1 the 2010 Chilean and the 2011 Tohoku Tsunami Waves
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Formation Process of Sand Bar at a Jettied River
INCREASING THE AWARENESS OF RIVER UPSTREAM PEOPLE ABOUT TSUNAMI DISASTER Tohoku University Post-doctor Fellow O Xuan Tinh NGUYEN Tohoku University Fellow Member Hitoshi TANAKA 1. INTRODUCTION named Aomori, Iwate, Miyagi and Fukushima which As a result when tsunami invades into river, it may faces the Pacific Ocean, was impacted by the 2010 not only a threat of damages to the embankments but Chilean Tsunami. An attempt is made to collect as many also cause the environmental problem such as full data sets as possible from the local Prefectural inundation. Therefore, tsunami impacts to river Governments. In total, the data from 25 rivers were upstream studies become more important. There have compiled and analyzed. Nevertheless, because of each been several studies on tsunami impacts to the rivers river entrance has their own morphology so the such as Abe (1986), Tsuji et al. (1991), and Tinh N. X. influence of tsunami needs to be analyzed individually and Tanaka H., (2010). Among them Abe (1986) has and compared among them. found that the tsunami wave can propagate up to 15km 2.2 Field measurement data river upstream. Resonance occurred in river in about 80 In Japan, water level was often measured at 1 hour of minutes and causing a standing wave. Tinh N. X. and time interval in normal condition, however, due to some Tanaka H. (2010) have concluded that tsunami can short-time extreme events such as typhoons or tsunami propagate up to 33km in the Old Kitakami River during the measurement method can be switched to smaller 2010 Chilean Tsunami. -
Study on Distribution and Behavior of PFOS (Perfluorooctane Title Sulfonate) and PFOA (Perfluorooctanoate) in Water Environment( Dissertation 全文 )
Study on Distribution and Behavior of PFOS (Perfluorooctane Title Sulfonate) and PFOA (Perfluorooctanoate) in Water Environment( Dissertation_全文 ) Author(s) Lien, Nguyen Pham Hong Citation 京都大学 Issue Date 2007-09-25 URL https://doi.org/10.14989/doctor.k13379 Right Type Thesis or Dissertation Textversion author Kyoto University Study on Distribution and Behavior of PFOS (Perfluorooctane Sulfonate) and PFOA (Pefluorooctanoate) in Water Environment (水環境における PFOS (ペルフルオロオクタンスルホン酸) および PFOA(ペルフルオロオクタン酸)の分布と挙動に関する研究) NGUYEN PHAM HONG LIEN A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Engineering Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyoto University, Japan September 2007 Nguyen Pham Hong LIEN ii ABSTRACT PFOS (perfluoroctane sulfonate) and PFOA (perfloroctanoate) are man-made surfactants having wide range of industrial and commercial applications for decades. In the beginning of this decade, researcher found that they were ubiquitous in living organism and human, and that they possibly had characteristics of persistent organic pollutants. Therefore, there is an emerging need to study PFOS and PFOA contamination environment, particularly in the water environment. The research aims at examination of spatial distribution and behavior of PFOS and PFOA in water environment of several countries, with focus on new places where examination has never been conducted. Therefore, the method to analyze PFOS and PFOA in environmental water was developed. Sampling surveys were conducted to collect various types of water including surface water, wastewater treatment plant (WWTP) discharges, and tap water from various locations for analysis of PFOS and PFOA. Distribution and behavior of PFOS and PFOA were examined as three main parts. -
March 2011 Earthquake, Tsunami and Fukushima Nuclear Accident Impacts on Japanese Agri-Food Sector
Munich Personal RePEc Archive March 2011 earthquake, tsunami and Fukushima nuclear accident impacts on Japanese agri-food sector Bachev, Hrabrin January 2015 Online at https://mpra.ub.uni-muenchen.de/61499/ MPRA Paper No. 61499, posted 21 Jan 2015 14:37 UTC March 2011 earthquake, tsunami and Fukushima nuclear accident impacts on Japanese agri-food sector Hrabrin Bachev1 I. Introduction On March 11, 2011 the strongest recorded in Japan earthquake off the Pacific coast of North-east of the country occurred (also know as Great East Japan Earthquake, 2011 Tohoku earthquake, and the 3.11 Earthquake) which triggered a powerful tsunami and caused a nuclear accident in one of the world’s largest nuclear plant (Fukushima Daichi Nuclear Plant Station). It was the first disaster that included an earthquake, a tsunami, and a nuclear power plant accident. The 2011 disasters have had immense impacts on people life, health and property, social infrastructure and economy, natural and institutional environment, etc. in North-eastern Japan and beyond [Abe, 2014; Al-Badri and Berends, 2013; Biodiversity Center of Japan, 2013; Britannica, 2014; Buesseler, 2014; FNAIC, 2013; Fujita et al., 2012; IAEA, 2011; IBRD, 2012; Kontar et al., 2014; NIRA, 2013; TEPCO, 2012; UNEP, 2012; Vervaeck and Daniell, 2012; Umeda, 2013; WHO, 2013; WWF, 2013]. We have done an assessment of major social, economic and environmental impacts of the triple disaster in another publication [Bachev, 2014]. There have been numerous publications on diverse impacts of the 2011 disasters including on the Japanese agriculture and food sector [Bachev and Ito, 2013; JA-ZENCHU, 2011; Johnson, 2011; Hamada and Ogino, 2012; MAFF, 2012; Koyama, 2013; Sekizawa, 2013; Pushpalal et al., 2013; Liou et al., 2012; Murayama, 2012; MHLW, 2013; Nakanishi and Tanoi, 2013; Oka, 2012; Ujiie, 2012; Yasunaria et al., 2011; Watanabe A., 2011; Watanabe N., 2013]. -
The History, Tradition, and Culture of Kyoto Prefecture
The History, Tradition, and Culture of Kyoto Prefecture Kyoto Prefectural Education Center Preface The world has become a smaller place due to the development of high-speed machines and information technology. Nowadays the ability to show the world our identity as Japanese people including our culture and tradition, especially the ability to communicate with the rest of the world, is needed more than ever. Throughout history, Kyoto has been at the center of Japanese culture and history. Kyoto is therefore a good starting point for communicating with the world about Japanese culture and history. In this textbook, the history, tradition, and culture of each region in Kyoto Prefecture are introduced in English so that you, as high school students, can be proud to tell people from abroad about your hometown and Kyoto in English. The contents of chapter Ⅰto Ⅲ in this textbook are based on a Japanese textbook which was written for new teachers working in Kyoto Prefecture. Some parts have been erased and changed, and in other parts, new information was added so that high school students can understand better. You might find some difficult words in the textbook, however, the sentence structures are rather simple and readers with a basic knowledge of grammar can read on with a dictionary at hand. Furthermore, as the Japanese explanations are available on the right page, you can utilize them as a reference if the English is too difficult to understand. Besides, this textbook would be useful not only for students but also for people from abroad who don't know much about Kyoto Prefecture. -
Volki (Annelida: Clitellata: Propappidae) from Japan
JapaneseJapaneseSociety Society ofSystematicof Systematic Zoology Species Diversity, 2006, 11, 359-365 New Record of Propappus volki (Annelida: Clitellata: Propappidae) from Japan Takaaki Torii ll)Et`I CDnsuttants inc., 1334-5Riemon, Oigawa. Shida, Shizuoka, 421-CL212 .lapan E-mail: [email protected] (Received 1 November 2005; Accepted 11 July 2006) A species of freshwater oligochaete, PrQpoppus volki Michaelsen, 1916, is newly recorded from sand and gravel bottoms of several unpolluted streams in Honshu, Japan. The present material agrees well with the previous de- scriptiens of this species except that the spermathecal ampulla is shorter and the proboscis is more elomgate than those described earlier. This is the first record of the family Propappidae Coates, 1986 (New Japanese name: Ko- himemimizu-ka) and the genus Prql)qppus Miehaelsen, 1905 (New Japanese narne: Ko-himemimizu-zoku) in Japan. It provides evidence that the oligochaete fauna in Japan is more closely related to the Holarctic than to the Sino-Indian zoogeographical region, PrQpqppus votici can be regarded as a good bio-indicator fbr unpolluted water. Key Words: oligochaetes, Clitellata, Propappidae, Propappus volki, new record, Japan. Introduction The genus PrQpqppus was erected by Michaelsen (1905) fbr PrQpappus gtandu- losus Michaelsen, 1905 in the family Enchytraeidae. Afterwards Coates (1986) cre- ated the family Propappidae for the single genus PrQpappus on the basis of a unique combination of setal and genital characteristics distinctly different from those ef the Enchytraeidae. Only three species of Propampus have so far been described from freshwater habitats of the Palaearctic region, Among them, Prqpqppus glandulosus has been recorded from Lake Baikal and the Angara and Yenisey Rivers in central Russia (Michaelsen 1905; Coates 1986), PrQpqppus arhynchotus Sokolskaja, 1972 has been recorded only from the Kamchatka Peninsula and Amur basin in the Russian Far East (Timm 1994, 1999a). -
Title FLUVIAL INFLUENCE on ESTUARINE SEDIMENT
FLUVIAL INFLUENCE ON ESTUARINE SEDIMENT TRANSPORT PROCESSES AND LINKAGE OF ITS Title OUTFLOW DATA TO COASTAL MODELING( Dissertation_全文 ) Author(s) Josko, Troselj Citation 京都大学 Issue Date 2016-11-24 URL https://doi.org/10.14989/doctor.k20062 学位規則第9条第2項により要約公開; 許諾条件により要約 Right は2017-11-24に公開; 許諾条件により本文は2018-10-01に 公開 Type Thesis or Dissertation Textversion ETD Kyoto University FLUVIAL INFLUENCE ON ESTUARINE SEDIMENT TRANSPORT PROCESSES AND LINKAGE OF ITS OUTFLOW DATA TO COASTAL MODELING Josko Troselj 2016 FLUVIAL INFLUENCE ON ESTUARINE SEDIMENT TRANSPORT PROCESSES AND LINKAGE OF ITS OUTFLOW DATA TO COASTAL MODELING 河口土砂輸送過程に及ぼす河川の影響と海岸モデルへの河川流出情報の結合 by Josko Troselj A dissertation Submitted in partial fulfillment of the requirements for the Degree of Doctor of Engineering Department of Civil and Earth Resources Engineering Kyoto University, Japan 2016 Acknowledgements The completion of my doctoral degree work have been demanding and life learning task which I encountered and enjoyed for the last 4 years during my stay in Takara's Laboratory. I will never forget the beautiful period of my life while I was a PhD student. I would like to acknowledge all the people and organizations who helped me on the way. First and foremost, I would like to thank to my advisor, Professor Kaoru Takara who welcomed me in his lab and supported me all the way during the PhD degree study. He was taking care about my health and life conditions, visited me when I was in hospital and held birthday and welcome parties for me. He also provided me many chances to attend 7 international conferences and activities to communicate and study with other researchers and have employed me as Research Assistant in the Lab. -
Flood Loss Model Model
GIROJ FloodGIROJ Loss Flood Loss Model Model General Insurance Rating Organization of Japan 2 Overview of Our Flood Loss Model GIROJ flood loss model includes three sub-models. Floods Modelling Estimate the loss using a flood simulation for calculating Riverine flooding*1 flooded areas and flood levels Less frequent (River Flood Engineering Model) and large- scale disasters Estimate the loss using a storm surge flood simulation for Storm surge*2 calculating flooded areas and flood levels (Storm Surge Flood Engineering Model) Estimate the loss using a statistical method for estimating the Ordinarily Other precipitation probability distribution of the number of affected buildings and occurring disasters related events loss ratio (Statistical Flood Model) *1 Floods that occur when water overflows a river bank or a river bank is breached. *2 Floods that occur when water overflows a bank or a bank is breached due to an approaching typhoon or large low-pressure system and a resulting rise in sea level in coastal region. 3 Overview of River Flood Engineering Model 1. Estimate Flooded Areas and Flood Levels Set rainfall data Flood simulation Calculate flooded areas and flood levels 2. Estimate Losses Calculate the loss ratio for each district per town Estimate losses 4 River Flood Engineering Model: Estimate targets Estimate targets are 109 Class A rivers. 【Hokkaido region】 Teshio River, Shokotsu River, Yubetsu River, Tokoro River, 【Hokuriku region】 Abashiri River, Rumoi River, Arakawa River, Agano River, Ishikari River, Shiribetsu River, Shinano -
Challenges of Restoring and Rehabilitating Sewer Systems Damaged by the Great East Japan Earthquake and Tsunami
Journal of JSCE, Vol. 5, 279-297, 2017 Special Topic - Restoration and Recovery from the 2011 Great East Japan Earthquake( Invited Paper) CHALLENGES OF RESTORING AND REHABILITATING SEWER SYSTEMS DAMAGED BY THE GREAT EAST JAPAN EARTHQUAKE AND TSUNAMI Hiroyasu SATOH1 1Member of JSCE, Associate Professor, Graduate School of Frontier Sciences, The University of Tokyo (5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan) E-mail: [email protected] This is a review of the restoration and rehabilitation of sewer systems damaged by the Great East Japan Earthquake and Tsunami. The disaster caused serious damage to sewer systems, amounting to approxi- mately 470 billion JPY. The damage was mainly caused by the tsunami, but the damage due to liquefac- tion was also serious. The tectonic activity caused additional discharge loads to municipalities in coastal areas. The nuclear accident at Fukushima Daiichi Nuclear Power Plant also affected sewer systems in such forms as radio-contamination of sewage sludge and reduction of power supplies. In addition, migra- tion of users of sewer systems took place. In the restoration activities, sewage treatment plants (STPs) were restored step-by-step, and guidelines were developed to strengthen STPs against tsunamis. The ef- fectiveness of different countermeasures against earthquakes and liquefaction were examined, and new countermeasures were proposed. Software measures such as the introduction of business continuity plans and information technologies are recognized as effective measures for overcoming disasters. In particular, the sewer systems in Sendai City have been successfully restored and rehabilitated after the disaster, with different hardware and software measures. In contrast, sewer systems in small municipalities seriously damaged by the tsunami are still taking time to rehabilitate. -
FY2017 Results of the Radioactive Material Monitoring in the Water Environment
FY2017 Results of the Radioactive Material Monitoring in the Water Environment March 2019 Ministry of the Environment Contents Outline .......................................................................................................................................................... 5 1) Radioactive cesium ................................................................................................................... 6 (2) Radionuclides other than radioactive cesium .......................................................................... 6 Part 1: National Radioactive Material Monitoring Water Environments throughout Japan (FY2017) ....... 10 1 Objective and Details ........................................................................................................................... 10 1.1 Objective .................................................................................................................................. 10 1.2 Details ...................................................................................................................................... 10 (1) Monitoring locations ............................................................................................................... 10 1) Public water areas ................................................................................................................ 10 2) Groundwater ......................................................................................................................... 10 (2) Targets .................................................................................................................................... -
Geographical Information Analysis of Tsunami Flooded Area by the Great East Japan Earthquake Using Mobile Mapping System
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B8, 2012 XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia GEOGRAPHICAL INFORMATION ANALYSIS OF TSUNAMI FLOODED AREA BY THE GREAT EAST JAPAN EARTHQUAKE USING MOBILE MAPPING SYSTEM M. Koarai a, *, T. Okatani a, T. Nakano a, T. Nakamura b, M. Hasegawa b a Geography and Crustal Dynamics Research Center, Geospatial Information Authority of Japan, Kitasato1, Tsukuba, Ibaraki, 305-0811 Japan - (koarai, okatani, t-nakano)@gsi.go.jp b Dept. of Applied Geography, Geospatial Information Authority of Japan, Kitasato1, Tsukuba, Ibaraki, 305-0811 Japan - (nakamura, gaku)@gsi.go.jp Commission VⅢⅢⅢ, WG VⅢⅢⅢ/1 KEY WORDS: The Great East Japan Earthquake, Tsunami damage, Flood depth, Mobile Mapping System, landform classification, DEMs, Land use ABSTRACT: The great earthquake occurred in Tohoku District, Japan on 11th March, 2011. This earthquake is named “the 2011 off the Pacific coast of Tohoku Earthquake”, and the damage by this earthquake is named “the Great East Japan Earthquake”. About twenty thousand people were killed or lost by the tsunami of this earthquake, and large area was flooded and a large number of buildings were destroyed by the tsunami. The Geospatial Information Authority of Japan (GSI) has provided the data of tsunami flooded area interpreted from aerial photos taken just after the great earthquake. This is fundamental data of tsunami damage and very useful for consideration of reconstruction planning of tsunami damaged area. The authors analyzed the relationship among land use, landform classification, DEMs data flooded depth of the tsunami flooded area by the Great East Japan Earthquake in the Sendai Plain using GIS. -
Japan: Tokai Heavy Rain (September 2000)
WORLD METEOROLOGICAL ORGANIZATION THE ASSOCIATED PROGRAMME ON FLOOD MANAGEMENT INTEGRATED FLOOD MANAGEMENT CASE STUDY1 JAPAN: TOKAI HEAVY RAIN (SEPTEMBER 2000) January 2004 Edited by TECHNICAL SUPPORT UNIT Note: Opinions expressed in the case study are those of author(s) and do not necessarily reflect those of the WMO/GWP Associated Programme on Flood Management (APFM). Designations employed and presentations of material in the case study do not imply the expression of any opinion whatever on the part of the Technical Support Unit (TSU), APFM concerning the legal status of any country, territory, city or area of its authorities, or concerning the delimitation of its frontiers or boundaries. WMO/GWP Associated Programme on Flood Management JAPAN: TOKAI HEAVY RAIN (SEPTEMBER 2000) Ministry of Land, Infrastructure and Transport, Japan 1. Place 1.1 Location Positions in the flood inundation area caused by the Tokai heavy rain: Nagoya City, Aichi Prefecture is located at 35° – 35° 15’ north latitude, 136° 45’ - 137° east longitude. The studied area is Shonai and Shin river basin- hereinafter referred to as the Shonai river system. It locates about the center of Japan including Nagoya city area, 5th largest city in Japan with the population about 3millions. Therefore, two rivers flow through densely populated area and into the Pacific Ocean and are typical city-type rivers in Japan. Shin Riv. Border of basin Shonai Riv. Flooding area Point of breach ●Peak flow rate in major points on Sept. 12 (app. m3/s) ← Nagoya City, ← ← ino ino Aichi Prefecture j Ku ← 1,100 Shin Riv. ← 720 ← → ← ima Detention j Basin Shinkawa Araizeki Shidami Biwa (Fixed dam) Shin Riv. -
Aomori Cycling
AOMORI CYCLING Up close and personal with the incredible nature and culture of Aomori Aomori Cycling Up close and personal with the incredible nature and culture of Aomori Surrounded by ocean on all sides and blessed by incredible nature such as Shirakami-Sanchi and Lake Towada, each region in Aomori Prefecture enjoys its own unique history, culture and delicacies. Cycling Aomori is the perfect way to discover the intricacies of these individual regions. If you are ready, then jump on your bike and let's head off to explore the beauty of Aomori! 9 1 Course 1 NATSUDOMARI 11 2 Course 2 TOWADA・OIRASE 13 3 Course 3 HIROSAKI 15 4 Course 4 NISHIKAIGAN 17 5 Course 5 OKU-TSUGARU AOMORI 19 6 Course 6 SHIMOKITA 21 7 Course 7 LAKE OGAWARA CYCLING 23 Course 8 HACHINOHE Up close and personal with the incredible nature and culture of Aomori 8 25 33 27 35 29 37 31 7 8 03 02 04 05 06 01/The masses of blue net stored at the port are shellfish baskets, used for cultivating scallops. It's like riding through a maze. 02/Old fishing vessels of all shapes and sizes are dotted around the Natsudomari Peninsula. 03/Showing off the size of the scallops at "Hotate Hiroba," which has a giant scallop as its signboard. You can learn about scallop cultivation on the second floor.04 /At Yogoshiyama Forest Park you can see over 3,000 varieties of succulents. 05/Two men and a cat taking a break from cycling beside the tetrapod seawall.