Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

CHAPTER 1

Thallophyta 1

Contributors: H. P. BANKS, K. I. M. CHESTERS, N. F. HUGHES, G. A. L. JOHNSON, H. M. JOHNSON & L. R. MOORE

This chapter includes all benthonic algae (planktonic algae are in Chapter 2), the family Prototaxitaceae, bacteria and fungi. In some of these groups the fossil record is very inadequate, and the method of documentation has been varied accordingly.

THE CALCAREOUS ALGAE

Algae are the only fossil group which have a widespread development in the Precamb. The earliest fossil records, dating from at least 2700 m.y., are stromatolites possibly belonging to the Chlorophyceae and Cyanophyceae. Definite cellular microorganisms, including Gunflintia, Animikiea and Archaeorestis identified as blue-green algae, have been found in the Gunffint Chert, M. Precamb, Canada, and are 1900 m.y. old (Barghoorn and Tyler 1965; Cloud 1965). Even at the earliest period there seems to have been considerable diversity in the group and since then continuous evolutionary progress has taken place. Divergence, convergence and parallelism of form and habit in the different classes of algae during their geological history is striking (Fritsch 1948). Thus the structural pattern of the Chlorophyceae, Cyanophyceae and in most part the Rhodophyceae is remarkably parallel from unicellular motile and colonial, through filamentous to complex thaUoid forms. The great majority of living algae do not produce skeletons but of the known fossil algae almost every genus is calcareous and many are important rock builders. Maslov (1961) has shown that carbonates can be deposited by algae in six different ways. Of these the "mixed" or "stromato- litic" process and the "biochemical" process are most important in the Precamb. The "organic" and "physiological" processes emerged in the Camb but the "stromatolitic" process was probably dominant as late as the . Since then the "organic" process has been gaining importance and the "stromatolitic" process is restricted to limited occurrences at the present time. To what extent the evolution of the various classes of fossil algae is connected with these changes in car- bonate deposition is obscure. Genetic classification of the fossil algae is largely subjective owing to the great antiquity of the group and the origin of even the more recent families is shrouded in uncertainty. Lack of colour pigments and reproductive structures further adds to the difficulties of classification in the fossil algae. The classification used here is adapted from Papenfuss (1955) and Pia (1927). We are much indebted to Dr J. H. Price (British Museum of National History, London) who kindly supplied the authorities of the living families of calcareous algae. [H.M.J. & G.A.L.J.] The Fossil Record, pp. 163-180. Geological Society of London, 1967. Printed in Northern Ireland. Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

The Fossil Record, Part H

SEE FIG B Carn u Lad i'n ~ An|s ~-u o o Olenek '~,.~ Induan .~. e c. 4) o Dzhulf f=__.a Z Guad _< ~ Leonard -{1 Sakm Assel U .Carb

• Moscov 0~c Bashk Z 0 Namur ~,~ Vision

T.... ~ .~ Famenn =~ o Frasn E U ~1~ ~.~ 7 Givet I < 1 * ~ Elfel I > I t Fins I 1 9 Siegen I Gedinn I T

Z Ludl J ,,,(

Lldov I b4- 9 Ashg I

Z Carad I

Lldeil ! :> i 9 O: I:.lvffn u 0 b~enig J 8- T,,m~ I I i Z U.Camb I I 4 -e-- M Camb I I .,~ -t i U L .Camb ! • Varang ,U,, Pre-Var Chl~176 I Rhodophyceae ? ] Xanthophyta TAXA THALLOPHYTA 1 Calcareous Algae

CONTRIBUTORS G.A.L. Johnson, H.M. Johnson H. P. Banks IN. F. Hughes FIG. I.I A

164 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

Chapter 1" Thallophytaml

Halo 0 Plelst

PI ioc i U.Mioc ~ M. MIoc Ea ~ ..1:: u L.Mioc u o U.Ollg

L/M.OIig l.u U.Eoc M.Eoc J L.Eoc J Palaeoc J Dan j

M.es, r 1 o So.to.Campan Ij ~In- Coniac j

| o a I Turon J ! e e e e o o u o u u-~. u O o u o o 9- o ~ u 0- AIb /o-~ xo

U Apt o~E o B..... I / Haut J Valang J

Bert I frith' J Kimm j ~IF~ Oxf I ~]k~ Call u Both

~Baioc Toarc

PI lens

Sinem Hett u ~, Rhaet ~. Nor SEE FIGA Chlorophyceae J Rhodophyceae Schizophyceae T Xanthophyta TAXA THALLOPHYTA 1 Calcareous Algae

CONTRIBUTORS G. A. L. Johnson, H.M. Johnson IN. F. Hughes FIG. I. I B

12 165 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

The Fossil Record, Part H

Class CHLOROPHYCEAE Ktitzing 1833 Family CHLAMYOOMONACE~mStein orth. rout. G. M. Smith 1920 First, Jur Oxf-'Tith': Gleocystis oxfordiensis Lignier 1906, Europe. Extant. Cot~ment: Fossil members of the group are rare as flagellae are seldom preserved. Family PHACOWACEAE(Biitschli) Oltmanns 1904 First, Tert M.Eoc: Phacotus sp. Rutte 1953, Germany. Extant. ComJment: Fossil records few, U.Mioc P. lenticularis (Ehrenberg) Stein, also Pleist and Holo examples. Family ~TOCOCCACEAE (Trevisan) Marchand orth. mut. G. M. Smith 1950 First, Jur 'Tith" Globochaete alpina Lombard 1938, Sainte Crois de Quintillargues, Provence. Extant. Comment: Globochaete widespread in U.Jur in Tethys, Provence and Indonesia. (Colom 1955). Family CHr.Om~Lr~C~.A~. (Wille) Brunnthaler 1913 First, Tert L.Eoc: ChloreUopsiscoloniata Reis (Bradley 1929), Green River Fro., Colorado, Utah and Wyoming; Tert of Bavaria and Kansas, U.S.A. Exant. Comment: Camb record "? like Chlorellopsis coloniata Reis" (Bigot 1929) has no cellular structure so may not be algal Dec cf. Tetraedon. sp. (Ktitzing 1845; Bohlln 1901) may belong to either Chlorellaceae or Oocystaceae. [H.M.J.] Family HYDRODICaWACV.AE(S. F. Gray) Dumortier orth. rout. Cohn 1880 First, Cret Alb: Pediastrum boryanum Brunnthaler 1915, Pakistan. Extant. Conanaent: Doubtful first, Jur 'Tith': Pediastrites kidstoni Zalessky 1927, L. Volgian, nr Simbirsk, U.S.S.R. Pediastrum occurs through to present; Hydrodictyon, Tert Japan. (Koriba and Miki 1959). [H.M.J. & N.F.H.] Family COEt~ST~CEaJ~ (West) Wille 1906 First, Carb Tourn-Vis6an: Lageniastrum macrosporae Renault, Europe. Extant. Family ur OTRICHACFAF Kiatzing orth. rout. Haulk 1883 First, Jur 'Tith': Eothrix alpina Lombard 1938, Switzerland, Provence, Andalusia, Apennines, N. Africa and Indonesia. Extant. Family CHA~.TOPHORACFAFHarvey orth. rout. Stizenberger 1860 First, Tert Dan: Palaeachyla sp. Pia 1936, Diniyur gp., Trichinopoly, S. India. Extant. Family ZYOm~TACFAF. (Meneghini) Ktitzing orth. mut. Engler 1898 First, Tert L.Eoc: Spirogyra sp. Bradley 1962, Wilkins Peak member, Green River fro., Wyoming. Extant. Conanaent: The diagnostic chloroplast is seldom preserved in fossils. Family DESMmIAC~.AEKiitzing 1833 ex Ralfs (1848) orth. mut. Stizenberger 1860 First, Dev: Arthrodesmus (probable desmid); U.Jur: Xanthidium pilosum Ehrenb. Extant. Comment: Other records: Pleist and Holo, Jutland, Denmark (Fjerdugstadtl 1954) and N./kips (Messikommer 1938). [H.M.J.] Family DASYCtatOACFAEKtitzing 1833 orth. rout. Stizenberger 1860 First, Camb L.Camb: LenaeUa reticulata Korde 1959, Atdaban fro, Siberia, and Carnbroporella tuvensis Korde 1950, U.S.S.R. (Endo 1961). Extant. Comment: Pre-Camb records from the Kola Peninsula have been dated at 1720-1780 m.y. B.P. and include cf. DasyporeUa Pia and the Tribe Cyclocrineae Pia (Lyubtsov 1964). Few Palaeozoic genera, divergence in . Fossil genera numerous compared with only 10 living genera. [H.M.J. & G.A.L.J.] 166 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

Chapter 1: Thallophyta--I

Family CODIACEAE (Trevisan) Zanardini 1843 First, Camb-Ord: Palaeoporella variabilis Stolley 1893, Late Camb. or basal Ord, Sweden, Norway and Texas. Extant. Comument: Pre-Camb Oldhamia and Palaeorivularia may be primitive codiaceans or the latter may be a red alga (C. L. Fenton 1943, Endo 1961). Abundant in present oceans mostly non- lime-depositing. Family VALONIACEAEN~igeli 1847 First, Jur Oxf-'Tith': Pycnoporidium lobatum Yabe and Toyama 1928, Torinosu Lst, Abukama Mountainlands, Japan and Spain. P. melobesioides (Pfender), France. Extant. Co~axnent: P. toyamai, Perm, has doubtful generic assignment. P. lobatum and P. melobesioides extend to L. Cret. P. sinuosum J. H. Johnson and Konishi L. Cret, Guatemala. No known Tert forms, living forms mostly tropical.

Family ASCOSOMACEAELorenz 1904 First and Last, Camb: Ascosomiaphaneroporata Lorenz 1904 and Mitscherlichia chinensis Lorenz 1904, Tschang-duang, N. China.

Class RHODOPHYCEAE Ruprecht 1901 Family CHAETANGIACEAEKtitzing orth. mut. Hauck 1883 First, Perm: Hapalophlaea scissa Pia 1935, Sumatra. Extant.

Family GYMNOCODIACEAEElliott 1955 First, Perm: bellerophontis (Rothpletz 1894) Pia 1920, S. Europe, India, Japan and Texas, U.S.A. Last, Cret Apt: irenae Elliott 1958. Cornnaent: Family regarded first as Dasycladaceae, then Codiaceae, next (Chaet- angiaceae Pia 1937) and finally raised to separate family (Elliott 1955).

Family SOLENOPORACEAE Pia 192 7 First, Camb L.Camb: Solenopora sp., N.W. Beardmore Glacier, Antarctica (Priestley and David 1910); S. tjanshanica Vologdin 1955, Russia; S. sp., Angara R., Siberia (Maslov 1937). Last, Tert Mioc: Neosolenopora vinassi, Italy, France and Cuba. Coma~ent: Camb records few; Ord and Sil records rare at first later few genera only but widespread, abundant and rockbuilders. Classification controversial, either sub-family of Corallinaceae (Maslov 1956) or a separate family (Pia 1927, J. H. Johnson 1959).

Family CORALLINACEAE (Lamouroux) Harvey 1849 First, Carb Bashk-Moscov: Archaeolithophyllum missourensum J. H. Johnson 1956, Exline Lst, Carroll Co., Missouri; A. delicatumJ. H. Johnson 1956, ColinsviUe Lst, Illinois, also New Mexico and Texas. Carb. Komia abandans Korde 1951, N. Urals, Russia and Japan. Extant. Comaxient: Sub-family Melobesieae U.Carb to Recent as given above. Sub-family Coral- linae ?U.Carb to Recent; Archamphiroa ?U.Carb, Amphiroa Cret. Melobesieae contains Archaeo- lithothamnium, Jur to Recent, of uncertain phylogeny, which gave rise to Lithothamnium in L.Jur. Sub-family widespread by U.Cret, tropics to polar regions by M.Eoc. Corallinae most abundant in Tert, widespread in present oceans.

Family FURCELLARIACEAE Greville orth. naut. Kylin 1932 First, Jur Oxf-'Tith': ?Nipponophycus ramosus Yabe and Toyama 1928, Torinosu Lst, Japan. Extant. Family SPHAEROCOCCACEAEDumortier orth. mut. Cohn 1872 First, Tert Olig: Spherococcites cartilagineus Unger. Extant. 167 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

The Fossil Record, Part H

Family RHODO~FrtAcF~a~ (J. Agardh) Harvey 1849 First, Carb Namur-U.Carb: Donezella lutegrini Maslov 1927, K x and K 4 Donetz Basin, U.S.S.R. Extant. Comment: Only fossil record is Palaeozoic unless Lomentarites borneti, U.Trias, belongs to this family. Family OELFSSFRrACF.AFBory orth. mut. N~igeli 1847 First, Ord: ?Delesserites silicifolia Ruedemann 1925, New York. Extant. Conanaent: Delesseriafriedaui Unger and D.fulva Lesqu., U.Cret constitute the earliest definite record of this family. Family EPIPHYTONACEAE Korde 1955 First, Camb L.Camb: Epiphyton benignum Korde 1959, Kuznetsk, Russia; E. grande and E. fasciculatum Gordon 1921, boulders dredged from the Weddel Sea. Last, Dev Givet-Famenn: Epiphyton budyricus Antropov 1955, E. Russian Platform, Urals, Kuznetz Basin and Central Asia. Corrument: Constituent genera Epiphyton and Chabakovia. Epiphyton abundant in Camb. and is sometimes a rock-builder.

Class SCHIZOPHYCEAE Cohn 1880 Family CHROOCOCCACEAEN~igeli 1849 First, Dev: Microcystis Kutzing 1833. Extant. Conaxnent: Continuous records Dev. to Present. [H.M.J.] Family oscxr rATORtACEAE (S. F. Gray) Dumortier 1898 First, Pre-Camb: Animikiea septata Barghoorn 1965 (cf. Lyngbya Ag. and Cf. Oscillatoria) c. 1900 m.y., Gunflint Fro, Ontario, Canada; L. ochracea Ashley 1937, Kundelungu Series, Lake Tanganika, N. Rhodesia. Extant. Comment: M.Camb Marpolia spissa Walcott, Burgess Sh, other records Dev to Present. [H.M.J. & G.A.L.J.] Family ~OSTOCACEAEDumortier ex. Engler 1892 First, Pre-Camb: Filamentella marima Pflug 1965, Missoula Group, Belt Series, Montana. Extant. Family RIVULARIACEAEKtitzing ex. Bornet et Flahault 1887 First, Tert Mioc: Rivularia haematites Geither 1930, Baden, Germany, and Ternithrix compressa Reiss, Rhine, Germany. Extant. Family SCYTON~MATACEAEKtitzing ex. Bornet et Flahault 1887 First, Tert Mioc: Scytonemajulianum Geither 1930, Baden, Germany. Extant. Family STIGONEMATACEAEKirchner 1898 First, Derv Ems-Eifel: LangieUa scourfieldi Croft and George 1959, and KidstonieUafritschi Croft and George 1959, Rhynie Chert, Aberdeenshire, Scotland. Extant. [H.M.J.] Family POROSTROMATAPia 1927 First, Camb L.Camb: GirvaneUa sinensis Yabe 1912, G. manchurica Yabe and Ozaki 1930, San-yu-tung Province, Hapei and S. Manchuria; GirvaneUa sp. Flinders Range, Kimberley and McDonnell Ranges, Australia, also Manto Fm, Shangtung, China; G. mexicana J. H. Johnson 1952, G. cf. sinensis Yabe 1912, Camb Mexico; Uranovia granosa Korde 1958, Globuloella butomensis Korde 1958, Batomella zelanovi Korde 1958 and Visheraia sp. Korde 1958, Camb, Siberia. Last, Tert Mioc: Dimorphostroma palatinum Reis 1923 and Brachydactylus radialis Reis 1923, Germany. 168 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

Chapter 1: Thallophytaml

Family SPONGIOSTROMATAPia 1927

First, Pre-Camb: Corycium enigmaticum Sederholm 1911, Archean (2200-3000 m.y.), Ajonokka E. Shore, Lake Nasijarvi, Finland; Stromatolites, Archean (more than 2700 m.y.), Dolomite Series, Bulawayo, S. Rhodesia; Collenia sp. and Conophyton sp., Pharusian (more than 2000 m.y.), Sahara, N. Africa. Extant. [H.M.J. & G.A.L.J.]

Class UNCERTAIN

Family PROTOTAXITACEAE Pia 192 7

First, Sil Wenl: Prototaxites hicksii (Etheridge) Pia, at base of Denbighshire Grits, Cyrtograptus murchisoni Z., Corwen, North Wales, Britain (Hicks 1881, Kr~iusel & Weyland 1934). Last, Dev Frasn: Protoaxites southworthii Arnold, Kettle Point black sh, Lambton County, Ontario, Canada (Arnold 1952). Comment: The family Protaxitaceae, as used here, includes Nernatothallus Lang, 1937 which occurs in the Dev Siegen-Gedin, Wales. It is possible that the family will be split ultimately into two or more groups when sufficient data are available. [H.P.B.]

Class XANTHOPHYTA (Heterocontae)

First, Carb Bashk: Pila and Reinschia Bertrand and Renault, Boghead Cannel Coal (Torbane- hill Mineral), base of Coal Measures, West Lothian, Scotland (Blackburn & Temperley 1936). Extant. Comanent: These algae are taken to resemble closely Botryococcus braunii Ktitzing (extant) and other similar records come from most later periods (Traverse 1955). These algae probably occurred also in the early Carb, but Gleocapsamorpha from the Kuchersite, Ord, Estonia, has been omitted. [N.F.H.]

REFERENCES

ARNOLD, C.A. 1952. A specimen of Prototaxites from the Kettle Point black shale of Ontario. Palaeontographica, 93B, 45-56. BRADLEY, W.H. 1962. A chloroplast in Spirogyra from the Green River Formation of Wyoming. Amer. 3". Sci., 260, 455-459. BARGHOORN, E. S. & TYLER, S.A. 1965. Micro-organisms from the Gunflint Chert. Science, N.Y., 147, 563-577. BLACKBURN, K. B. & TEMPERLEY, B. N. 1936. Botrycoccus and the algal coals. Trans. R. Soc. Edinb., 58, 841-868, 2 pls. BIGOT, A. 1929. Les Rdcifs en coupole du Cambrien de Carteret et les Rfcifs de Chlorellopsis. C.r. hebd. Sdanc. Acad. Sci., Paris 189, 816-7. BOHLIN, K. 1901. Utleart till de gr6na algemas och arkegoniatemas fylogeni. Thesis, Lund (publ. by author). CLOUD, P.E. 1965. Significance of the Gunflint (Precambrian) microflora. Science, N.Y., 148, 27-35. COLOM, G. 1955. - plelagic sediments of the western Mediterranean and the Atlantic area. Micropaleontology, 1, 105-124. ELLIOTT, G. F. 1955. The Permian calcareous algae Gyrnnocodiurn. Micropaleontology, 1, 83-90. 1958. Algal debris-facies in the Cretaceous of the Middle East. Palaeontology, 1, 254-259. 169 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

The Fossil Record, Part H

ENDO, R. 1961. Phylogenetic relationships among the calcareous algae. Sait. Univ. Sci. Rep. Set. B., Comm. Vol. Prof. R. Endo, 1-52. FENTON, C. L. 1943. Precambrian and early Palaeozoic algae. Amer. Midl. Nat., 30, 83-111. FJERDUGST.~a~TL, E. 1954. The sub-fossil algal flora of Lake Bolling. K. danske vidensk, selsk. (biol.), 7, 56. FRITSCH, F.E. 1948. The structure and reproduction of the Algae. 2 vols., Cambridge University Press. HicKs, H. 1881. On the discovery of some remains of plants at the base of the Denbighshire Grits near Corwen, North Wales. Q.. Jl geol. Soc. Lond., 37, 482-496. JOHNSON, J. H. 1959. A review of the Silurian (Gotlandian) Algae. Colorado Sch. Mines Quart., 54, 1-55. JOHNSON, J. H. 1962. The algal genus Lithothamnium and its fossil representatives. Colorado Sch. Mines Quart., 57, 1-111. KORDE, K.B. 1950. Algal remains in the of the Kazaskhstan. Dokl. Akad. nauk SSSR, Earth Sci. Ser., 73, 809-812. [in Russian] KORmA, K. & MIKI, S. 1959. On Paleodictyon and fossil Hydrodictyon. Yabe Jubilee Pub., 1, 55. KRXUSEL, R. & W~'ZLa_,qD, H. 1934. Algen im deutschen Devon. Palaeontographica, 79B, 131-142. KUTZINO, F. T. 1845. Die kieselschaligen lanen oder Diatomeen. Ber. Verhandl. Akad. Wiss., Berlin. LA_nG, W.H. 1937. On the plant remains from the Downtonian of England and Wales. Phil. Trans. Roy. Soc. Lond., 227B, 245-291. LYUBTSOV, V. V. 1964. Organic remains in most ancient sedimentary and metamorphic seq- uences of the Kola Peninsula. Int. Geol. Rev., 6, 1408-1412. MASLOV, V. P. 1937. On the Palaeozoic rock-building algae of east Siberia. Moscow Univ. Palaeont. Lab., Problems Palaeont., 2-3, 342-348, 12 pls. [In Russian] 1956. Fossil Calcareous algae in the U.S.S.R.U.S.S.R. Acad. Sci., Proc. Inst. Geol. Sci., 160, 1-301. [in Russian] 1961. Algae and the deposition of carbonates. Izv. Akad. nauk SSSR Geol. Ser., 12, 66-70. MESSmOMMER, E. 1938. Beitrag zur Kenntnis. der fossilen und subfossilen Desmidaceen. Hedwigia, Dresden, 78, 107-201. PAPFNFUSS, G. F. 1955. Classification of the algae in Centenary volume (1853-1953), 115-224. California Acad. Sci., San Fransisco. PFLUG, H. D. 1965. Organische Reste aus der Belt-Serie (Algonkium) yon Nordamerika. Paliiont. Z., 39, 10-25. PL% J. 1927. Thallophyta in Hirmer, M. (1927) "Handbuch der Palaobotanik." vol. 1, 1-136. Munich and Berlin. PRIESTLEY, R. E. & DAVID, T. W.E. 1910. Geological notes of the British Antarctic Expedition 1907-1909. llth Cong. Geol. Int. RAO, L. R. 1952. Recent discoveries of fossil algae in India. Palaeobot., 1, 386-391. TRAVERSe, A. 1955. Occurrence of the oil-forming alga Botryococcus in lignites and other Tertiary sediments. Micropalaeontology, 1, 343-350, 1 pl. YABE, H. 1952. A brief summary of the studies of rock forming calcareous algae in Japan. Palaeobot., 1, 443-447. FOSSIL BACTERIA Unequivocal evidence of the presence of bacteria or their spores in the fossil state presents difficulties due to (1) their recognition in view of minute dimensions; (2) their identification dependent upon a morphologic similarity to present-day forms; (3) the delimitation of related and often associated known forms e.g. bacteria, actinomycetes, fungi; (4) absence of knowledge of the forms of ancient life with the functions of bacteria; (5) the problem of possible contamina- tion. In a few instances there is undoubted proof through the detailed recognition by the applica- tion of electron-microscopy, and by the application of biochemical techniques; the viability of some fossil bacteria has been demonstrated (Dombrowski). The accepted common forms, of bacteria, e.g. coccoid, bacilloid, filamental, or spirillar have all been recorded, as have their distinctive arrangements such as diplococcoid, staphylococcoid, streptococcoid and the several bacilloid arrangements. The preservation varies from the presence of an actual cell wall, to 170 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

Chapter 1: Thallophyta--1 mineral replacement of this wall, or to sheath-like covering of the wall. In many instances the pathological association with bone, or plant tissue, and the resulting lesions on these materials have provided strong evidence for the presence and activity of bacteria. By analogy with the functions of modern forms so the associations recorded have been referred to autotrophic or chemautotrophic forms, or to groups which include iron bacteria, nitrate and sulphate reducing bacteria, calcareous bacteria and saprophytic forms e.g. (Pia 1928). The possible remains of bacteria have been recorded from limestones, cherts, iron and manganese ores, phosphorites, bauxites, tonsteins, oil shales, coal, vertebrate remains, coprolites, plant tissues and invertebrate skeletons; these occurrences range in age from Pre-Cambrian to the present. The presence of living bacteria in various modern and recent sediments, sulphur deposits, iron deposits, tufa and peats provides an analogy with past occurrences. The most important work on fossil bacteria was that of Renault (1896-1901) and the majority of important references to fossil bacteria are contained in Meschinelli (1902), Pia (1928), Zobell (1957), Kusnetzov, Ivanov and Lyalikova (1963). The recent work of Barghoorn and Tyler (1963, 1965), and Cloud (1965), Barghoorn and Schopf (1965) refer to Pre-Cambrian investigations. The literature contains frequent reference to the presence of unnamed forms which may be bacteria; other workers have noted a resemblance to modern forms and referred to the occurrence in that manner e.g. similar to Grenothrix, Siderocapsa, Sphaerotilus, or Lyngbia. Few records refer to the occurrence in a taxonomic manner. An important recent exception is the work of Schopf, Ehlers et al. 1965 in which by the application of electron microscopy utilising replica techniques, the authors demonstrated the presence of bacteria in iron pyrites of age. Sheath bacteria referred to Sphaerotilus catenulatus n. sp. were recognised as allied to modern bacteria, e.g. Sphaerotilus natans Kutzing or Cladothrix dichotoma Cohn. Spiral thread bacteria referred to GaUionella pyritica n. sp. closely resembled the modern forms of Gallionella ferruginea Ehrenberg; the authors were confident of

FORMATION BACTERIAL REMAINS RECORD Oligocene Bacillus Zilianus Renault B. Grand 'Euryi Renault Eocene Micrococcus lignitum Renault M. paludis Renault Bacilli resembling B. subtilus Bradley 1931 Cretaceous Micrococcus I Ellis 1914 Bacillus I Ellis 1914 Bacillus II Ellis 1914 Jurassic Micrococcus trigeri Renault M. sarlatensis Renault Actinomycites (a) Ellis (1914) Iron bacteria (bauxites Mesozoic) Vologdin in Kuznetzov 1963 Trias Permian Micrococcus lepidophagus var. a-g Renault & Roche M. petrolei Renault Bacillus circulans (Dombrowski) B. granosus Renault B. permiensis Renault B. gamma Renault B. Tieghemi Renault B. CoUetus Renault B. lalleyensis Renault B. flaccidus Renault B. lepidophagus arcuatus Renault Filamentous sheaths, bacterial rods Vologdin in Kuznetzov 1963 171 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

The Fossil Record, Part H

FORMATION BACTERIAL REMAINS RECORD Carboniferous Micrococcusdevonicus var. a, b. Renault M. esnostensis var. a, b. Renault M. priscus Renault M. priscus var. a. Renault M. ZeiUeri var. a, b. Renault M. carbo Renault M. Guignardi Renault M. hymenophagus Renault M. hymenophagus var. a. Renault M. scoticus var. a, b. Renault Bacillus amylobacter Van Tieghem B. exiguus Renault B. moscovianus Renault B. gamma Renault B. gamma vat. tenuis Renault B. ozodeus Renault B. gomphosoideus Renault B. vorax Renault Sphaerotilus catenulatus Schopf, Ehlers, Stiles, Birle Gallionella f erruginea Schopf, Ehlers, Stiles, Birle Sulphur bacteria ?Beggiatoa Bacterium strain VIII/D (Salt) Dombrowski 1963 Iron Bacteria Vologdin in Kuznetzov 1963 Silurian Bacterium strain XV/1 (Salt) Dombrowski 1963 Cambrian Filamentous iron bacteria (Bauxite) Vologdin in Kuznetzov 1963 Coccoid, bacilloid forms, iron bacteria Vologdin in Kuznetzov (Phosphorite) 1963 Pre-Cambrian Biwabik Iron bacteria (resembling Chlamydothrix) Gruner, 1922 (U. Huronian) Bacilli Gun Flint Bacteria (resembling Crenothrix polyspora) Barghoorn & Tyler 1965 (U. Huronian) MetaUogenium personatum Perfilyev Cloud 1965 Entosphaeroides amplus Barghoorn (?bacteria) Barghoorn & Tyler 1965 Eoastrion bifurcatum Barghoorn Barghoorn & Tyler 1965 Eoastrion simplex Barghoorn (Actinomorphic Barghoorn & Tyler 1965 affinity) Coccoid forms (resembling Siderocapsa and Barghoorn & Schopf Siderococcus) 1965 Rod shaped cells (resemble Sphaerotilus natans) Barghoorn & Schopf 1965 Micrococcus sp. Walcott 1915 Bacterium strain XXX/1 (Salt) Dombrowski 1963 [L. R. M.]

!72 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

Chapter 1: Thallophyta--I generic recognition, but despite a strikingly similar habit believed the specific identification to be unwarranted. Other segmented microbes of a highly distinctive character were not finally identified but their probable affinity with members of the sulphur bacteria represented by forms such as the modern Beggiatoa was noted. The authors draw attention to the remarkable geological stability of both environment and organisms which appears to have existed over a period of at least 300 m.y. The preparation of a list of occurrences is fraught with difficulty and ranges are unknown. The above record arranged in stratigraphic order is not intended to be exhaustive and the identification is that of the author recording the occurrence. [L.R.M.]

REFERENCES BARGHOORN, E. S. & SCHOPF, J. W. 1965. Electron Microscopy of Fossil Bacteria Two Billion Years Old. Science Report, Sept. 1965, pp. 1365-1367. & TYLER, S.A. 1963. Fossil organisms from Pre-Cambrian Sediments. Ann. N.Y. Acad. Sci., 108, 451-452.

-- & TYLER, S.A. 1965. Microorganisms from the Gunflint Chert. Science, N.Y., 147, 563- 577. BRADLEY, W.H. 1931. Origin and Microfossils of the Oil Shale of the Green River Formation of Colorado and Utah. Prof. Pap. U.S. geol. Surv., 168, pp. 1-57. CLOUD, P. E. 1965. Significance of the Gunflint (Precambrian) Microflora. Science, N.Y., 148, 27-35. DOMBROWSKI, H. 1963. Bacteria from Palaeozoic Deposits. Ann. N.Y. Acad. Sci., 108, 453-460. ELLIS, D. 1914. Fossil microorganisms from the Jurassic and Cretaceous Rocks of Great Britain. Proc. Roy. Soc. Edinb., 35, 110-133. GRUNER, J. W. 1922. The origin of sedimentary iron formations: The Biwabik formation of the Mesaba Range. Econ. Geol., 17, 407-460. Kuzm~TZOV, S. I., IVANOV, M. V. & LYALmOVA, N. N. 1963. Introduction to Geological Micro- biology. McGraw-Hill. 252 pp. M~SCmNELLI, A. 1902. Fungorum fossilum omnium hucusque cognitorum iconographia. Vicetiae. PIA, J. 1928. Die Vorzeitlichen Spaltpilze und Ihre Lebensspuren. Palaeobiologica, 1, 457-474. RENAULT, B. 1896a. Recherches sur les Bactdricfies fossiles. Annls. Sci. nat. R. 8, Botan, 2, 275. 1896b. Bassin houiUer etpermien d'Autun et d'I~pinac. Fasc. 4, flore fossile, 2me partie, l~tudes gRes mindr, de la France, publication of Minist. des Travaux, Paris. 1899. Sur quelques Microorganisms des combustibles fossiles. Bull. Soc. Ind. min~r. St- Etienne, R. 3, 13, 865, and 14, 5. 1901. Du role de quelques bacteriacdes fossiles au point de vue geologique. 8th Int. geol. Congr., 19 646. SCHOPF, J. M., EHLERS, E. G., STILES, D. V. & J. D. BmLE. 1965. Fossil iron bacteria preserved in pyrite. Proc. Am. Phil. Soc., 109, 288-308. VOLOGDIN, A. G. 1947. Quoted in Kuznetzov, S. I., Ivanov, M. V. & Lyalikova, N. N., 1963. WALCOTT, C.D. 1915. Discovery of Algonkian Bacteria. Proc. U.S. natn. Acad. Sci., 1, 256. ZOBELL, C.E. 1957. Bacteria. Mem. geol. Soc. Am., 67, pp. 693-698.

FUNGI The fossils of fungi consist of petrifactions of complete mycelia etc. which are rare, of spores which usually have few characters and are difficult to classify, and of organs of other plants attacked by fungi which leave recognisable damage. The fragmentary fossil record has been fitted for convenience into the classification of Recent fungi given by Hawker (1966). Fossil mycorrhiza have been described from the Carb onwards by Andrews and Lenz (1943), Halket (1930), and others, but no attempt has been made to deal with them separately here. Sclerotinites (Stach 1957) and Palynomorphites (Moore 1963) have not been classified. The higher fungi (Ascomycetes, Basidiomycetes) are not well represented before the Cret. 173 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

The Fossil Record, Part H

SEE FIG B Cam

U Ladin u~ ~n;s

Olenek ' I Induan 1 _ _o B Dzhulf ~ o- ~ "~ ...... ~g .~E

Z Guad 9a 9 "E ~: o.- < -~~ "~ ~ ~ eonard m o. o. Sakm Assel

U .C~rb

Moscov 0 ~ Bashk Z .a o Na.~, g

Tourn

Fomenn

Fram

Z Givet <_ ) Eifel ~, Eros Siegen

Ged;nn

Z Ludl <_ .~ Wenl ! w Lldov A~

l Oomyce,., J Ascomyr j Bas;d;omycetes TAXA THALLOPHYTA 1 Fung;

CONTRIBUTORS K.I.M. Chesters, N.F. Hughes FIG. 1.2A

Division PHYCOMYCETES Although ?Phycomycetes has been mentioned for the Pre-Camb fossils of the Gunflint Chert, Huronian, Canada (Tyler and Barghoorn 1954), Barghoorn and Tyler (1965) favour algal (or uncertain) origin for most of the fossils.

Class CHYTRIDIOMYCETES

Order CHYTRIDALES First, Carb Moscov: Urophlyctitesoliverianus Magnus (on Alethopteris leaves), U. stigmariae Weiss and Oochytrium lepidodendroni Renault (on lycopods), Westphalian Coal Measures, Western Europe (see Hirmer 1927). Extant. 174 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

Chapter 1: Thallophyta--I

.o o w < z u.i AIb o ,,~ ~:~>" .... ~ < ~t

Barrem

Flout

Valang "

Berr

JTith t

Kimm

Oxf

Ca l I u Bath Baioc

To~'r

Pliens

Sinem

Hett U Rhaet ~_ N~ SEE FIG A Oomycetes Ascomycetes Basid~omycetes TAXA THALLOPHYTA 1 Fungi

CONTRIBUTORS K.I.M. Cheste~s, N. F. Hughes FIG. 1.2B

175 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

The Fossil Record, Part H

Class OOMYCETES

Order SAPROLEGNIALES First, Sil Lldov-Wenl: Palaeachlya perforans Duncan 1876 (in Goniophyllum pyramidale, not located). Extant. Cornnaent: Palaeomycesgordoni and five other species, Dev Siegen, Rhynie Chert, Aberdeen- shire, Scotland (Kidston and Lang 1921).

Order PERONOSPORALES First, Carb Bashk: Peronosporoides carbonifera Smith 1896, Main seam, Annandale Colliery, Nr. Kilmarnock, Scotland. Extant. Class ZYGOMYCETES

Order MUCOR.ALES First, Carb: Mucorites combrensis (Renault), France (Meschinelli, A. 1898, p. 9). Extant.

Division 'HIGHER FUNGI'

Class ASCOMYCETES ?Subclass (Form Class) DEUTEROMYCEaXS(Fungi imperfecti) Order DISCErLAr ES First, Carb Moscov: Excipulites punctatus Grand'Eury 1877 (on pinnules of Pecopterispluckeneti), Westphalian, France. Last, Perm: E. caUipteridis Europe and North America (White 1899).

Order MONILIALES Family MONILIACEAE First, Tert Eoc: Cladosporitesfasciculatus Berry 1916a, (on lauraceous wood), M Eoc, Claiborne Gp, Texas, U.S.A. Extant. Comment: Ramularites oblongisporus Caspary, Olig, Baltic Amber. Family DEMATIACEAE First, Cret Campan-Maestr: Trichosporites conwentzi Felix (on Cedroxylon), Ryedal, Sweden (Stopes 1913). Extant. Family TUBERCULARIAGEAE First, Tert Eoc: Dictyosporites loculatus Felix (in wood of Rhamnaceae) Baku, Caspian (Meschinelli, A. 1898, p. 79). Extant. Family STILBACEAE First, Tert Mioc: Stilbites succini Caspary 1907, Baltic Amber, East Prussia. Extant. Order MELANCONIALES First, Tert Eoc: Pestalozzites sabalana Berry 1916a (Leaf spot on Sabalites), Alum Bluff, Florida, U.S.A. Extant. Subclass EUASCOMYCETES Order PLECTASCALES Family GYMNOASCACEAE First, Tert U.Mioc: Ctenomycesserratus Eid., Randecker Maar, Germany (Riiffie 1963). Extant. 176 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

Chapter 1:Thallophyta--1

Family ASPERGILLACEAE First, Tert Eoc: Cryptocolax damensis and (7. parvula, Oregon, U.S.A. (Scott 1956). Extant. Comment- PeniciUites curtipes Berkeley, Tert Olig, Baltic Amber, East Prussia (Hirmer 1927). Order ERYSIPHALES First, Tert Mioc: Erysiphites mdiUi Pampaloni 1902, MelilLi, Italy. Extant. Order CHAETOMIALES First, Tert Eoc: Caenomyces annulata Berry 1916b, Lagrange fm (Wilcox), Tennessee, U.S.A. Extant. Order SPHAERIALES ("Pyrenomycetes") First, Carb Bashk: Sphaeritesfeistmantelianus (Rabenhorst), Bohemia (Meschinelli, A. 1898, p. 41). Also, Depazites rabenhorsti Geinitz (on fern foliage), Carb (Hirmer 1927). Extant. Comanent- Chaetosphaerites poUenismilis (spores), Carb Tourn, Spitsbergen (Playford 1962). Some Mesozoic Pyrenomycetes; abundant in Tertiary. Order HYPOCREALES First, Tert Mioc: Melanosporites stefani Pampoloni 1902, MefiUi, Sicily, Italy. Extant. Order PHAClDIALES First, Trias Rhaet: Xylomites intermedius Nathorst, Germany (Meschinelli, A. 1898). Extant. Order PEZlZALES First, Tert Mioc: Pezizites candidus Goeppert and Berendt, Baltic Amber (Hirmer 1927). Extant. Comment" Discomycetes (Phacidales to Tuberales) poorly represented by fossils. Order TUBER.ALES (Truffles) First, Q uat Pleist: Cenococcum geophilum Fries, but regarded as doubtful Pyrenomycetes by Hirmer (1927). Extant. Subclass LOCULO-ASCOMYCETES Order DOTHIDEALES First, Tert Eoc: Dothidites nerii Bureau and Patouillard, France (Meschinelli, A. 1898, p. 44). Extant. Comment: Dothidea borealis, Mioc, Iceland (Heer 1868). Order HYSTERIALES First, Carb Moscov: Hysterites cordaitis Grand'Eury 1877, France. Extant. Order MICROTHYRIALES First, Tert Eoc: Asterina sp., Eoc?, Tennessee, U.S.A. (Dilcher 1963). Also Microthyriacites cooksoni Rao 1959, and M. sahnii Rao 1959, Eoc, Palana, Bikaner, India. Extant. Comntent: Phragmothyrites eocenica Edwards 1922, Mull, Scotland, may prove to be pre- Eocene. Class BASIDIOMYCETES Subclass HETEROBASIDIOMYCETES Order UREDINALES Family PUCCINIACEAE First, Carb Bashk: Anthracomyces cannaUensis Renault and Teleutosporites milloti Renault (in Lepidostrobus), France (Hirmer 1927). Extant. Comntent: Next record Late Cret, Puccinites cretaceus Velenovsky (Fri5 & Bayer 1901). 177 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

The Fossil Record, Part H

Order TREMELLALES First, Carb : Myxomycetes mangini Renault (Dacryomycetaceae ?) (Meschinelli, A. 1898, p. 71). Extant.

Subclass HOMOBASIDIOMYCETES

Order POLYPORALES

Family HYDNACEAE First, Tert Mioc: Hydnites argiUae (Ludwig), Germany (Meschinelli, A. 1898, p. 8). Extant. Family CLAVARIACEAE First, Quat Pleist: Clavaria turbinata Murr 1926, Hotting breccia, Austria. Extant.

Family POLYPORACEAE First, Carb Bashk-Moscov: Dactyloporus archaeus Herzer 1893, Ohio, U.S.A., and Pseudopoly- porus carbonicus Hollick 1910, West Virginia, U.S.A. Extant. Cmnnxent: Next record Mesozoic, China (Hsii 1953).

Order AGARIC,ALES First, Carb Bashk: Archagaricon bulbosum and other spp., Hancock and Atthey 1869, Cramling- ton, Northumberland, England. Extant. Comanent: Next records Tert Mioc, Agaricites spp (Hirmer 1927); ?Agaricus cf. meUeus, Mesozoic, Karlsdorf, (Felix 1894).

Order SCLERODERMATALES First, Tert Eoc: Sderoderma einosl)orites Rouse 1962 (spores), Brothers Creek, British Columbia, Canada. Extant. Comanent: Geasterflorissantensis Cockerell 1908, Mioc, Colorado, U.S.A. [K.I.M.C. & N.F.H.]

REFERENCES

ANDREWS, H. N. & LENZ, L. W. 1943. A Mycorrhizome from the Carboniferous of Illinois. Bull. Torrey bot. Club, 70, 120-125. BARGHOORN, E. S. & TYLER, S.A. 1965. Micro-organisms from the Gunflint Chert. Science, N.Y., 147, 563-577. B~RRY, E.W. 1916a. The physical conditions and age indicated by the flora of the Alum Bluff formation. P@ Pap. U.S. geol. Surv., 98. BERRY, E.W. 1916b. The Lower Eocene Floras of southeastern North America. Pro/'. Pat). U.S. geol. Surv., 91. BERRY, E.W. 1916c. Remarkable fossil fungi. 21,Iycologia,8, 73-79. CASPARY, R. 1907. Die flora des Bernsteins und anderer fossiler Harze des ostpreussischen Tertiiirs. Abh. preuss, geol. Landesanst. (new series), 4, 1-181. COCKeRELL, T. D.A. 1908. The fossil flora of Florissant, Colorado. Bull. Am. Mus. nat. Hist., 24, 71-110. DILCHER, D. L. 1963. Eocene Epiphyllous Fungi. Science, N.Y., 142, 667-669. DUNCAN, P. M. 1876. On some unicellular algae parasitic within Silurian and Tertiary Corals. Q. Jl. geol. Soc. Lond., 23, 205 et seq.. 178 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

Chapter 1: Thallophyta--I

EDWARDS, W. N. 1922. An Eocene microthyriaceous Fungus from Mull, Scotland. Trans. Br. mycol. Soc., 7, 66-72. ELLIS, D. 1917-18. Phycomycetous fungi from the English Lower Coal Measures. Proc. R. Soc. Edinb., 38, 130-45. F~LIX, J. 1894. Studien tiber fossile Pilge. Z. dr. geol. Ges., 46~ 269-280. FRI~, A. & BA'~R, E. 1901. Studien ira Gebeite der b6hmischen Kreideformation. Arch. naturw. Landes Durchforsch. B6hm., 9, no. 2. GRAHAM, A. 1962. The role offungal spores in palynology. J. Paleont., 36, 60-68. GRAND'EURY, C. 1877. Flora Carbonif~re du d~pt de la Loire et du centre de la France. M~m. pr~s. div. Sav. Acad. Sci. Inst. Ft., 24, 624 pp., 33 pls. HALKET, A. C. 1930. The rootlets ofAmyelon radicans Will; their anatomy, their apices and their endophytic fungus. Ann. Bot., 44, 865-905. HANCOCK, A. & ATTHEY, T. 1869. On some curious fossil fungi from the Black Shales of the Northumberland Coalfield. Ann. Mag. nat. Hist. (4), 4e 221-228. HAWKER, L. E. 1966. Fungi. Hutchinson, London. HE~R, O. 1868. Flora Fossilis Arctica, Vol. 1. Schulthess, Ziirich. HFRZF.R, H. 1893. A new fungus from Lower Coal Measures (Tuscarawas County, Ohio). Am. Geol., 11, 365-366. HIRMER, H. 1927. Handbuch der Paliiobotanik. Oldenburg, Mtinich and Berlin. HOLLICK, A. 1910. A new fossil Polypore Pseudopolyporus carbonicus Hollick. Mycologia, 2, 93-95. Hsu, J. 1953. On the occurrence of a fossil wood in association with fungous Hyphae from Chimo of East Shantung. Palaeont. sin., 1, 84-86. HUTCHINSON, S. A. & WALTON,J. 1953. A presumed Ascomycete from the Upper Carboni- ferous. Nature, Lond., 172, 36-37. K~DSTON, R. & LANO, W.H. 1921. On Old Red Sandstone Plants showing structure, from the Rhynie Chert Bed, Aberdeenshire, Part V. The Thallophyta occurring in the Peat Bed. Trans. R. Soc. Edinb., 52, 855-902. M~SCHIN~LI~I, A. 1898. Fungorum fossilium omnium hucusque cognitorum Iconographia. Vicetiae, 144 pp, 31 pls. MESCHINFLLI, L. 1898. Contributo alia micologia fossile. Su alcuni funghi terziari del Pied- monte. Atti Ist. veneto Sci., 9, 7, 769-75, 2pl. MOORE, L.R. 1963. Microbiological colonization and attack on some Carboniferous Miospores. Palaeontology, 6, 349-372. MURR, J. 1926. Neue Ubersicht tiber die fossile Flora der Hottinger Breccie. Jb. geol. Bunde- sanst., Wien, 76, 153-70, 2pls. PAMPALONI, L. 1902. I resti organici nel disodile de Melitti in Sicilia. Palaeontogr. ital., 8, 121- 130. PLAaWORD, G. 1962. Lower Carboniferous Microfloras of Spitsbergen. Palaeontology, 5, 550-618. RAO, A. R. 1959. Fungal remains from some Tertiary deposits of India. Palaeobotanist, 7, 43-46. RousE, G.E. 1962. Plant microfossils from the Burrard Formation of British Columbia. Micro- paleontology, 8, 187-218. RUFFL~, L. 1963. Die obermioz~ine Flora yore Randecker Maar. Paliiont. Abh., 1, pt. 3. SACCARDO, P. A. 1897. Syloge Fungorum. Patavii. SCOTT, R.A. 1956. Cryptocolax, a new genus of fungi (Aspergillaceae) from the Eocene of Oregon. Am. J. Bot., 43, 589-593. SMrrH, JOHN. 1896. On the discovery of Microscopic Plants in the fossil amber of the Ayrshire Coalfield. Trans. geol. Soc. Glasg., 10, 318-322. STACH, E. 1957. Die Anschliff-Sporendiagnose des Ruhrkohlenfl6zes Baldur. Palaeontographica, 102B, 71-95. STOPES, M. 1913. Catalogue of the Mesozoic plants in the British Museum: The Cretaceousflora, Part 1, Bibliography, algae and fungi, 281 pp., 2 pls. London, British Museum (Natural History). 179 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021

The Fossil Record, Part H

TYLER, S. A. & BARGHOORN, E. S. 1954. Occurrence of structurally preserved plants in Pre- Cambrian Rocks of the Canadian Shield. Science, N.Y., 119, 606-608. WHITE, D. 1899. Fossil Flora from the Lower Coal Measures of Missouri. Monogr. U.S. geol. Surv., 37~ 467 pp., 73 pls.

[Professor] H. P. Banks Department of Botany, Cornell University, Ithaca, N.Y., U.S.A. K. I. M. Chesters, PH.D. Department of Palaeontology, British Museum (Natural History), Cromwell Road, London SW7. N. F. Hughes, M.A.F.O.S. Department of Geology, Sedgwick Museum, Downing Street, Cambridge. G. A. L. Johnson, PH.D.F.c.s. Department of Geology, University Science Laboratories, South Road, Durham. H. M. Johnson, ~J.sc. PH.D.V.c.s. Department of Geology, University Science Laboratories, South Road, Durham. [Professor] L. R. Moore, D.SC. PH.D.F.G.S. Department of Geology, The University, Mappin Street, Sheffield 1.

180