Characterization of Color CRT Display Systems for Monochrome Applications

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Color CRT Display Systems for Monochrome Applications Characterization of Color CRT Display Systems for Monochrome Applications G. Spekowius Soft-copy presentation of medical images is becoming presented frequently on color CRT display systems. more and more important as medical imaging is Particularly, if general-purpose workstations or strongly moving toward digital technology, and health care facilities are converting to filmless hospital and PCs are used for medical viewing, color monitors radiological information management. Although most are more or less standard. These common computer medical images are monochrome, frequently they are graphic displays ate applied without any further displayed on color CRTs, particularly if general- modification. This is in contrast to the medical purpose workstations or PCs are used for medical monochrome monitors, which normally are devel- viewing. In the present report, general measurement oped especially to fulfill the high image quality and modeling procedures for the characterization of color CRT monitors for monochrome presentation are requirements of medical imaging. Because the total introduced. The contributions from the three color number of medical displays is small in comparison channels (red, green, and blue) are weighted accord- to consumer applications, there is little incentive ing to the spectral sensitivity of the human eye for for the consumer display industry to develop spe- photopic viewing. The luminance behavior and the cial color CRTs for medical imaging. Hence, the resolution capabilities of color CRT monitors are ana- lyzed with the help of photometer and charge-coupled limitations of the consumer monitor CRT also device (CCD) camera measurements. For the evalua- apply to medical usage and might limit the image tion of spatial resolution, a two-dimensional Fourier quality for some applications. analysis of special test images containing white noise The purpose of this report is to characterize the (broadband response) is employed. A stage model for special image quality aspects of medical image a color CRT monitor is developed to discuss the effects of scanning and dot sampling. Furthermore, display presentation on color monitors and to develop intrinsic veiling glare and reflectivity of typical color measures for display selection, display calibration, CRT monitors are measured and compared with those and display maintenance. of monochrome CRT monitors. The developed meth- ods and models allow one to describe the image COLOR CRT MONITOR TECHNOLOGY quality aspects of color monitors if they are applied for medical monochrome image presentation. Particu- Color viewing on monitors is realized by merg- larly, because of the reduced luminance and dynamic ing the three base cotors--red (R), green (G), and range of color monitors, the calibration and control of blue (B)-----emitted from a structured phosphor their luminance curves is a very important task. For screen that is excited by three individual electron present color CRT monitors, 1,280 x 1,024 turns out to be an intrinsic limit for the displayable matrix of beatos. This article provides a brief illustration of medical images. the current color CRT technology and discusses Copyright 9 1999 by W.B. Saunders Company some descriptors that are important for image quality (eg, dot pitch). The major components of a KEY WORDS: monitor characterization, color CRT standard color CRT are shown in Fig 1. Generally, monitors, soft-copy viewing, image quality. it consists of an RGB triple-electron gun, a shadow mask, anda structured phosphor screen with red, ODAY, more and more health care facilities green, and blue patches. Each of the three electron are converting to digital filmless hospital and T beams must pass the shadow mask before it hits the radiological information management. Within that phosphor dots of its color. The screen shadow scope, the soft-copy presentation of medical im- mask distance, of approximately 1 cm, provides the ages gains more and more relevance for an efficient spatial separation of the three beams on the screen. and cost-effective hospital organization. Although A sketch of the screen shadow mask region is most medical images are monochrome, they are provided in Fig 2. The light emitted by the indi- vidual phosphor dots is merged by the human eye, From Philips Research Laboratories, Aachen, Germany. forming a smooth colored image impression if the Address reprint requests to Dr Gerhard Spekowius, Philips viewing distance is sufficiently high. Research Laboratories, Weisshausstrasse 2, D-52066 Aachen, In Fig 3, the three major types of shadow masks Germany. Copyright 91999 by ~B. Saunders Company and the respective screen structures are indicated. 0897-1889/99/1203-000251 O. 00/0 Typically, we find the dot mask in computer mon- 102 Journal of Digital Irnaging, Vol 12, No 3 (August), 1999: pp 102-113 MONOCHROME APPLICATIONS OF COLOR CRT SYSTEMS 103 cover commonly used in-line gun. The horizontal and vertical dot pitches can be different. Usually they are chosen such that scan and video Moir› are adow mask minimized for the typical image matrix, which will be displayed on the screen. Present high-resolution monitor CRT technology : glass comes with dot pitches of 0.26 to 0.28 mm for ;phor screen screen diameters of about 20". The transmission of the shadow mask is only about 10% to 15%, and the major portion of the current in the electron beato does not contribute to the luminance. Typi- cally, color CRT monitors have a maximum lumi- nance of 80 to 100 cd]m2 only, whereas mono- Fig 1. The basic components of a color cathode-ray-tube chrome CRT monitors can achieve more than 800 (CRT). cd/m2.1-3 Table I provides some typical numbers and compares them with actual monochrome CRT itor tubes, whereas the slot mask is applied in monitors. television tubes. The Trinitron mask is applied with Modern digital monitors provide a number of different line pitches in TV as well as monitor automatic corrections to improve image quality. CRTs. The dot and slot masks provide a separation Examples ate controlling the uniformity of color in horizontal and vertical direction, whereas the and luminance, or adjusting dynamically the conver- Trinitron mask separates in the horizontal direction gence of the three beams. A digital control interface only. A shadow mask is characterized by its dot or allows for the establishment of interactive as well line pitch, giving the distance from hole to hole or as automatic procedures to optimize or recalibrate slot to slot. For the dot mask, we have a hexagonal the monitor in combination with the applied graph- structure, and the dot pitches (eg, given in technical ics card. These control opportunities are particu- data sheets) refer to the diagonal pitch of two dots larly important for medical image applications of the same color, as indicated in Fig 3. In the because they allow for the implementation of delta-gun arrangement, the three (RGB) guns form image quality maintenance procedures such as an equal triangle, and thus the phosphor dots do. control of the display function. 2 The three guns are horizontally in line for the most MONITOR CHARACTERIZATION blue, red, green In this section, measurement procedures are phosphor dots described for analyzing the (gray) display function, uniformity of luminance and color, veiling glare, reflectivity, resolution, and screen fixed pattern. black I matrix Before the detailed description is provided, it is ! important to consider some basic luminance as- red pects on the formation of monochrome images on a gun color monitor. Basically, color vision can be described by a set of three parameters. 4-6 Most common is the x, y, z green system of the CIE 1931 standard colorimetric gun observer. For this system, all three color matching functions [x(k), y(k), z(k)] have a positive sign, blue and the y(k) curve represents the standard spectral luminous sensitivity curve [V(k)] of the human eye gun I for photopic viewing. For the characterization of shadow mask luminance performance as well as spatial resolu- tion, the contributions of the three color channels of Fig 2. The shadow-mask screen region of a color CRT, a CRT monitor are weighted according to the V(k) 104 G. SPEKOWIUS dot mask slot mask Trinitron I I __ .J_ o~oiooo I R G B R G ,B Q~Q~OQ~ i i ,:i ~9169 , ,{I llll ! ! I Ir I ...... I I 'slot pitch' ~h line pitch Fig 3. The different screen structures of color CRTs (shadow masks) and their relevant dot pitches (P,, horizontal pitch; Pv, vertical pitch), curve. Although the dark part (<10 cd/m 2) of the allow selection of the color temperature; a typical luminance range of color monitors falls into the preset value is 9,300 K with x = 0.294 and y = mesotopic viewing range of the human eye, it 0.294. Television studio monitors often are standard- appears to be sufficient to apply the photopic ized to 6,500 K (D65) with x = 0.313 and y = sensitivity curve for the characterization of the 0.329. For an RGB monitor, all colors falling into displayed image quality. the phosphor triangle can be realized. A gray Figure 4 shows a CIE x, y chromaticity diagram impression on a color CRT monitor is achieved if overlaid by the black-body line (BBL) or Planckian the applied video signal for the RGB channel is locus anda color triangle formed by typical televi- almost equal. Important for the analysis of gray- sion, here EBU (European Broadcast Union) phos- phors. Color temperatures of correlated color tem- peratures 7 refer to coordinates falling on of close 0.9- A: Tun, sten, filam ~nt 28 50 K to the Planckian locus. Many natural light sources 521 D65 ph~ ~e of c aylig~ of 65 30 K have coordinates very close to the BBL and, o~/~~.~ roughly, a white color impression is perceived between 2,500 K (warm white) and 10,000 K 0.7- (bluish white).
Recommended publications
  • Understanding Color and Gamut Poster
    Understanding Colors and Gamut www.tektronix.com/video Contact Tektronix: ASEAN / Australasia (65) 6356 3900 Austria* 00800 2255 4835 Understanding High Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Definition Video Poster Belgium* 00800 2255 4835 Brazil +55 (11) 3759 7627 This poster provides graphical Canada 1 (800) 833-9200 reference to understanding Central East Europe and the Baltics +41 52 675 3777 high definition video. Central Europe & Greece +41 52 675 3777 Denmark +45 80 88 1401 Finland +41 52 675 3777 France* 00800 2255 4835 To order your free copy of this poster, please visit: Germany* 00800 2255 4835 www.tek.com/poster/understanding-hd-and-3g-sdi-video-poster Hong Kong 400-820-5835 India 000-800-650-1835 Italy* 00800 2255 4835 Japan 81 (3) 6714-3010 Luxembourg +41 52 675 3777 MPEG-2 Transport Stream Advanced Television Systems Committee (ATSC) Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90 ISO/IEC 13818-1 International Standard Program and System Information Protocol (PSIP) for Terrestrial Broadcast and cable (Doc. A//65B and A/69) System Time Table (STT) Rating Region Table (RRT) Direct Channel Change Table (DCCT) ISO/IEC 13818-2 Video Levels and Profiles MPEG Poster ISO/IEC 13818-1 Transport Packet PES PACKET SYNTAX DIAGRAM 24 bits 8 bits 16 bits Syntax Bits Format Syntax Bits Format Syntax Bits Format 4:2:0 4:2:2 4:2:0, 4:2:2 1920x1152 1920x1088 1920x1152 Packet PES Optional system_time_table_section(){ rating_region_table_section(){ directed_channel_change_table_section(){ High Syntax
    [Show full text]
  • Cathode-Ray Tube Displays for Medical Imaging
    DIGITAL IMAGING BASICS Cathode-Ray Tube Displays for Medical Imaging Peter A. Keller This paper will discuss the principles of cathode-ray crease the velocity of the electron beam for tube displays in medical imaging and the parameters increased light output from the screen; essential to the selection of displays for specific 4. a focusing section to bring the electron requirements. A discussion of cathode-ray tube fun- beam to a sharp focus at the screen; damentals and medical requirements is included. 9 1990bu W.B. Saunders Company. 5. a deflection system to position the electron beam to a desired location on the screen or KEY WORDS: displays, cathode ray tube, medical scan the beam in a repetitive pattern; and irnaging, high resolution. 6. a phosphor screen to convert the invisible electron beam to visible light. he cathode-ray tube (CRT) is the heart of The assembly of electrodes or elements mounted T almost every medical display and its single within the neck of the CRT is commonly known most costly component. Brightness, resolution, as the "electron gun" (Fig 2). This is a good color, contrast, life, cost, and viewer comfort are analogy, because it is the function of the electron gun to "shoot" a beam of electrons toward the all strongly influenced by the selection of a screen or target. The velocity of the electron particular CRT by the display designer. These beam is a function of the overall accelerating factors are especially important for displays used voltage applied to the tube. For a CRT operating for medical diagnosis in which patient safety and at an accelerating voltage of 20,000 V, the comfort hinge on the ability of the display to electron velocity at the screen is about present easily readable, high-resolution images 250,000,000 mph, or about 37% of the velocity of accurately and rapidly.
    [Show full text]
  • Advanced Color Machine Vision and Applications Dr
    Advanced Color Machine Vision and Applications Dr. Romik Chatterjee V.P. Business Development Graftek Imaging 2016 V04 - for tutorial 5/4/2016 Outline • What is color vision? Why is it useful? • Comparing human and machine color vision • Physics of color imaging • A model of color image formation • Human color vision and measurement • Color machine vision systems • Basic color machine vision algorithms • Advanced algorithms & applications • Human vision Machine Vision • Case study Important terms What is Color? • Our perception of wavelengths of light . Photometric (neural computed) measures . About 360 nm to 780 nm (indigo to deep red) . “…the rays are not coloured…” - Isaac Newton • Machine vision (MV) measures energy at different wavelengths (Radiometric) nm : nanometer = 1 billionth of a meter Color Image • Color image values, Pi, are a function of: . Illumination spectrum, E(λ) (lighting) λ = Wavelength . Object’s spectral reflectance, R(λ) (object “color”) . Sensor responses, Si(λ) (observer, viewer, camera) . Processing • Human <~> MV . Eye <~> Camera . Brain <~> Processor Color Vision Estimates Object Color • The formation color image values, Pi, has too many unknowns (E(λ) = lighting spectrum, etc.) to directly estimate object color. • Hard to “factor out” these unknowns to get an estimate of object color . In machine vision, we often don’t bother to! • Use knowledge, constraints, and computation to solve for object color estimates . Not perfect, but usually works… • If color vision is so hard, why use it? Material Property •
    [Show full text]
  • HP Monochrome Laserjet Printers
    HP Monochrome LaserJet Printers Get the printer that best meets your needs - high volume, office and personal black-and-white laser printers with renowned HP reliability and performance. NEW Auto On/Off Wireless Auto On/Off Auto On/Off Auto On/Off Auto On/Off Auto On/Off Auto On/Off + + + AirPrint AirPrint HP LaserJet Pro P11001 HP LaserJet Pro P15661 Printer HP LaserJet Pro P1606dn1 Printer HP LaserJet P20351 Printer HP LaserJet Pro 400 M4011 HP LaserJet P30101 Printer series HP LaserJet Enterprise 600 M6011 HP LaserJet Enterprise 600 M6021 HP LaserJet Enterprise 600 M6031 HP LaserJet 52001 Printer series HP LaserJet 90401/90501 Printer series Business professionals who need a For small offices where a shared, faster An affordable printer for office Printer series High performance printer packed with Printer series Printer series Printer series Powerful and versatile wide-format Printer series Designed for home or small office users fast, desktop laser printer that’s easy laser printer helps reduce environmental productivity in a sleek, space-saving Printing professional-quality documents advanced security features and flexible HP’s business pacesetter tackles Share this printer with workgroups to Tackle large-volume print jobs with ease, printer for business workgroups. Ideal for demanding departments who want an affordable HP LaserJet to use and helps them save energy and impact with automatic two-sided printing design. at a great value, with outstanding expandability options to meet changing high-volume printing with legendary cut costs and boost productivity. Tackle and enable printing policies with top- needing high performance and low printer that’s easy to use and helps save resources.
    [Show full text]
  • Grayscale Vs. Monochrome Scanning
    13615 NE 126th Place #450 Kirkland, WA 98034 USA Website:www.pimage.com Grayscale vs. Monochrome Scanning This document is intended to discuss why it is so important to scan microfilm and microfiche in grayscale and to show the limitations of monochrome scanning. The best analogy for the limitations of monochrome scanning is if you have every tried to photocopy your driver licenses. The picture can go completely black. This is because the copier can only reproduce full black or full white and not gray levels. If you place the copier in photo mode it is able to reproduce shades of gray. Grayscale scanning is analogous to the photo modes setting on your copier. The types of items on microfilm that are difficult to reproduce in monochrome are pencil on a blue form, light signatures, date stamps and embossing. In grayscale these items have a much higher probability to reproduce in the scanned version. Certainly there are instances where filming errors exist and the film is almost pure black or pure white. This can happen if the door to the room was opened during filming, if the canister had light intrusion prior to developing or if the chemicals or temperature were off on the developer. If these are identified the vendor can make a lamp adjustment in these sections of film or if they are frequent and the vendor has the proper cameras, they can scan at a higher bit depth. We have the ability to scan at bit depths higher than 8 bit gray up to 12 bits. 8 bit supports 256 levels of gray, 10bit supports 1024 levels and 12 bit 4096 levels.
    [Show full text]
  • Duotones Duotones, As the Name Implies, Are Images with Two Color Tones
    Duotones Duotones, as the name implies, are images with two color tones. In its simplest form, duotones can be used to create an image like a black-and-white photograph, but using any color base you want. In its more complex form, a duotone can create an image of contrasting colors to produce a dramatic visual effect. Let’s start with a quick look at how to create simple duotones from a photograph, and we want to produce a two-tone vaguely yellowish image for a particular project. We’ll convert this image to a duotone with complete control over the colors we use… There are several ways to create a duotone in Photoshop, including working with layers (for strongly graphic duotones images) and the channel mixer (for more traditional color- scaled images). In this case, we’ll use the latter approach first to show how to accomplish this effect. After opening your image, open the Channel Mixer (Image > Adjustments > Channel Mixer) and click the Monochrome box. Then, you can use the Red, Green and Blue channel sliders to control the contrast of the image. Keep in mind that the total values for the three color channels need to add up to approximately 100%: The Channel Mixer lets you adjust the RGB components. Keep in mind this is still a color image! Although it looks like a back-and-white image, it isn’t. The image still is in RGB color, so it has to be turned into a true grayscale image using the Image > Mode > Grayscale option, saying “Yes” to discarding the color information in the image: Now we can remove the color components Now, to convert the image into a duotone you need to load a duotone layer.
    [Show full text]
  • Popular Electronics Build a Subwoofer Let Your Home Theater Roar and Rumble
    PRIMESTAR. THE DBS ALTERNATIVE Popular Electronics Build A Subwoofer Let your home theater roar and rumble The Truth About Speaker Cables What's really inside those expensive audiophile cables? Designing Speaker Crossovers Create your own great -sounding speakers d SBk'BDCCH.xux.xx 5-DIGIT 60506 Random -at Image k6O506C+HM997GA006M FEB96 P73 Make 3 -D images that pop o ROBERT RAHM RESP of your computer's screen 116 997 GRAND AUE AURORA IL 60506 -2513 $3.50: U.S. $3.95 CAN. FrJEL1t;Aricarí www.americanradiohistory.comAmericanRadioHistory.Com MIXED-MODE POWER Design & Verify Faster with Electronics Workbench® More Power s Simulate bigger and more Electronic complex circuits. Faster. On average, Electronics Analog, Digital & e nch Workbench Version 4 is o rb more than 5 times faster l compbner Mixed Circuits in a lab than Version 3. Electronics Workbench" The electronics Version 4 is a fully integrated schematic capture, simulator and graphical waveform More Parts generator. It is simple to Multiple parts bins mix analog and digital parts contain over twice the in any combination. components of Version 3. Design and Verify Circuits... Fast! More Models Electronics Workbench s Over 350 real world analog simple, direct interface and digital models are helps you build circuits included free with in a fraction of the time. Electronics Workbench. Try `what if' scenarios and And, if you need more, an fine tune your designs additional 2,0(X) models painlessly. are available. Electronics Workbench delivers the power you need to design and verify analog, digital and true mixed mode circuits. Over 20,000 customers have already put Electronics Workbench to the test.
    [Show full text]
  • New Color Patterning Techniques for OLED Displays
    New Color Patterning Techniques for OLED Displays by Yoshitaka Kajiyama A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2015 ©Yoshitaka Kajiyama 2015 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Organic light emitting devices (OLEDs) are light emitting devices consisting of a stack of organic semiconductors sandwiched by electrodes. Since the first report of a high-efficiency device by Tang and Van Slyke in 1987, OLEDs have attracted considerable attention, particularly for use in flat panel displays. OLEDs provide these products improved power consumption, contrast, response speed, viewing angle, and compatibility with flexible displays. The performance of OLEDs has improved considerably, especially in terms of stability and efficiency, so they can now meet the requirements for some display products. However, the commercialization of OLED displays remains limited and is hampered primarily by manufacturing issues. These issues include low manufacturing yield, high fabrication cost, and low display quality. Manufacturing issues are largely attributed to difficulties with the color patterning process, the fabrication process by which arrays of red, green and blue (RGB) OLEDs can be made side-by-side on one substrate in order to obtain a full-color display. Currently, RGB color patterning is done by sequential vacuum deposition of red, green and blue materials through a pre-patterned shadow mask, which is typically made of a thin metal sheet.
    [Show full text]
  • A Comparative Study on Shadow Compensation of Color Aerial Images in Invariant Color Models Victor J
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 6, JUNE 2006 1661 A Comparative Study on Shadow Compensation of Color Aerial Images in Invariant Color Models Victor J. D. Tsai Abstract—In urban color aerial images, shadows cast by a normalized hue, saturation, and intensity (HSI) color space. cultural features may cause false color tone, loss of feature in- Susuki et al. [11] presented a method that applies separation formation, shape distortion of objects, and failure of conjugate of spatial frequency components and probabilistic shadow image matching within the shadow area. This paper presents an automatic property-based approach for the detection and com- segmentation in the red, green, and blue (RGB) space and pensation of shadow regions with shape information preserved in compensations of intensity and saturation values to improve complex urban color aerial images for solving problems caused by the visibility of features in shadowed regions while retaining cast shadows in digital image mapping. The technique is applied nonshadowed regions and the natural tint of shadowed regions. in several invariant color spaces that decouple luminance and Recently, Huang et al. [12] presented an imaging model of chromaticity, including HSI, HSV, HCV, YIQ, and YC C models. Experimental results from de-shadowing color aerial images of a shadows based on Phong illumination model [13] and em- complex building and a highway segment in these color models are ployed thresholding on the hue, blue, and green-blue difference evaluated in terms of visual comparisons and shadow detection components sequentially to detect shadowed areas, which were accuracy assessments. The results show the effectiveness of the then compensated by applying the Retinex technique to both proposed approach in revealing details under shadows and the shadowed and nonshadowed areas separately.
    [Show full text]
  • Color Plotting83 Unisec User Guide
    Color Plotting83 Unisec User Guide Color Plotting Color display modes There are two color display modes for seismic traces: • Color Background: a color trace is displayed behind the wiggle trace. The color trace data is either derived from the same trace data used to draw the wiggle or a second source. Each sample is colored with a rectangle equal to one trace in width and one sample in height. This mode is sometimes referred to as Variable Density color. • Color VA fill: the wiggle trace is color VA filled in either/ or peaks and troughs. Like background color fill, the color trace data is either derived from the same trace data used to draw the wiggle or a second source. In both modes the wiggle is displayed in black as a conventional wiggle trace. The color display modes are controlled by the DISP keyword on the PARMS statement: Examples PARMS, DISP=WCB produces a black wiggle with color background. PARMS, DISP=WCPT produces a black wiggle with color VA fill of the peaks and troughs. PARMS, DISP=CB produces a color background only, no wiggles. Color Trace Data Scaling (CCLASS) The CCLASS allows you to specify a relationship between ranges of trace data values and colors plotted. The class intervals are automatically annotated on the color scale. CCLASS is optional when the auto scaling (AUTOSC) function is used. In this case, if the CCLASS is omitted, the minimum and maximum is automatically derived from the trace data. Format CCLASS, title = (min TO max [BY interval]) Where: title = color scale title (maximum 40 characters).
    [Show full text]
  • Prepared by Dr.P.Sumathi
    COMPUTER GRAPHICS 18BIT53C UNIT I: Overview of Graphics System – Display Devices – CRT – Random Scan and Raster Scan Monitors – Techniques for Producing Colour Display – Beam – Penetration and Shadow – Mask Methods – DVST – Plasma – Panel Displays – Hardcopy Devices – Printers and Plotters – Display Processors – Output Primitives – DDA and Bresenham’s line drawing algorithms – Antialiasing lines – Bresenham’s Circle Algorithm – Character Generation. UNIT II: Two-dimensional Transformations – Scaling, Translation and Rotation – Matrix Representations – Composite Transformations – Reflection – Shearing – Other Transformations. Windowing and Clipping – Concepts – Cohen and Sutherland Line Clipping Algorithm – Midpoint Subdivision. UNIT III: Three dimensional Concept- Three-Dimensional object representations – polygon surfaces – polygon tables- plane equations - Three-Dimensional geometric transformations – translation – rotation – scaling – other transformations. UNIT IV: Three-Dimensional viewing – viewing pipeline - Display Techniques – Parallel Projection – Perspective Projection – Hidden-Surface and Hidden-Line removal – Back face removal – Depth Buffer Method – Scan Line Method – BSP Tree Methods – Depth-Sorting Method – Area-subdivision Method – Octree Methods – Comparison of Hidden-Surface Methods. UNIT V: Colour models and colour applications – properties of light – standard primaries and the chromaticity diagram – xyz colour model – CIE chromaticity diagram – RGB colour model – YIQ, CMY, HSV colour models, conversion between HSV and RGB models, HLS colour model, colour selection and applications. TEXT BOOK 1. Donald Hearn and Pauline Baker, “Computer Graphics”, Prentice Hall of India, 2001. Prepared by Dr.P.Sumathi 1 COMPUTER GRAPHICS Computer graphics is an art of drawing pictures on computer screens with the help of programming. It involves computations, creation, and manipulation of data. In other words, we can say that computer graphics is a rendering tool for the generation and manipulation of images.
    [Show full text]
  • Method of Making a Shadow Mask Verfahren Zur Herstellung Einer Schattenmaske Procédé De Fabrication D'un Masque D'ombre
    Europäisches Patentamt (19) European Patent Office Office européen des brevets (11) EP 0 209 346 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int. Cl.7: H01J 29/07 of the grant of the patent: 01.03.2000 Bulletin 2000/09 (21) Application number: 86305399.7 (22) Date of filing: 14.07.1986 (54) Method of making a shadow mask Verfahren zur Herstellung einer Schattenmaske Procédé de fabrication d'un masque d'ombre (84) Designated Contracting States: • Tokita, Kiyoshi DE FR GB 1-1, Shibaura 1-chome Minato-ku Tokyo (JP) • Kida, Kaneharu (30) Priority: 17.07.1985 JP 15598185 1-1, Shibaura 1-chome Minato-ku Tokyo (JP) (43) Date of publication of application: (74) Representative: 21.01.1987 Bulletin 1987/04 Kirk, Geoffrey Thomas et al BATCHELLOR, KIRK & CO. (73) Proprietor: 102-108 Clerkenwell Road KABUSHIKI KAISHA TOSHIBA London EC1M 5SA (GB) Kawasaki-shi, Kanagawa-ken 210-8572 (JP) (56) References cited: (72) Inventors: EP-A- 0 139 379 EP-A- 0 156 427 • Koike, Norio GB-A- 2 080 612 US-A- 3 760 214 1-1, Shibaura 1-chome Minato-ku Tokyo (JP) US-A- 3 878 428 US-A- 4 558 252 • Matsuda, Hidemi 1-1, Shibaura 1-chome Minato-ku Tokyo (JP) • The New Encyclopaedia Britannica, 15th edition, vol.7, page 218 ("lead") Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement.
    [Show full text]