Insights Into Key Parameters for Bio-Alcohol Production in Syngas Fermentation Using Model Carboxydotrophic Bacteria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gas Fermentation of C1 Feedstocks: Commercialization Status and Future Prospects
Review Gas fermentation of C1 feedstocks: commercialization status and future prospects Leonardo V. Teixeira, Liza F. Moutinho, and Aline S. Romão-Dumaresq, SENAI Innovation Institute for Biosynthetics, Technology Center for Chemical and Textile Industry, Rio de Janeiro, Brazil Received December 04, 2017; revised June 04, 2018; accepted June 05, 2018 View online at Wiley Online Library (wileyonlinelibrary.com); DOI: 10.1002/bbb.1912; Biofuels, Bioprod. Bioref. (2018) Abstract: The increasing emissions of carbon dioxide, methane and carbon oxide (collectively referred as C1 compounds) are likely to configure a major contribution to global warming and other envi- ronmental issues. The implementation of carbon capture and storage (CCS) is considered a crucial strategy to prevent global warming, but the overall costs of currently available CCS technologies are still prohibitive for its large-scale deployment. Using microorganisms capable of assimilating C1 com- pounds for producing value-added products could be an important driver for mitigating emissions and minimizing their deleterious consequences, while simultaneously deriving additional economic benefits from these compounds. This review summarizes the main microorganisms and metabolic routes being investigated, with special focus on both the products targeted and the current industrial initiatives. There are a number of companies investing in these routes and in some instances commercial deploy- ment was identified. Despite the variety of commercially-appealing products, genetic manipulation -
Syngas Derived from Lignocellulosic Biomass Gasification As An
processes Review Syngas Derived from Lignocellulosic Biomass Gasification as an Alternative Resource for Innovative Bioprocesses Cosetta Ciliberti 1, Antonino Biundo 1,2, Roberto Albergo 3 , Gennaro Agrimi 1,2 , Giacobbe Braccio 3, Isabella de Bari 3 and Isabella Pisano 1,2,* 1 Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Via Edoardo Orabona, 4, 70125 Bari, Italy; [email protected] (C.C.); [email protected] (A.B.); [email protected] (G.A.) 2 Interuniversity Consortium for Biotechnology (CIB), 34100 Trieste, Italy 3 Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Division of Bioenergy, Biorefinery and Green Chemistry, C.R. Trisaia S.S. 106 Jonica, 75026 Rotondella (MT), Italy; [email protected] (R.A.); [email protected] (G.B.); [email protected] (I.d.B.) * Correspondence: [email protected] Received: 3 November 2020; Accepted: 24 November 2020; Published: 28 November 2020 Abstract: A hybrid system based on lignocellulosic biomass gasification and syngas fermentation represents a second-generation biorefinery approach that is currently in the development phase. Lignocellulosic biomass can be gasified to produce syngas, which is a gas mixture consisting mainly of H2, CO, and CO2. The major challenge of biomass gasification is the syngas’s final quality. Consequently, the development of effective syngas clean-up technologies has gained increased interest in recent years. Furthermore, the bioconversion of syngas components has been intensively studied using acetogenic bacteria and their Wood–Ljungdahl pathway to produce, among others, acetate, ethanol, butyrate, butanol, caproate, hexanol, 2,3-butanediol, and lactate. Nowadays, syngas fermentation appears to be a promising alternative for producing commodity chemicals in comparison to fossil-based processes. -
From Sporulation to Intracellular Offspring Production: Evolution
FROM SPORULATION TO INTRACELLULAR OFFSPRING PRODUCTION: EVOLUTION OF THE DEVELOPMENTAL PROGRAM OF EPULOPISCIUM A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by David Alan Miller January 2012 © 2012 David Alan Miller FROM SPORULATION TO INTRACELLULAR OFFSPRING PRODUCTION: EVOLUTION OF THE DEVELOPMENTAL PROGRAM OF EPULOPISCIUM David Alan Miller, Ph. D. Cornell University 2012 Epulopiscium sp. type B is an unusually large intestinal symbiont of the surgeonfish Naso tonganus. Unlike most other bacteria, Epulopiscium sp. type B has never been observed to undergo binary fission. Instead, to reproduce, it forms multiple intracellular offspring. We believe this process is related to endospore formation, an ancient and complex developmental process performed by certain members of the Firmicutes. Endospore formation has been studied for over 50 years and is best characterized in Bacillus subtilis. To study the evolution of endospore formation in the Firmicutes and the relatedness of this process to intracellular offspring formation in Epulopiscium, we have searched for sporulation genes from the B. subtilis model in all of the completed genomes of members of the Firmicutes, in addition to Epulopiscium sp. type B and its closest relative, the spore-forming Cellulosilyticum lentocellum. By determining the presence or absence of spore genes, we see the evolution of endospore formation in closely related bacteria within the Firmicutes and begin to predict if 19 previously characterized non-spore-formers have the genetic capacity to form a spore. We can also map out sporulation-specific mechanisms likely being used by Epulopiscium for offspring formation. -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated -
Development of a Metabolic Pathway Transfer and Genomic Integration
Philipps et al. Biotechnol Biofuels (2019) 12:112 https://doi.org/10.1186/s13068-019-1448-1 Biotechnology for Biofuels RESEARCH Open Access Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii Gabriele Philipps1, Sebastian de Vries1,2 and Stefan Jennewein1* Abstract Background: Clostridium spp. can synthesize valuable chemicals and fuels by utilizing diverse waste-stream sub- strates, including starchy biomass, lignocellulose, and industrial waste gases. However, metabolic engineering in Clostridium spp. is challenging due to the low efciency of gene transfer and genomic integration of entire biosyn- thetic pathways. Results: We have developed a reliable gene transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii based on the conjugal transfer of donor plasmids containing large transgene cas- settes (> 5 kb) followed by the inducible activation of Himar1 transposase to promote integration. We established a conjugation protocol for the efcient generation of transconjugants using the Gram-positive origins of replica- tion repL and repH. We also investigated the impact of DNA methylation on conjugation efciency by testing donor constructs with all possible combinations of Dam and Dcm methylation patterns, and used bisulfte conversion and PacBio sequencing to determine the DNA methylation profle of the C. ljungdahlii genome, resulting in the detection of four sequence motifs with N6-methyladenosine. As proof of concept, we demonstrated the transfer and genomic integration of a heterologous acetone biosynthesis pathway using a Himar1 transposase system regulated by a xylose-inducible promoter. The functionality of the integrated pathway was confrmed by detecting enzyme proteo- typic peptides and the formation of acetone and isopropanol by C. -
Process Performance and Microbial Community Structure in Thermophilic Trickling Biofilter Reactors for Biogas Upgrading
Downloaded from orbit.dtu.dk on: Sep 24, 2021 Process performance and microbial community structure in thermophilic trickling biofilter reactors for biogas upgrading Porté, Hugo; Kougias, Panagiotis ; Alfaro, Natalia; Treu, Laura; Campanaro, Stefano; Angelidaki, Irini Published in: Science of the Total Environment Link to article, DOI: 10.1016/j.scitotenv.2018.11.289 Publication date: 2019 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Porté, H., Kougias, P., Alfaro, N., Treu, L., Campanaro, S., & Angelidaki, I. (2019). Process performance and microbial community structure in thermophilic trickling biofilter reactors for biogas upgrading. Science of the Total Environment, 655, 529-538. https://doi.org/10.1016/j.scitotenv.2018.11.289 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 1 Process performance and microbial community 2 structure in thermophilic trickling biofilter reactors for 3 biogas upgrading 4 5 Hugo Portéa+, Panagiotis G. -
Comunicación Para Una Sociedad Sostenible Proyecto Profesoral Aprobado Por El Cci, Soberanía Alimentaria Y Comunicación Para La Sostenibilidad
COMUNICACIÓN PARA UNA SOCIEDAD SOSTENIBLE PROYECTO PROFESORAL APROBADO POR EL CCI, SOBERANÍA ALIMENTARIA Y COMUNICACIÓN PARA LA SOSTENIBILIDAD JOSÉ LUIS GARCÍA RUÍZ CODIGO 211722 UNIVERSIDAD AUTÓNOMA DE OCCIDENTE FACULTAD DE HUMANIDADES Y ARTES DEPARTAMENTO DE DISEÑO PROGRAMA COMUNICACIÓN PUBLICITARIA SANTIAGO DE CALI 2019 COMUNICACIÓN PARA UNA SOCIEDAD SOSTENIBLE PROYECTO PROFESORAL APROBADO POR EL CCI, SOBERANÍA ALIMENTARIA Y COMUNICACIÓN PARA LA SOSTENIBILIDAD JOSÉ LUIS GARCÍA RUÍZ CODIGO 2117228 Pasantía de investigación para optar al título de Publicista Director Ana Lucia Jiménez Maestría en Educación UNIVERSIDAD AUTÓNOMA DE OCCIDENTE FACULTAD DE HUMANIDADES Y ARTES DEPARTAMENTO DE DISEÑO PROGRAMA COMUNICACIÓN PUBLICITARIA SANTIAGO DE CALI 2019 Nota de aceptación: Aprobado por el Comité de Grado en cumplimiento de los requisitos exigidos por la Universidad Autónoma de Occidente para optar al título de Publicista JULIAN HERNANDEZ Jurado LIBARDO MAYA Jurado Santiago de Cali, 20 de Noviembre de 2019 CONTENIDO pág. RESUMEN 6 INTRODUCCIÓN 11 1. PRESENTACIÓN DEL GRUPO DE INVESTIGACIÓN 12 2. JUSTIFICACIÓN 16 3. OBJETIVOS DE LA PASANTIA 17 3.1 OBJETIVO GENERAL 17 3.1.1 Objetivos específicos 17 4. PLAN DE TRABAJO 18 5. ELEMENTOS INNOVADORES DE LA PROPUESTA 20 5.1 BUSCAR EL ESTADO DEL ARTE PARA EVIDENCIAR TODO LO ESCRITO SOBRE LAS PALABRAS CLAVES. 20 5.2 REFORZAR EL MARCO TEORICO 55 5.3 DESARROLLAR TRABAJO DE CAMPO EJECUTANDO LA ENTREVISTA CON BASE AL MARCO TEÓRICO ANTES MENCIONADO. 59 5.3.1 Sociedad de consumo 78 5.3.2 Consumo simbólico 79 5.3.3 La nueva identidad del consumidor 80 6. RECURSOS 82 4 7. CRONOGRAMA DE ACTIVIDADES 83 8. -
Volume 2 Issue 1, January 2013
Journal of Petroleum Science Research (JPSR) Volume 2 Issue 1, January 2013 www.jpsr.org Interaction of Oppositely Charged Polymer– Surfactant System Based on Surface Tension Measurements Anis A. Ansari1, M. Kamil*,2 and Kabir‐ud‐Din3 1University Polytechnic *,2 Department of Petroleum Studies 3Department of Chemistry Aligarh Muslim University, Aligarh‐202002, U.P., India [email protected]; [email protected]; [email protected] Corresponding Author:*E‐mail: [email protected] (M. Kamil) Abstract mixture are driven by hydrophobic, dipolar, and The interaction between oppositely charged polymer‐ electrostatic forces. When surfactants are introduced surfactant systems has been studied using surface tension into a solution containing oppositely charged polymer, measurements wherein the dependence of interaction strong electrostatic interactions are referred as phenomenon over the presence of anionic polyelectrolyte ‘strongly interacting system’, as the attractive sodium carboxymethylcellulose (NaCMC) with variation of electrostatic forces are extremely important in the tail length of cationic surfactants, cetyltrimethylammonium oppositely charged polymer and surfactant [3‐5]. There bromide (CTAB), tetradecyltrimethylammonium bromide has been significant research work focusing on the (TTAB), and dodecyltrimethylammonium bromide (DTAB) interaction of oppositely charged polyelectrolytes and was investigated. It is observed that the cationic surfactants surfactants in recent years [6‐24]. induced cooperative binding with the anionic polyelectrolyte at critical aggregation concentration (cac) and the cac values Surfactants in the presence of an oppositely charged are considerably lower than the corresponding critical polyelectrolyte start forming aggregates with the micelle concentration (cmc) for each of the surfactant polyelectrolyte when surfactant concentration exceeds irrespective of their hydrophobic tail size. The cmc of its critical aggregation concentration (cac). -
Advanced Alternative Fuel Pathways: Technology Overview and Status
WORKING PAPER 2019-13 Advanced alternative fuel pathways: Technology overview and status Authors: Chelsea Baldino, Rosalie Berg, Nikita Pavlenko, Stephanie Searle Date: July 19, 2019 Keywords: Thermochemical conversion; biochemical conversion; non-food feedstock; lignocellulosic biomass; biofuels; renewable fuel; electrofuels Introduction and summarized in this paper. For Fischer-Tropsch (FT) synthesis and this figure, as well for all the follow- methanation, before it can be used as Policymakers recognize the signifi- ing figures in this paper that illustrate a transportation fuel. Hydrothermal cant greenhouse gas (GHG) savings the individual conversion technology liquefaction and fast pyrolysis are that are possible by transitioning from pathways in more detail, yellow boxes other primary conversion technolo- first-generation, food-based biofuels indicate processes and green boxes gies that process biomass into crude to alternative, non-food based fuels, represent an input to the process. oils, which are then fed into hydropro- i.e., advanced alternative fuels. First- Blue boxes represent the desired cessing or other upgrading technolo- generation biofuels are produced by fuel output, whereas gray boxes are gies to produce drop-in fuel. converting readily available biomass intermediary products. Bold arrows chemicals—sugars, starch or oils—into indicate primary steps in the conver- This paper synthesizes the best avail- transportation fuels such as ethanol sion process; narrow arrows indicate able information on the feedstocks and fatty acid methyl esters (FAME). less common, or less important, steps. that are or could be suitable for each Advanced biofuels, on the other hand, The black, dashed box groups pro- pathway. Overall, these feedstocks are those produced by converting cesses that can be applied to the include materials such as lignocel- additional chemicals contained in oxygen and hydrogen that is produced lulosic biomass, municipal or indus- the biomass feedstocks, specifically in the PtX pathway. -
Conversion of Hemicelluloses and D-Xylose Into Ethanol by the Use Of
'DKC’tSO Conversion of hemicellulose and D-xylose into ethanol by the use of thermophilic anaerobic bacteria Mikrobiologiske unders0gelser af termofile anaerobe bakterier som omssetter hemicellulose til ethanol DTU MAY 0 5 1998 EFP-94-0009 Department of Environmental Science and Engineering Technical University of Denmark L DISCLAIMER Portions of this document may be illegible electronic image products. Images are produced from the best available original document. Head of project: Associate professor Birgitte K. Ahring, Department of Environmental Science and Engineering, Technical University of Denmark Employees at Department of Environmental Science and Engineering, Technical University of Denmark: Peter Sommer (Ph.D. student) formerly Peter Nielsen Anette Hprdum L0th (technician) Dette projekt er associeret med Nordisk Ministerrad, Energiforskningen 1995-1997 List of Papers 1. Larsen L, Nielsen P, Ahring BK Thermoanaerobacter mathranii sp. nov., an ethanol producing extremely thermophilic anaerobic bacterium from a hot-spring in Iceland (1997). Archieves of Microbiology 168:114-119 2. Sommer P, Meinander, NQ, Hahn-Hagerdal B Comparison of the cold methanol and perchloric acid methods for extraction of intracellular metabolites from recombinant, xylose fermenting Saccharomyces cerevisiae. prepared for submission to Applied Microbiology & Biotechnology 3. Sommer P, Ahring BK Measurements of intracellular metabolites and enzymes of the pentose phosphate pathway of Thermoanaerobacter mathranii A3M1 at varying D-xylose concentrations. Prepared for submission to Applied & Environmental Microbiology. 4. Sommer P, Ahring BK Measurements of intracellular metabolites and enzymes in the glycolysis of Thermoanaerobacter mathranii A3M1: The influence of the D-xylose concentration. Prepared for submission to Applied & Environmental Microbiology. Sammenfatning Ethanol er et CCVneutralt braendstof, der kan erstatte bragen af flydende fossile braendstoffer i transportsektoren og derved nedbringe udledningen af CO2 til atmosfaeren. -
Joana Isabel Ferreira Alves Sion
Universidade do Minho Escola de Engenharia Joana Isabel Ferreira Alves sion Microbiology of thermophilic anaerobic syngas conversion hermophilic anaerobic syngas conver Microbiology of t es a Alv eir err Joana Isabel F 3 1 UMinho|20 Julho de 2013 Universidade do Minho Escola de Engenharia Joana Isabel Ferreira Alves Microbiology of thermophilic anaerobic syngas conversion Tese de Doutoramento em Engenharia Química e Biológica Trabalho efectuado sob a orientação da Doutora Diana Zita Machado de Sousa da Doutora Maria Madalena dos Santos Alves e da Doutora Caroline M Plugge Julho de 2013 i Autor: Joana Isabel Ferreira Alves E-mail: [email protected] Telf.: +351 253 604 400 Cart~aocidad~ao: 12071827 T´ıtuloda tese: Microbiology of thermophilic anaerobic syngas conversion Microbiologia da convers~aoanaer´obiade g´asde s´ıntese em condi¸c~oestermof´ılicas Orientadores: Doutora Diana Zita Machado de Sousa Doutora Maria Madalena dos Santos Alves Doutora Caroline M Plugge Ano de conclus~ao: 2013 Doutoramento em Engenharia Qu´ımicae Biol´ogica E´ AUTORIZADA A REPRODUC¸ AO~ INTEGRAL DESTA TESE/TRABALHO APENAS PARA EFEITOS DE INVESTIGAC¸ AO,~ MEDIANTE AUTORIZAC¸ AO~ ESCRITA DO INTERES- SADO, QUE A TAL SE COMPROMETE. Universidade do Minho, 19 de Julho de 2013. Joana Isabel Ferreira Alves - July 2013 Acknowledgments E´ o momento de agradecer a todos os que, de uma forma ou de outra, contribu´ırampara o sucesso do meu trabalho e me ajudaram ao longo dos ´ultimos4 anos. Assim, agrade¸coem primeiro lugar `asminhas orientadoras Diana Sousa, Madalena Alves e Caroline Plugge, por todo o seu trabalho de supervis~aoe orienta¸c~aocient´ıficae por tudo o que me ensinaram.