Advancing Towards Biomass-Derived Syngas Fermentation

Total Page:16

File Type:pdf, Size:1020Kb

Advancing Towards Biomass-Derived Syngas Fermentation ADVANCING TOWARDS BIOMASS-DERIVED SYNGAS FERMENTATION EVALUATION OF PROCESS PARAMETERS AND GAS COMPOSITION EFFECTS Zur Erlangung des akademischen Grades einer DOKTORIN DER INGENIEURWISSENSCHAFTEN (DR.-ING.) von der KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von M. Sc Alba Infantes-López aus Mataró (Barcelona), Spain Tag der mündlichen Prüfung: 14.08.2020 Erstgutachter: Prof. Dr. Christoph Syldatk Zweitgutachter: Prof. Dr. Nicolaus Dahmen Zweitgutachterin: Dr. Anke Neumann This document is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en “Le rêve c’est tout – la technique, ça s’apprend.” Dreams are everything, technique can be learned. Jean Tinguely PREAMBLE Parts of this thesis have been published as peer reviewed research articles. They describe the main findings of my work. At the end of any applicable paragraph a reference note states the publication in which the content has been previously published. The text of these paragraphs is partially identical to the content of the publications. Layout, citation style, figures and formatting have been modified and adjusted to the style of this dissertation. Chapters that contain contents of previously published work are as follows: Chapters with the heading “General procedures for STR experiments”, “Impact of medium components and process parameters”, the discussion and the conclusion include content of the publication Infantes, A., Kugel, M., and Neumann, A. (2020). Evaluation of media components and process parameters in a sensitive and robust fed-batch syngas fermentation system with Clostridium ljungdahlii. Fermentation. 6(2), 61. DOI: 10.3390/fermentation6020061. Chapters with the heading “Evaluation of beech wood and lignin derived syngas”, the discussion and the conclusion include content of the submitted work for publication Liakakou, E. T., Infantes, A., Neumann, A., and Vreugdenhil, B. J. (2020). Connecting lignin gasification with syngas fermentation. Chapters with the heading “Impact of syngas composition and impurities”, the discussion and the conclusion include content of the publication Infantes, A., Kugel, M., Raffelt, K. and Neumann, A. (2020). Side-by-side comparison of clean and biomass-derived, impurity-containing syngas as substrate for acetogenic fermentation with Clostridium ljungdahlii. Fermentation. 6(3), 84. DOI: 10.3390/fermentation6030084. Chapters with the heading “Sequential cultivation for acetogenic fermentation from oxygen- containing waste gas” include content of the publication Mohr, T., Infantes, A., Biebinger, L., de Maayer, P., and Neumann, A. (2019). Acetogenic Fermentation From Oxygen Containing Waste Gas. Front. Bioeng. Biotechnol. 7, 433. DOI:10.3389/fbioe.2019.00433. I ACKNOWLEDGMENTS I would like to thank all those who have contributed towards the realization of this doctoral thesis. I especially, and sincerely thank Prof. Dr. Christoph Syldatk for giving me the opportunity to work and pursue my research at his group. To my supervisor Dr. Anke Neumann, thanks for the incredible support you have given me through my years at TeBi. Thanks for the constructive critics and ideas, and for the uncountable times we discussed together – you always helped me look at my results with a better light. I want to thank all students who worked with my and supported my research. You have all played a very important part on my thesis, and from each of you, I learned something. They are: Phillip Lemke, Nahla Isso and Laura Merker: thanks for your positivism and involvement; Karoline Haack and Laura Herrmann, a huge thank you to both for your commitment, organization and extremely professional approach to the experiments. Jennifer Reichert, thanks so much for helping with the analytics! Lars Biebinger, I thank the half of you I supervised for your contribution towards our shared paper! It was a pleasure working with you. To Lorenzo Wormer, I will be forever grateful for the amount of effort you put towards your Bachelor thesis. Thanks for your commitment, even when not everything went smooth. Last, but not least, Ana B. Torres Martínez: Santificado sea el Infors! Millones de gracias por estar ahí. Thanks for infusing good mood! And for our Mexican Spanish – European Spanish discussions, I will always remember this! To all my PhD colleagues at TeBi, past and present: You are truly the best people one could wish to be surrounded while pursuing a PhD. Special mention must be made to the members of our beloved Mädchenbüro: Olga, thanks for always listening when I needed someone to talk to. Rebecca, thanks for your authenticity! You never failed to make me smile! Caro, thanks for your valuable comments and advice, and for being my thesis mentor! Fei, you are a fountain of positivism! Also: Marcus, sin ti hubiera olvidado mi español. Gracias por estar siempre ahí! Stefan, Olli and Sascha: thanks for making me feel so welcome, and thanks for introducing me to TeBi and PhD student life! To the technicians team, past and present: Laura, Pascal, Delphine, Sandra, Elke and Daniela: thanks for taking care of the equipment, thanks for your support, and for teaching me. To Michaela: I could not have done this thesis without you. Thanks for the invaluable support, for making sure the fermenters were always in shape, for all your pieces of advice, and for answering all my questions. II Acknowledgments To Habibu, Katrin, Jens and Ulrike: I hugely appreciate the discussions we have had, and all your contributions during these years. Thanks for challenging my assumptions, and questioning my theories, you made a better scientist of me! To Beate and Susanne: thanks for being there, for always being ready to help and give advice, and for the nice conversations we have had. Finalment, he d’agrair a tots els de Mataró (i rodalies) per creure en mi, per aguantar-me durant aquests anys de doctorat, i per fer-me sentir sempre a casa: gràcies per ser-hi! Lluc: gràcies per acompanyar-me, sempre i en tot. Ets el pilar que m’ha sostingut tantes vegades. A mi familia: os lo debo todo. III LIST OF PUBLICATIONS Peer reviewed original research papers Mohr, T.*, Infantes, A. *, Biebinger, L., de Maayer, P., and Neumann, A. (2019). Acetogenic Fermentation From Oxygen Containing Waste Gas. Front. Bioeng. Biotechnol. 7, 433. DOI:10.3389/fbioe.2019.00433 *Co-first authorship Infantes, A., Kugel, M., and Neumann, A. (2020). Evaluation of media components and process parameters in a sensitive and robust fed-batch syngas fermentation system with Clostridium ljungdahlii. Fermentation. 6(2), 61. DOI: 10.3390/fermentation6020061 Infantes, A., Kugel, M., Raffelt, K., and Neumann, A. (2020). Side-by-side comparison of clean and biomass-derived, impurity-containing syngas as substrate for acetogenic fermentation with Clostridium ljungdahlii. Fermentation. 6(3), 84. DOI: 10.3390/fermentation6030084 Liakakou, E. T.*, Infantes, A.*, Neumann, A., Vreugdenhil, B. J., and Liakakou, E. T. Connecting lignin gasification with syngas fermentation. PREPRINT DOI: 10.31224/osf.io/9f5pj Submitted for publication (2020) *Co-first authorship Conference Talk Infantes, A., Neumann, A. (2019). Syngas Fermentation. EUBCE Workshop, Advanced biofuel production with energy system integration. EUBCE 2019, 27th European Biomass Conference & Exhibition Conference Posters Infantes A., Merker L., Reichart, J., Syldatk C. and Neumann A. Combining ABE and syngas fermentations for biobased fuels and chemicals. Annual Conference 2018 of the Association for General and Applied Microbiology (VAAM Jahrestagung) Infantes, A., Zwick, M., Stoll, I. K., Boukis, N., Oswald, F. and Neumann, A. Syngas Fermentation at Elevated Pressure. ProcessNet-Jahrestagung und 33. DECHEMA-Jahrestagung der Biotechnologen 2018. DOI: 10.1002/cite.201855330 IV List of publications Infantes A., Zwick M., Herrmann L., Torres A., Syldatk C. and Neumann A. Evaluation of “Impure” Syngas from the Karlsruhe Bioliq® Plant and Other Sources as Substrate in Syngas Fermentation. C1net Conference 4, 2019 Infantes, A., Wormer, L. and Neumann, A. Effect of CO or syngas overpressure on growth and product formation of Clostridium ljungdahlii. Annual Conference 2019 of the Association for General and Applied Microbiology (VAAM Jahrestagung) Infantes A., Kugel M., Neumann, A. Evaluation of “Impure” Syngas derived from Biomass Gasification as Substrate for Syngas Fermentation. Annual Conference 2020 of the Association for General and Applied Microbiology (VAAM Jahrestagung) V ABSTRACT The need for renewed efforts to transition from a petroleum-based economy towards a more bio-based economy is becoming ever more evident. If fossil resources continue to be the main source of fuel and bulk chemicals, it will become increasingly difficult to tackle problems such as climate change. In order to achieve a long-term sustainable development, renewable energy and biomass sources need to be the focus of research efforts. Biomass from renewable or waste sources can be gasified to generate syngas, which is mainly composed of H2, CO2 and CO. Impurities can be present, and will depend on the gasification technology used and the source of the biomass. Syngas, as well as CO-rich gases, can also be a by-product of industrial processes, like steel-mills. A highly specialized group of anerobic, autotrophic bacteria, known as acetogens, can use these gases as fermentation substrate. The syngas is metabolized
Recommended publications
  • Gas Fermentation of C1 Feedstocks: Commercialization Status and Future Prospects
    Review Gas fermentation of C1 feedstocks: commercialization status and future prospects Leonardo V. Teixeira, Liza F. Moutinho, and Aline S. Romão-Dumaresq, SENAI Innovation Institute for Biosynthetics, Technology Center for Chemical and Textile Industry, Rio de Janeiro, Brazil Received December 04, 2017; revised June 04, 2018; accepted June 05, 2018 View online at Wiley Online Library (wileyonlinelibrary.com); DOI: 10.1002/bbb.1912; Biofuels, Bioprod. Bioref. (2018) Abstract: The increasing emissions of carbon dioxide, methane and carbon oxide (collectively referred as C1 compounds) are likely to configure a major contribution to global warming and other envi- ronmental issues. The implementation of carbon capture and storage (CCS) is considered a crucial strategy to prevent global warming, but the overall costs of currently available CCS technologies are still prohibitive for its large-scale deployment. Using microorganisms capable of assimilating C1 com- pounds for producing value-added products could be an important driver for mitigating emissions and minimizing their deleterious consequences, while simultaneously deriving additional economic benefits from these compounds. This review summarizes the main microorganisms and metabolic routes being investigated, with special focus on both the products targeted and the current industrial initiatives. There are a number of companies investing in these routes and in some instances commercial deploy- ment was identified. Despite the variety of commercially-appealing products, genetic manipulation
    [Show full text]
  • Syngas Derived from Lignocellulosic Biomass Gasification As An
    processes Review Syngas Derived from Lignocellulosic Biomass Gasification as an Alternative Resource for Innovative Bioprocesses Cosetta Ciliberti 1, Antonino Biundo 1,2, Roberto Albergo 3 , Gennaro Agrimi 1,2 , Giacobbe Braccio 3, Isabella de Bari 3 and Isabella Pisano 1,2,* 1 Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Via Edoardo Orabona, 4, 70125 Bari, Italy; [email protected] (C.C.); [email protected] (A.B.); [email protected] (G.A.) 2 Interuniversity Consortium for Biotechnology (CIB), 34100 Trieste, Italy 3 Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Division of Bioenergy, Biorefinery and Green Chemistry, C.R. Trisaia S.S. 106 Jonica, 75026 Rotondella (MT), Italy; [email protected] (R.A.); [email protected] (G.B.); [email protected] (I.d.B.) * Correspondence: [email protected] Received: 3 November 2020; Accepted: 24 November 2020; Published: 28 November 2020 Abstract: A hybrid system based on lignocellulosic biomass gasification and syngas fermentation represents a second-generation biorefinery approach that is currently in the development phase. Lignocellulosic biomass can be gasified to produce syngas, which is a gas mixture consisting mainly of H2, CO, and CO2. The major challenge of biomass gasification is the syngas’s final quality. Consequently, the development of effective syngas clean-up technologies has gained increased interest in recent years. Furthermore, the bioconversion of syngas components has been intensively studied using acetogenic bacteria and their Wood–Ljungdahl pathway to produce, among others, acetate, ethanol, butyrate, butanol, caproate, hexanol, 2,3-butanediol, and lactate. Nowadays, syngas fermentation appears to be a promising alternative for producing commodity chemicals in comparison to fossil-based processes.
    [Show full text]
  • From Sporulation to Intracellular Offspring Production: Evolution
    FROM SPORULATION TO INTRACELLULAR OFFSPRING PRODUCTION: EVOLUTION OF THE DEVELOPMENTAL PROGRAM OF EPULOPISCIUM A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by David Alan Miller January 2012 © 2012 David Alan Miller FROM SPORULATION TO INTRACELLULAR OFFSPRING PRODUCTION: EVOLUTION OF THE DEVELOPMENTAL PROGRAM OF EPULOPISCIUM David Alan Miller, Ph. D. Cornell University 2012 Epulopiscium sp. type B is an unusually large intestinal symbiont of the surgeonfish Naso tonganus. Unlike most other bacteria, Epulopiscium sp. type B has never been observed to undergo binary fission. Instead, to reproduce, it forms multiple intracellular offspring. We believe this process is related to endospore formation, an ancient and complex developmental process performed by certain members of the Firmicutes. Endospore formation has been studied for over 50 years and is best characterized in Bacillus subtilis. To study the evolution of endospore formation in the Firmicutes and the relatedness of this process to intracellular offspring formation in Epulopiscium, we have searched for sporulation genes from the B. subtilis model in all of the completed genomes of members of the Firmicutes, in addition to Epulopiscium sp. type B and its closest relative, the spore-forming Cellulosilyticum lentocellum. By determining the presence or absence of spore genes, we see the evolution of endospore formation in closely related bacteria within the Firmicutes and begin to predict if 19 previously characterized non-spore-formers have the genetic capacity to form a spore. We can also map out sporulation-specific mechanisms likely being used by Epulopiscium for offspring formation.
    [Show full text]
  • EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
    EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated
    [Show full text]
  • Development of a Metabolic Pathway Transfer and Genomic Integration
    Philipps et al. Biotechnol Biofuels (2019) 12:112 https://doi.org/10.1186/s13068-019-1448-1 Biotechnology for Biofuels RESEARCH Open Access Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii Gabriele Philipps1, Sebastian de Vries1,2 and Stefan Jennewein1* Abstract Background: Clostridium spp. can synthesize valuable chemicals and fuels by utilizing diverse waste-stream sub- strates, including starchy biomass, lignocellulose, and industrial waste gases. However, metabolic engineering in Clostridium spp. is challenging due to the low efciency of gene transfer and genomic integration of entire biosyn- thetic pathways. Results: We have developed a reliable gene transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii based on the conjugal transfer of donor plasmids containing large transgene cas- settes (> 5 kb) followed by the inducible activation of Himar1 transposase to promote integration. We established a conjugation protocol for the efcient generation of transconjugants using the Gram-positive origins of replica- tion repL and repH. We also investigated the impact of DNA methylation on conjugation efciency by testing donor constructs with all possible combinations of Dam and Dcm methylation patterns, and used bisulfte conversion and PacBio sequencing to determine the DNA methylation profle of the C. ljungdahlii genome, resulting in the detection of four sequence motifs with N6-methyladenosine. As proof of concept, we demonstrated the transfer and genomic integration of a heterologous acetone biosynthesis pathway using a Himar1 transposase system regulated by a xylose-inducible promoter. The functionality of the integrated pathway was confrmed by detecting enzyme proteo- typic peptides and the formation of acetone and isopropanol by C.
    [Show full text]
  • Comunicación Para Una Sociedad Sostenible Proyecto Profesoral Aprobado Por El Cci, Soberanía Alimentaria Y Comunicación Para La Sostenibilidad
    COMUNICACIÓN PARA UNA SOCIEDAD SOSTENIBLE PROYECTO PROFESORAL APROBADO POR EL CCI, SOBERANÍA ALIMENTARIA Y COMUNICACIÓN PARA LA SOSTENIBILIDAD JOSÉ LUIS GARCÍA RUÍZ CODIGO 211722 UNIVERSIDAD AUTÓNOMA DE OCCIDENTE FACULTAD DE HUMANIDADES Y ARTES DEPARTAMENTO DE DISEÑO PROGRAMA COMUNICACIÓN PUBLICITARIA SANTIAGO DE CALI 2019 COMUNICACIÓN PARA UNA SOCIEDAD SOSTENIBLE PROYECTO PROFESORAL APROBADO POR EL CCI, SOBERANÍA ALIMENTARIA Y COMUNICACIÓN PARA LA SOSTENIBILIDAD JOSÉ LUIS GARCÍA RUÍZ CODIGO 2117228 Pasantía de investigación para optar al título de Publicista Director Ana Lucia Jiménez Maestría en Educación UNIVERSIDAD AUTÓNOMA DE OCCIDENTE FACULTAD DE HUMANIDADES Y ARTES DEPARTAMENTO DE DISEÑO PROGRAMA COMUNICACIÓN PUBLICITARIA SANTIAGO DE CALI 2019 Nota de aceptación: Aprobado por el Comité de Grado en cumplimiento de los requisitos exigidos por la Universidad Autónoma de Occidente para optar al título de Publicista JULIAN HERNANDEZ Jurado LIBARDO MAYA Jurado Santiago de Cali, 20 de Noviembre de 2019 CONTENIDO pág. RESUMEN 6 INTRODUCCIÓN 11 1. PRESENTACIÓN DEL GRUPO DE INVESTIGACIÓN 12 2. JUSTIFICACIÓN 16 3. OBJETIVOS DE LA PASANTIA 17 3.1 OBJETIVO GENERAL 17 3.1.1 Objetivos específicos 17 4. PLAN DE TRABAJO 18 5. ELEMENTOS INNOVADORES DE LA PROPUESTA 20 5.1 BUSCAR EL ESTADO DEL ARTE PARA EVIDENCIAR TODO LO ESCRITO SOBRE LAS PALABRAS CLAVES. 20 5.2 REFORZAR EL MARCO TEORICO 55 5.3 DESARROLLAR TRABAJO DE CAMPO EJECUTANDO LA ENTREVISTA CON BASE AL MARCO TEÓRICO ANTES MENCIONADO. 59 5.3.1 Sociedad de consumo 78 5.3.2 Consumo simbólico 79 5.3.3 La nueva identidad del consumidor 80 6. RECURSOS 82 4 7. CRONOGRAMA DE ACTIVIDADES 83 8.
    [Show full text]
  • Advanced Alternative Fuel Pathways: Technology Overview and Status
    WORKING PAPER 2019-13 Advanced alternative fuel pathways: Technology overview and status Authors: Chelsea Baldino, Rosalie Berg, Nikita Pavlenko, Stephanie Searle Date: July 19, 2019 Keywords: Thermochemical conversion; biochemical conversion; non-food feedstock; lignocellulosic biomass; biofuels; renewable fuel; electrofuels Introduction and summarized in this paper. For Fischer-Tropsch (FT) synthesis and this figure, as well for all the follow- methanation, before it can be used as Policymakers recognize the signifi- ing figures in this paper that illustrate a transportation fuel. Hydrothermal cant greenhouse gas (GHG) savings the individual conversion technology liquefaction and fast pyrolysis are that are possible by transitioning from pathways in more detail, yellow boxes other primary conversion technolo- first-generation, food-based biofuels indicate processes and green boxes gies that process biomass into crude to alternative, non-food based fuels, represent an input to the process. oils, which are then fed into hydropro- i.e., advanced alternative fuels. First- Blue boxes represent the desired cessing or other upgrading technolo- generation biofuels are produced by fuel output, whereas gray boxes are gies to produce drop-in fuel. converting readily available biomass intermediary products. Bold arrows chemicals—sugars, starch or oils—into indicate primary steps in the conver- This paper synthesizes the best avail- transportation fuels such as ethanol sion process; narrow arrows indicate able information on the feedstocks and fatty acid methyl esters (FAME). less common, or less important, steps. that are or could be suitable for each Advanced biofuels, on the other hand, The black, dashed box groups pro- pathway. Overall, these feedstocks are those produced by converting cesses that can be applied to the include materials such as lignocel- additional chemicals contained in oxygen and hydrogen that is produced lulosic biomass, municipal or indus- the biomass feedstocks, specifically in the PtX pathway.
    [Show full text]
  • Syngas Fermentation: Quantification of Assay Techniques, Reaction Kinetics, and Pressure Dependencies of the Clostridial P11 Hydrogenase
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2010-03-18 Syngas Fermentation: Quantification of Assay Techniques, Reaction Kinetics, and Pressure Dependencies of the Clostridial P11 Hydrogenase Bradley E. Skidmore Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Chemical Engineering Commons BYU ScholarsArchive Citation Skidmore, Bradley E., "Syngas Fermentation: Quantification of Assay Techniques, Reaction Kinetics, and Pressure Dependencies of the Clostridial P11 Hydrogenase" (2010). Theses and Dissertations. 2098. https://scholarsarchive.byu.edu/etd/2098 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Syngas Fermentation: Quantification of Assay Techniques, Reaction Kinetics, and Pressure Dependencies of the Clostridial P11 Hydrogenase Bradley Skidmore A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Randy S. Lewis, Chair Steven R. Herron Thomas A. Knotts Department of Chemical Engineering Brigham Young University April 2010 Copyright © 2010 Bradley Skidmore All Rights Reserved ABSTRACT Syngas Fermentation: Quantification of Assay Techniques, Reaction Kinetics, and Pressure Dependencies of the Clostridial P11 Hydrogenase Bradley Skidmore Department of Chemical Engineering Master of Science Ethanol usage as a transportation fuel is rapidly increasing in the United States. Production of ethanol from cellulose feedstocks via gasification followed by syngas fermentation offers an environmentally friendly approach that mitigates many of the adverse effects associated with production from corn.
    [Show full text]
  • ABSTRACT WHITHAM, JASON MICHAEL. Identifying Genetic
    ABSTRACT WHITHAM, JASON MICHAEL. Identifying Genetic Targets and Growth Conditions for Higher Ethanol Production by the Synthesis Gas Fermenting Bacterium Clostridium ljungdahlii (Under direction of Dr. Amy M. Grunden and Dr. Joel J. Pawlak). The United States has increasing volume mandates for cellulosic biofuels production to reduce our dependence on foreign oil for the sake of transportation fuel security. For the past few years, mandated volumes have not been met by industry though for a variety of reasons. Clostridium ljungdahlii, an established cellulosic ethanol- producing industrial biocatalyst can produce ethanol from synthesis gas; however, relatively low concentrations of ethanol compared to traditional yeast fermentations of sugar are costly to separate from the fermentation medium, and C. ljungdahlii’s growth and productivity can be inhibited by contaminants in syngas which are expensive to remove. Synthesis gas is predominantly composed of carbon monoxide, carbon dioxide, and hydrogen, but also can contain a variety of contaminants (e.g. hydrogen cyanide, mono-nitrogen oxides, ammonia, sulfur dioxide, carbonyl sulfide, hydrogen sulfide, oxygen) depending on the carbonaceous feedstock from which it is produced (e.g. biomass, agricultural waste, municipal waste, industrial waste). The purpose of this work was, therefore, to identify genetic targets and growth conditions for higher ethanol production. To accomplish this, the metabolic and physiological response of C. ljungdahlii PETC to oxygen was investigated and a lab-derived hyper ethanol-producing strain of C. ljungdahlii (designated OTA1) was characterized. Preliminary investigation showed that C. ljungdahlii PETC has some tolerance to oxygen when cultured in a rich mixotrophic medium. Batch cultures not only continued to grow and consume H2, CO, and fructose after 8% O2 exposure, but fermentation product analysis revealed an increase in ethanol yield and decreased acetate yield compared to non-oxygen exposed cultures.
    [Show full text]
  • Microbial Fermentation of Syngas/CO
    Microbial fermentation of syngas/CO My PhD project started in April 2009, under the supervision of professor Madalena Alves and professor Diana Sousa, from University of Minho, Portugal. During my third year of PhD program, I’m developing my research activities at the Department of Microbiology, University of Wageningen, Holland, under the supervision of Professor Alfons Stams and Doctor Caroline Plugge. Syngas or synthesis gas is produced during the gasification of different materials, e.g. coal, oil and natural gas, tar sands, recalcitrant wastes, lignocellulosic biomass, and sewage sludge. The principal components of syngas are carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2). Both catalytic and biological processes can be used for the production of biofuels and bulk chemicals from syngas. The development of novel bioprocesses for syngas conversion to added-value products is a promising field comprising some advantages over the chemical processes. However, biological conversion of syngas is still rather unexplored within the bioprocess engineering community. The main objectives of my research are to explore the potential of biofuels or other valuable compounds production from syngas, and to get more insights about the microbiology of the syngas fermentation process. The screening of different anaerobic inocula, at different temperatures (mesophilic and thermophilic conditions), the achievement of enriched mixed cultures degrading syngas, and the isolation of new bacterial strains and further characterization is being carried out in order to get more insights into the physiological and biochemical aspects of syngas fermentation. This work results from the cooperation between the Wageningen University, Laboratory of Microbiology and University of Minho, Centre of Biological Engineering, being supported by the Fundação para a Ciência e Tecnologia (FCT), Portugal, through the PhD grant SFRH/BD/48965/2008 given to Joana I.
    [Show full text]
  • Genome Diversity of Spore-Forming Firmicutes MICHAEL Y
    Genome Diversity of Spore-Forming Firmicutes MICHAEL Y. GALPERIN National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 ABSTRACT Formation of heat-resistant endospores is a specific Vibrio subtilis (and also Vibrio bacillus), Ferdinand Cohn property of the members of the phylum Firmicutes (low-G+C assigned it to the genus Bacillus and family Bacillaceae, Gram-positive bacteria). It is found in representatives of four specifically noting the existence of heat-sensitive vegeta- different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, tive cells and heat-resistant endospores (see reference 1). and Negativicutes, which all encode similar sets of core sporulation fi proteins. Each of these classes also includes non-spore-forming Soon after that, Robert Koch identi ed Bacillus anthracis organisms that sometimes belong to the same genus or even as the causative agent of anthrax in cattle and the species as their spore-forming relatives. This chapter reviews the endospores as a means of the propagation of this orga- diversity of the members of phylum Firmicutes, its current taxon- nism among its hosts. In subsequent studies, the ability to omy, and the status of genome-sequencing projects for various form endospores, the specific purple staining by crystal subgroups within the phylum. It also discusses the evolution of the violet-iodine (Gram-positive staining, reflecting the pres- Firmicutes from their apparently spore-forming common ancestor ence of a thick peptidoglycan layer and the absence of and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, an outer membrane), and the relatively low (typically ruminococci) in the course of their adaptation to the saprophytic less than 50%) molar fraction of guanine and cytosine lifestyle in a nutrient-rich environment.
    [Show full text]
  • Production of Alcohols Via Syngas Fermentation Using
    PRODUCTION OF ALCOHOLS VIA SYNGAS FERMENTATION USING ALKALIBACULUM BACCHI MONOCULTURE AND A MIXED CULTURE By KAN LIU Bachelor of Science in Pharmaceutical Engineering Tianjin University of Science & Technology Tianjin, China 2006 Master of Science in Fermentation Engineering Tianjin University of Science & Technology Tianjin, China 2009 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2013 PRODUCTION OF ALCOHOLS VIA SYNGAS FERMENTATION USING ALKALIBACULUM BACCHI MONOCULTURE AND A MIXED CULTURE Dissertation Approved: Dr. Hasan K. Atiyeh Dissertation Adviser Dr. Babu Z. Fathepure Dr. Raymond L. Huhnke Dr. Mark R. Wilkins ii ACKNOWLEDGEMENTS I appreciate my advisor Dr. Hasan Atiyeh giving me the opportunity to study in the United States and obtain my Ph.D. at Oklahoma State University. During the four years study, he gave me a lot of encouragements and guidance on my Ph.D. project, making me grow up quickly and become more professional in the way to think, to perform and to present. The experience and knowledge I learned from him will be a precious treasure for my future career. I also acknowledge the financial support for this project from USDA-NIFA 2010-34447-20772, Oklahoma NSF EPSCoR, Oklahoma Bioenergy Center and the Oklahoma Agricultural Experiment Station. I also appreciate Dr. Raymond Huhnke for guidance on my Ph.D. project, presentations and papers. Also, I am very grateful to Dr. Mark Wilkins’s help and support for designing my experiments, reviewing my papers, presentations and providing valuable suggestions, especially giving me a precious opportunity to visit Washington D.C.
    [Show full text]