Calcite-Aragonite Seas) and Its Effects on Marine Biological Calcification
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sediment Activity Answer Key
Sediment Activity Answer Key 1. Were your predictions close to where calcareous and siliceous oozes actually occur? Answers vary. 2. How does your map compare with the sediment distribution map? Answers vary. 3. Which type of ooze dominates the ocean sediments, calcareous or siliceous? Why? Calcareous sediments are formed from the remains of organisms like plankton with calcium-based skeletons1, such as foraminifera, while siliceous ooze is formed from the remains of organisms with silica-based skeletons like diatoms or radiolarians. Calcareous ooze dominates ocean sediments. Organisms with calcium-based shells such as foraminifera are abundant and widely distributed throughout the world’s ocean basins –more so than silica-based organisms. Silica-based phytoplankton such as diatoms are more limited in distribution by their (higher) nutrient requirements and temperature ranges. 4. What parts of the ocean do not have calcareous ooze? What might be some reasons for this? Remember that ooze forms when remains of organisms compose more than 30% of the sediment. The edges of ocean basins bordering land tend to have a greater abundance of lithogenous sediment –sediment that is brought into the ocean by water and wind. The proportion of lithogenous sediment decreases however as you move away from the continental shelf. In nutrient rich areas such as upwelling zones in the polar and equatorial regions, silica-based organisms such as diatoms or radiolarians will dominate, making the sediments more likely to be a siliceous-based ooze. Further, factors such as depth, temperature, and pressure can affect the ability of calcium carbonate to dissolve. Areas of the ocean that lie beneath the carbonate compensation depth (CCD), below which calcium carbonate dissolves, typically beneath 4-5 km, will be dominated by siliceous ooze because calcium-carbonate-based material would dissolve in these regions. -
SHELLS in ACID Adapted from NAMEPA’S an Educator’S Guide to the Marine Environment: Shells in Acid
SHELLS IN ACID Adapted from NAMEPA’s An Educator’s Guide to the Marine Environment: Shells in Acid PURPOSE Students will test the strength of normal seashells versus shells that have been soaked in vinegar to simulate the weakening effect of ocean acidification. Students identify the correlation between decreasing oceanic pH (ocean acidification) and the weakening of shells and discuss the effect this could have on the health of shellfish in the world’s oceans. MATERIALS (PER GROUP OF 4) • *white vinegar • *small, thin seashells • *non-reactive containers (glass beakers, Pyrex, measuring glass) • *water • heavy books (several) • paper towels For #6: • shells (1 per student) • snack size plastic bags (1 per student) • Small amount of vinegar • magnifying glass *Before beginning this activity, shells should be pre-soaked overnight in a 1:1 solution of vinegar and fresh water. PROCEDURE 1. Engage/Elicit Ask the students to give examples of different species of shellfish. Answers may include clams, oysters, mussels, scallops, etc. Ask students why and where they have seen these creatures. Students’ knowledge may come from eating seafood, or perhaps from having seen them in an aquarium, a marina or in coastal areas. Ask the students why these animals are important to the marine environment and to human beings. 2. Explore Lay out an assemblage of the non-soaked shells. Have the students observe the shells. Allow the students to handle the shells and ask them why the development of shells is advantageous to such animals. Explain that shellfish are invertebrates, meaning that instead of having an internal skeleton like humans, invertebrates produce a hard, protective covering. -
Phytoplankton As Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate
sustainability Review Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate Samarpita Basu * ID and Katherine R. M. Mackey Earth System Science, University of California Irvine, Irvine, CA 92697, USA; [email protected] * Correspondence: [email protected] Received: 7 January 2018; Accepted: 12 March 2018; Published: 19 March 2018 Abstract: The world’s oceans are a major sink for atmospheric carbon dioxide (CO2). The biological carbon pump plays a vital role in the net transfer of CO2 from the atmosphere to the oceans and then to the sediments, subsequently maintaining atmospheric CO2 at significantly lower levels than would be the case if it did not exist. The efficiency of the biological pump is a function of phytoplankton physiology and community structure, which are in turn governed by the physical and chemical conditions of the ocean. However, only a few studies have focused on the importance of phytoplankton community structure to the biological pump. Because global change is expected to influence carbon and nutrient availability, temperature and light (via stratification), an improved understanding of how phytoplankton community size structure will respond in the future is required to gain insight into the biological pump and the ability of the ocean to act as a long-term sink for atmospheric CO2. This review article aims to explore the potential impacts of predicted changes in global temperature and the carbonate system on phytoplankton cell size, species and elemental composition, so as to shed light on the ability of the biological pump to sequester carbon in the future ocean. -
CHAPTER 1 Thallophyta 1
Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 CHAPTER 1 Thallophyta 1 Contributors: H. P. BANKS, K. I. M. CHESTERS, N. F. HUGHES, G. A. L. JOHNSON, H. M. JOHNSON & L. R. MOORE This chapter includes all benthonic algae (planktonic algae are in Chapter 2), the family Prototaxitaceae, bacteria and fungi. In some of these groups the fossil record is very inadequate, and the method of documentation has been varied accordingly. THE CALCAREOUS ALGAE Algae are the only fossil group which have a widespread development in the Precamb. The earliest fossil records, dating from at least 2700 m.y., are stromatolites possibly belonging to the Chlorophyceae and Cyanophyceae. Definite cellular microorganisms, including Gunflintia, Animikiea and Archaeorestis identified as blue-green algae, have been found in the Gunffint Chert, M. Precamb, Canada, and are 1900 m.y. old (Barghoorn and Tyler 1965; Cloud 1965). Even at the earliest period there seems to have been considerable diversity in the group and since then continuous evolutionary progress has taken place. Divergence, convergence and parallelism of form and habit in the different classes of algae during their geological history is striking (Fritsch 1948). Thus the structural pattern of the Chlorophyceae, Cyanophyceae and in most part the Rhodophyceae is remarkably parallel from unicellular motile and colonial, through filamentous to complex thaUoid forms. The great majority of living algae do not produce skeletons but of the known fossil algae almost every genus is calcareous and many are important rock builders. Maslov (1961) has shown that carbonates can be deposited by algae in six different ways. -
Calcareous Soils Are Alkaline
By Mongi Zekri, Tom Obreza and Kelly Morgan alcareous soils are alkaline (pH > 7) due to the pres- ence of excess calcium carbonate (CaCO3). These soils Ccan contain from 1 percent to more than 25 percent CaCO3 by weight, with pH in the range of 7.6 to 8.4. In Florida, soil pH is usually not higher than 8.4 regardless of CaCO3 concentration. Many Florida flatwoods soils contain one or more hori- zons (layers) that are calcareous. A typical characteristic is an alkaline, loamy horizon less than 40 inches deep that can be brought to the surface during land preparation for citrus Calcareous soil in Southwest Florida planting. Increased nutritional management intensity is re- quired to successfully grow citrus on calcareous soils. Some lution of fixed P. Applied P is available to replenish the soil grove soils (e.g. ditch banks) contain considerable amounts solution for only a relatively short time before it converts to of lime rock or shell. It may not be economically justifiable less soluble forms of P. To maintain P availability to citrus to plant these sites with certain rootstocks considering the on calcareous soils, water-soluble P fertilizer should be ap- management problems and costs involved. plied on a regular, but not necessarily frequent, basis. Since Citrus fertilizer management on calcareous soils differs P accumulates in the soil, it is at least partially available as from that on non-calcareous soils because the presence of it converts to less soluble compounds with time. CaCO3 directly or indirectly affects plant availability of N, Potassium (K) P, K, Calcium (Ca), Mg, Mn, Zn, Fe and Cu. -
Active Ooid Growth Driven by Sediment Transport in a High-Energy Shoal, Little Ambergris Cay, Turks and Caicos Islands
Journal of Sedimentary Research, 2018, v. 88, 1132–1151 Research Article DOI: http://dx.doi.org/10.2110/jsr.2018.59 ACTIVE OOID GROWTH DRIVEN BY SEDIMENT TRANSPORT IN A HIGH-ENERGY SHOAL, LITTLE AMBERGRIS CAY, TURKS AND CAICOS ISLANDS ELIZABETH J. TROWER,1,2 MARJORIE D. CANTINE,3 MAYA L. GOMES,4,5 JOHN P. GROTZINGER,2 ANDREW H. KNOLL,6 MICHAEL P. 2 2 3,7 2 2 8 LAMB, USHA LINGAPPA, SHANE S. O’REILLY, THEODORE M. PRESENT, NATHAN STEIN, JUSTIN V. STRAUSS, AND WOODWARD W. FISCHER2 1Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, U.S.A. 2Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. 3Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A. 4Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, U.S.A. 5Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218, U.S.A. 6Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, U.S.A. 7School of Earth Sciences, University College Dublin, Dublin, Ireland 8Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755, U.S.A. e-mail: [email protected] ABSTRACT: Ooids are a common component of carbonate successions of all ages and present significant potential as paleoenvironmental proxies, if the mechanisms that control their formation and growth can be understood quantitatively. There are a number of hypotheses about the controls on ooid growth, each offering different ideas on where and how ooids accrete and what role, if any, sediment transport and abrasion might play. -
Sea Level, Carbonate Mineralogy, and Early Diagenesis Controlled Δ13c Records in Upper Ordovician Carbonates David S
https://doi.org/10.1130/G46861.1 Manuscript received 10 August 2019 Revised manuscript received 17 October 2019 Manuscript accepted 29 October 2019 © 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 9 December 2019 Sea level, carbonate mineralogy, and early diagenesis controlled δ13C records in Upper Ordovician carbonates David S. Jones1, R. William Brothers1, Anne-Sofe Crüger Ahm2, Nicholas Slater2, John A. Higgins2 and David A. Fike3 1 Geology Department, Amherst College, 11 Barrett Hill Road, Amherst, Massachusetts 01002, USA 2 Department of Geosciences, Princeton University, Guyot Hall, Princeton, New Jersey 08544, USA 3 Department of Earth & Planetary Sciences, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA ABSTRACT (Melchin and Holmden, 2006). However, these Stratigraphic variability in the geochemistry of sedimentary rocks provides critical data models can require unrealistic changes to carbon for interpreting paleoenvironmental change throughout Earth history. However, the vast burial and/or weathering fuxes, or they predict majority of pre-Jurassic geochemical records derive from shallow-water carbonate platforms cross-platform δ13C gradients (δ13C increasing that may not refect global ocean chemistry. Here, we used calcium isotope ratios (δ44Ca) in with greater proximity to the coast) that con- conjunction with minor-element geochemistry (Sr/Ca) and feld observations to explore the tradict the variability observed in some -
19. Diagenesis of a Seamount Oolite from the West Pacific, Leg 20, Dsdp
19. DIAGENESIS OF A SEAMOUNT OOLITE FROM THE WEST PACIFIC, LEG 20, DSDP Reinhard Hesse, McGill University, Montreal, Canada SAMPLES AND LOCATION of the Caroline Abyssal Plain area. The present estimate of the average subsidence rate for the last 54 million years is Leg 20 recovered the first oolite drilled during the Deep 32 BuB (32m/106y) based on the above data. This is Sea Drilling Project. The oolitic limestone was brought up somewhat less than the figure taken from Sclater et al.'s from 83 and 106 meters subbottom depth in Cores 3 and 4 (1971) general subsidence-rate curve for the north Pacific of Hole 202 on Ita Matai Seamount. Drilling of the (about 40 m/106y for crust as old as early Eocene). seamount was undertaken at the end of Leg 20, when the poor state of repair of the drilling gear prohibited further COLOR, TEXTURE, AND POROSITY drilling in deep water. Water depth at this site is 1515 The oolite is of white yellowish to pale tan color except meters. Thus Cores 3 (45 cm recovery) and 4 (35 cm for the uppermost 10 cm of Core 3, which displays shades recovery) come from a total depth of 1598 and 1621 of gray. meters, respectively. Ita Matai Seamount is located at the Individual ooids displaying a distinct nucleus range in eastern margin of the Caroline Abyssal Plain (Figure 1). The size from 0.12 to 1.45 mm in diameter. Skeletal fragments location of Site 202 is 12°40.90'N, 156°57.15'E. associated with the ooids range up to 3 mm. -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
Bryozoan Skeletal Index (BSI): a Measure of the Degree of Calcification in Stenolaemate Bryozoans
BRYOZOAN STUDIES 2019 Bryozoan Skeletal Index (BSI): a measure of the degree of calcification in stenolaemate bryozoans Patrick N. Wyse Jackson1*, Marcus M. Key, Jr.2 and Catherine M. Reid3 1 Department of Geology, Trinity College, Dublin 2, Ireland [*corresponding author: e-mail: [email protected]] 2 Department of Earth Sciences, Dickinson College, Carlisle, Pennsylvania 17013-2896, USA [e-mail: [email protected]] 3 School of Earth and Environment, University of Canterbury, Private Bag 4800, Christchurch, New Zealand [e-mail: [email protected]] ABSTRACT minimal. In this study the differences observed in The Upper Ordovician of the Cincinnati Arch region BSI between trepostome and cystoporate species in of the United States has yielded a highly diverse the Cincinnatian is significant, and ramose colonies bryozoan fauna, and which provides an excellent show a higher BSI than encrusting zoaria in the data source for use in this study that proposes same fauna. a novel measure of the degree of skeletal material in Palaeozoic stenolaemate bryozoans. This study is based on 16 trepostome species and one cystoporate INTRODUCTION species described from the Dillsboro Formation Bryozoans of the Class Stenolaemata are characterised (Maysvillian to early Richmondian, Cincinnatian) of by having autozooecial chambers that are broadly Indiana and in 20 species (15 trepostomes and five tubular in nature. They were significant members of cystoporates) from the Lexington Limestone and the Palaeozoic faunas appearing in the Ordovician Clays Ferry -
Aragonite Formation in Confinements: a Step Toward Understanding Polymorph Control COMMENTARY Yifei Xua,B,C and Nico A
COMMENTARY Aragonite formation in confinements: A step toward understanding polymorph control COMMENTARY Yifei Xua,b,c and Nico A. J. M. Sommerdijka,b,c,1 Calcium carbonate (CaCO3) is one of the most com- unclear but were generally attributed to the interac- mon minerals on Earth; it not only forms rocks like tion between the acidic functional groups of the limestone or marble but is also a main component of biomacromolecules and the mineral components. Ad- biominerals such as pearls, the nacre of seashells, and ditionally, it was reported that a macromolecular sea-urchin skeletons (1). Despite many years of re- hydrogel-like 3D network is formed before the miner- search, the polymorphism of CaCO3 is still far from alization of nacre (11), which may play a role in the being understood. CaCO3 has three anhydrous crys- crystallization process by confining the crystallization talline forms: calcite, aragonite, and vaterite, with a to defined small volumes. Nonetheless, confinement decreasing thermodynamic stability under aqueous has never been directly correlated with aragonite for- ambient conditions (calcite > aragonite > vaterite) mation in biominerals, although its capability of con- (2). While vaterite is rare in nature, calcite and arago- trolling crystal orientation and polymorphism has nite are both frequently found in rocks or biominerals been shown in many recent reports (12–15). (1). A well-known example is the aragonite structure of Now, Zeng et al. (5) explore for the first time the nacre (3), where the organization of the crystals leads impact of confinement on aragonite formation. By to extraordinary mechanical performance. However, precipitating CaCO3 within the cylindrical pores of in synthetic systems, crystallization experiments only track-etched membranes (Fig. -
Biomineralization and Evolutionary History Andrew H
1 111 Biomineralization and Evolutionary History Andrew H. Knoll Department of Organismic and Evolutionary Biology Harvard University Cambridge, Massachusetts, 02138 U.S.A. INTRODUCTION The Dutch ethologist Niko Tinbergen famously distinguished between proximal and ultimate explanations in biology. Proximally, biologists seek a mechanistic understanding of how organisms function; most of this volume addresses the molecular and physiological bases of biomineralization. But while much of biology might be viewed as a particularly interesting form of chemistry, it is more than that. Biology is chemistry with a history, requiring that proximal explanations be grounded in ultimate, or evolutionary, understanding. The physiological pathways by which organisms precipitate skeletal minerals and the forms and functions of the skeletons they fashion have been shaped by natural selection through geologic time, and all have constrained continuing evolution in skeleton-forming clades. In this chapter, I outline some major patterns of skeletal evolution inferred from phylogeny and fossils (Figure 1), highlighting ways that our improving mechanistic knowledge of biomineralization can help us to understand this evolutionary record (see Leadbetter and Riding 1986; Lowenstam and Weiner 1989; Carter 1990; and Simkiss and Wilbur 1989 for earlier reviews). Figure 1. A geologic time scale for the past 1000 million years, showing the principal time divisions used in Earth science and the timing of major evolutionary events discussed in this chapter. Earlier intervals of time—the Mesoproterozoic (1600–1000 million years ago) and Paleoproterozoic (2500– 1600 million years ago) eras of the Proterozoic Eon and the Archean Eon (> 2500 million years ago)— are not shown. Time scale after Remane (2000).