIGIT 60506 Random -at Image k6O506C+HM997GA006M FEB96 P73 Make 3 -D images that pop o ROBERT RAHM RESP of your computer's screen 116 997 GRAND AUE AURORA IL 60506 -2513 $3.50: U.S. $3.95 CAN. FrJEL1t;Aricarí www.americanradiohistory.comAmericanRadioHistory.Com MIXED-MODE POWER Design & Verify Faster with Electronics Workbench® More Power s Simulate bigger and more Electronic complex circuits. Faster. On average, Electronics Analog, Digital & e nch Workbench Version 4 is o rb more than 5 times faster l compbner Mixed Circuits in a lab than Version 3. Electronics Workbench" The electronics Version 4 is a fully integrated schematic capture, simulator and graphical waveform More Parts generator. It is simple to Multiple parts bins mix analog and digital parts contain over twice the in any combination. components of Version 3. Design and Verify Circuits... Fast! More Models Electronics Workbench s Over 350 real world analog simple, direct interface and digital models are helps you build circuits included free with in a fraction of the time. Electronics Workbench. Try `what if' scenarios and And, if you need more, an fine tune your designs additional 2,0(X) models painlessly. are available. Electronics Workbench delivers the power you need to design and verify analog, digital and true mixed mode circuits. Over 20,000 customers have already put Electronics Workbench to the test.
    [Show full text]
  • New Color Patterning Techniques for OLED Displays
    New Color Patterning Techniques for OLED Displays by Yoshitaka Kajiyama A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2015 ©Yoshitaka Kajiyama 2015 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Organic light emitting devices (OLEDs) are light emitting devices consisting of a stack of organic semiconductors sandwiched by electrodes. Since the first report of a high-efficiency device by Tang and Van Slyke in 1987, OLEDs have attracted considerable attention, particularly for use in flat panel displays. OLEDs provide these products improved power consumption, contrast, response speed, viewing angle, and compatibility with flexible displays. The performance of OLEDs has improved considerably, especially in terms of stability and efficiency, so they can now meet the requirements for some display products. However, the commercialization of OLED displays remains limited and is hampered primarily by manufacturing issues. These issues include low manufacturing yield, high fabrication cost, and low display quality. Manufacturing issues are largely attributed to difficulties with the color patterning process, the fabrication process by which arrays of red, green and blue (RGB) OLEDs can be made side-by-side on one substrate in order to obtain a full-color display. Currently, RGB color patterning is done by sequential vacuum deposition of red, green and blue materials through a pre-patterned shadow mask, which is typically made of a thin metal sheet.
    [Show full text]
  • A Comparative Study on Shadow Compensation of Color Aerial Images in Invariant Color Models Victor J
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 6, JUNE 2006 1661 A Comparative Study on Shadow Compensation of Color Aerial Images in Invariant Color Models Victor J. D. Tsai Abstract—In urban color aerial images, shadows cast by a normalized hue, saturation, and intensity (HSI) color space. cultural features may cause false color tone, loss of feature in- Susuki et al. [11] presented a method that applies separation formation, shape distortion of objects, and failure of conjugate of spatial frequency components and probabilistic shadow image matching within the shadow area. This paper presents an automatic property-based approach for the detection and com- segmentation in the red, green, and blue (RGB) space and pensation of shadow regions with shape information preserved in compensations of intensity and saturation values to improve complex urban color aerial images for solving problems caused by the visibility of features in shadowed regions while retaining cast shadows in digital image mapping. The technique is applied nonshadowed regions and the natural tint of shadowed regions. in several invariant color spaces that decouple luminance and Recently, Huang et al. [12] presented an imaging model of chromaticity, including HSI, HSV, HCV, YIQ, and YC C models. Experimental results from de-shadowing color aerial images of a shadows based on Phong illumination model [13] and em- complex building and a highway segment in these color models are ployed thresholding on the hue, blue, and green-blue difference evaluated in terms of visual comparisons and shadow detection components sequentially to detect shadowed areas, which were accuracy assessments. The results show the effectiveness of the then compensated by applying the Retinex technique to both proposed approach in revealing details under shadows and the shadowed and nonshadowed areas separately.
    [Show full text]
  • Characterization of Color CRT Display Systems for Monochrome Applications
    Characterization of Color CRT Display Systems for Monochrome Applications G. Spekowius Soft-copy presentation of medical images is becoming presented frequently on color CRT display systems. more and more important as medical imaging is Particularly, if general-purpose workstations or strongly moving toward digital technology, and health care facilities are converting to filmless hospital and PCs are used for medical viewing, color monitors radiological information management. Although most are more or less standard. These common computer medical images are monochrome, frequently they are graphic displays ate applied without any further displayed on color CRTs, particularly if general- modification. This is in contrast to the medical purpose workstations or PCs are used for medical monochrome monitors, which normally are devel- viewing. In the present report, general measurement oped especially to fulfill the high image quality and modeling procedures for the characterization of color CRT monitors for monochrome presentation are requirements of medical imaging. Because the total introduced. The contributions from the three color number of medical displays is small in comparison channels (red, green, and blue) are weighted accord- to consumer applications, there is little incentive ing to the spectral sensitivity of the human eye for for the consumer display industry to develop spe- photopic viewing. The luminance behavior and the cial color CRTs for medical imaging. Hence, the resolution capabilities of color CRT monitors are ana- lyzed with the help of photometer and charge-coupled limitations of the consumer monitor CRT also device (CCD) camera measurements. For the evalua- apply to medical usage and might limit the image tion of spatial resolution, a two-dimensional Fourier quality for some applications.
    [Show full text]
  • Prepared by Dr.P.Sumathi
    COMPUTER GRAPHICS 18BIT53C UNIT I: Overview of Graphics System – Display Devices – CRT – Random Scan and Raster Scan Monitors – Techniques for Producing Colour Display – Beam – Penetration and Shadow – Mask Methods – DVST – Plasma – Panel Displays – Hardcopy Devices – Printers and Plotters – Display Processors – Output Primitives – DDA and Bresenham’s line drawing algorithms – Antialiasing lines – Bresenham’s Circle Algorithm – Character Generation. UNIT II: Two-dimensional Transformations – Scaling, Translation and Rotation – Matrix Representations – Composite Transformations – Reflection – Shearing – Other Transformations. Windowing and Clipping – Concepts – Cohen and Sutherland Line Clipping Algorithm – Midpoint Subdivision. UNIT III: Three dimensional Concept- Three-Dimensional object representations – polygon surfaces – polygon tables- plane equations - Three-Dimensional geometric transformations – translation – rotation – scaling – other transformations. UNIT IV: Three-Dimensional viewing – viewing pipeline - Display Techniques – Parallel Projection – Perspective Projection – Hidden-Surface and Hidden-Line removal – Back face removal – Depth Buffer Method – Scan Line Method – BSP Tree Methods – Depth-Sorting Method – Area-subdivision Method – Octree Methods – Comparison of Hidden-Surface Methods. UNIT V: Colour models and colour applications – properties of light – standard primaries and the chromaticity diagram – xyz colour model – CIE chromaticity diagram – RGB colour model – YIQ, CMY, HSV colour models, conversion between HSV and RGB models, HLS colour model, colour selection and applications. TEXT BOOK 1. Donald Hearn and Pauline Baker, “Computer Graphics”, Prentice Hall of India, 2001. Prepared by Dr.P.Sumathi 1 COMPUTER GRAPHICS Computer graphics is an art of drawing pictures on computer screens with the help of programming. It involves computations, creation, and manipulation of data. In other words, we can say that computer graphics is a rendering tool for the generation and manipulation of images.
    [Show full text]
  • Method of Making a Shadow Mask Verfahren Zur Herstellung Einer Schattenmaske Procédé De Fabrication D'un Masque D'ombre
    Europäisches Patentamt (19) European Patent Office Office européen des brevets (11) EP 0 209 346 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int. Cl.7: H01J 29/07 of the grant of the patent: 01.03.2000 Bulletin 2000/09 (21) Application number: 86305399.7 (22) Date of filing: 14.07.1986 (54) Method of making a shadow mask Verfahren zur Herstellung einer Schattenmaske Procédé de fabrication d'un masque d'ombre (84) Designated Contracting States: • Tokita, Kiyoshi DE FR GB 1-1, Shibaura 1-chome Minato-ku Tokyo (JP) • Kida, Kaneharu (30) Priority: 17.07.1985 JP 15598185 1-1, Shibaura 1-chome Minato-ku Tokyo (JP) (43) Date of publication of application: (74) Representative: 21.01.1987 Bulletin 1987/04 Kirk, Geoffrey Thomas et al BATCHELLOR, KIRK & CO. (73) Proprietor: 102-108 Clerkenwell Road KABUSHIKI KAISHA TOSHIBA London EC1M 5SA (GB) Kawasaki-shi, Kanagawa-ken 210-8572 (JP) (56) References cited: (72) Inventors: EP-A- 0 139 379 EP-A- 0 156 427 • Koike, Norio GB-A- 2 080 612 US-A- 3 760 214 1-1, Shibaura 1-chome Minato-ku Tokyo (JP) US-A- 3 878 428 US-A- 4 558 252 • Matsuda, Hidemi 1-1, Shibaura 1-chome Minato-ku Tokyo (JP) • The New Encyclopaedia Britannica, 15th edition, vol.7, page 218 ("lead") Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement.
    [Show full text]
  • Field-Sequential Colour Television Receiver
    Wireless World, Seplember 1971 443 Field-sequential Colour Television Receiver I-Introduction and basic principles by T. J. Dennis, B.A. All systems of colour TV in general use higher than the flicker-fusion rate of the normal broadcast colour transmissions. today have as their display a system eye, a highly variable quantity found on A standard PAL decoder4 provides whereby the three primary coloured average in the region of 30Hz. the three (narrow band) colour difference pictures are spatially superimposed, For this reason it is normally considered signals. These are then switched in turn whether by projection of the red, green and necessary to increase the basic field rate to the grid of a monochrome c.r.t., the blue images using the Schmitt system, by from that of, say, a 50 field monochrome change taking place during the field blank­ the use of three c.r.ts and half-silvered standard to 150 fields per second in order ing period (see Fig. 1). The luminance mirrors or with the three pictures on one to maintain the original luminance rucker (wideband) signal is fed to the c.r.t. cathode c.r.t. whose screen consists of triads of rate. This demands a trebling of the signal as usual, after its passage through a 60005 independently controllable phosphor dots, bandwidth, other factors being constant. delay tine. This is practically the only as in the R.C.A. Sbadowmask' tube. Noting the discouraging comments of major modification needed to the mono­ All three systems are capable of others on the subject of f.s.
    [Show full text]
  • Issue: TV Applicants Weighing Community Systems, Page .5 New TV Lines and New Prices on Tap, Page 12 TV Antiquates Political Spending Limits, Page .5 24 -In
    MARTIN CODEL's AUTHORITATIVE NEWS SERVICE FOR MANAGEMENT OF THE VISUAL BROADCASTING AND ALLIED ELECTRONICS ARTS AND INDUSTRY with ELECTRONICS`" REPORTS PUBLISHED WEEKLY BY RADIO NEWS BUREAU WYATT BLDG. WASHINGTON 5, D.C. TELEPHONE STERLING 3-1755 9 VOL. 8: No. 49 " ` .`1 nz, 6, 1952 I 1952 December f ' ` 66 More VHFs Get Started as UHFs`La ,Lpage 1 UHF Grantees Now Soft -Pedaling Promises, page 7 FCC Grants 6, Splits on 'Joint AM' Cases, page 2 Network TV-Radio Billings: Oct. & Jan. -Oct., page 9 The Transmitter Outlook-UHF & VHF, page 3 Congressional 'Morals' Hearings Wind Up, page 10 Iw this NPA Allotting Steel for New Stations, page 4 $1,500,000 Ford Grant to New Educator Group, page 11 Issue: TV Applicants Weighing Community Systems, page .5 New TV Lines and New Prices on Tap, page 12 TV Antiquates Political Spending Limits, page .5 24 -in. Tube Appears 'Comer' for 1953, page 12 Theatre -TV 'Conventions' Open New Field, page 6 Nov. 1 Count of TV Sets -in -Use by Cities, page 16 MORE VRFs GET STARTED AS URFs LAG: Vhf continues to lead the new -station starters but break in uhf equipment log -jam is expected momentarily (see story, p. 3). This week's STAB (special temporary permits) for new operations were issued by FCC to El Paso's KROD-TV (Channel 4), which began tests Dec. 4 and is planning programs starting Dec. 14 or earlier; to Colorado Springs' KKTV (Channel 11), which is reported all set to turn on the juice Sunday, Dec. 7; to K0P0-TV, Tucson, Ariz.
    [Show full text]
  • Front End Elements for a Colour Cathode Ray Tube
    Europaisches Patentamt (19) European Patent Office © Publication number: 0 125 931 Office europeen des brevets A1 © EUROPEAN PATENT APPLICATION © Application number: 84303375.4 ©Int CI.3: H 01 J 29/07 H 01 J 9/14 © Date of filing: 17.05.84 © Priority: 17.05.83 JP 86081/83 © Inventor: Inaba, Michihiko c/o Patent Division Toshiba Corporation Principal Office 1-1 Shibaura 1-chome Minato-ku Tokyo(JP) © Date of publication of application: 21.11.84 Bulletin 84/47 © Inventor: Shikanai, Satoshi c/o Patent Division Toshiba Corporation Principal Office © Designated Contracting States: 1-1 Shibaura 1-chome Minato-ku Tokyo(JP) DE FR GB IT © Inventor: Kanto, Masaharu c/o Patent Division Toshiba Corporation Principal Office © Applicant: Kabushiki Kaisha Toshiba 1-1 Shibaura 1-chome Minato-ku Tokyo(JP) 72, Horikawa-cho Saiwai-ku Kawasaki-shi Kanagawa-ken 210(JP) © Inventor: Ohtake, Yasuhisa c/o Patent Division Toshiba Corporation Principal Office 1-1 Shibaura 1-chome Minato-ku Tokyo(JP) © Representative: Shindler, Nigel et al, BATCHELLOR, KIRK & EYLES 2 Pear Tree Court Farringdon Road London ECIRODS(GB) © Front end elements for a colour cathode ray tube. A front end element, such as a shadow mask, for a colour cathode ray tube is made from an alloy including iron and nickel as its principal components; and a black oxide layer is formed integrally on the alloy base. The black oxide layer consists essentially of a spinel-type oxide with the formula NixFe(3-x)O4, where x is a positive number less than 3. A front end element constructed in this way produces a higherquality picture because of reduced thermal expansion.
    [Show full text]
  • Arizona Telemedicine Network: System Procurement Specifications
    DOCUMENT RESUME ED 119 886 RC 009 026 TITLE Arizona TeleMedicine Network: System Procurement Specifications. INSTITUTION Arizona Univ., Tucson. Coll. of Medicine.; Atlantic Research Corp., Alexandria, Va. SPONS AGENCY Office of Economic Opportunity, Washington, D.C. REPOFT NO OEO- B2C-5379 PUB DATE 25 May 73 NOTE 105p.; Related documents are RC 009 023-027 EDRS PRICE MF-$0.83 HC -$6.01 Plus Postage DESCRIPTORS *American Indians; Contracts; Definitions; Delivery Systems; Equipment; *Health Services; Performance Specifications; Program Design; Quality Control; Reservations (Indian) ;*Rural Areas; *Specifications; Standards; Technology; *Telecommunication IDENTIFIERS *Arizona TeleMedicine Project ABSTRACT Providing general specifications and system descriptions for segments within the Arizona TeleMedicine Project (a telecommunication system designed to delirer health services to rurally isolated American Indians in Arizona), this document, when used with the appropriate route segmf2nt document, will completely describe the project's required communication facilities (radio, studio, and terminal equipment). Major topics presented include: (1) Scope (communications med.ium and channels, switching, and compatability) ;(2) System Design (design objectives; signal routing, switching, and system management; control console equipment; equipment licensing; etc.);(3) Applicable Documents (Electronic Industry Association Standards; Federal Aviation Regulations; etc.); (4) Transmission Performance Requirements;(5) Equipment Performance Requirements
    [Show full text]
  • A Technical Research Report: the Cathode Ray Tube
    March 8, 2005 A Technical Research Report: The Cathode Ray Tube Prepared for Professor Ann Holms University of California Santa Barbara College of Engineering Prepared by Charles A. De Cuir University of California Santa Barbara College of Engineering Table of Contents Abstract…………………………………………………………………………………...i Introduction……………………………………………………………………………....1 Primary CRT Systems …………………………………………………………………...1 Electron Beam Forming Systems………………………………………………...2 The Electron Gun………………………………………………………...2 Electron Beam Deflecting Systems……………………………………………....3 The Electrostatic Deflection System…………………………………..…3 The Electromagnetic Deflection System………………………………....4 Screen Components……………………………………………………………....5 The Phosphor Screen……………………………………………………..5 The Shadow Mask………………………………………………………..5 Display Functionality of the Electron Beam………………………………………….....6 Electron Beam Layouts…………………………………………………………..6 The Triangle Layout……………………………………………………...6 The Grill Layout………………………………………………………….7 Electron Beam Scanning……………………………………………………….....8 Conclusion………………………………………………………………………………..9 References……………………………………………………………………………….10 List of Figures Figure 1: A General Cathode Ray Tube………………………………………………….2 Figure 2: Generalized Structure of An Electron Gun…………………………………….3 Figure 3: A General Electrostatic Deflection System........................................................4 Figure 4: A General Electromagnetic Deflection System..................................................5 Figure 5: A Typical Triangle Layout [Analog Video, n.d.] ..............................................6
    [Show full text]