CHAPTER 1 Thallophyta 1
Total Page:16
File Type:pdf, Size:1020Kb
Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 CHAPTER 1 Thallophyta 1 Contributors: H. P. BANKS, K. I. M. CHESTERS, N. F. HUGHES, G. A. L. JOHNSON, H. M. JOHNSON & L. R. MOORE This chapter includes all benthonic algae (planktonic algae are in Chapter 2), the family Prototaxitaceae, bacteria and fungi. In some of these groups the fossil record is very inadequate, and the method of documentation has been varied accordingly. THE CALCAREOUS ALGAE Algae are the only fossil group which have a widespread development in the Precamb. The earliest fossil records, dating from at least 2700 m.y., are stromatolites possibly belonging to the Chlorophyceae and Cyanophyceae. Definite cellular microorganisms, including Gunflintia, Animikiea and Archaeorestis identified as blue-green algae, have been found in the Gunffint Chert, M. Precamb, Canada, and are 1900 m.y. old (Barghoorn and Tyler 1965; Cloud 1965). Even at the earliest period there seems to have been considerable diversity in the group and since then continuous evolutionary progress has taken place. Divergence, convergence and parallelism of form and habit in the different classes of algae during their geological history is striking (Fritsch 1948). Thus the structural pattern of the Chlorophyceae, Cyanophyceae and in most part the Rhodophyceae is remarkably parallel from unicellular motile and colonial, through filamentous to complex thaUoid forms. The great majority of living algae do not produce skeletons but of the known fossil algae almost every genus is calcareous and many are important rock builders. Maslov (1961) has shown that carbonates can be deposited by algae in six different ways. Of these the "mixed" or "stromato- litic" process and the "biochemical" process are most important in the Precamb. The "organic" and "physiological" processes emerged in the Camb but the "stromatolitic" process was probably dominant as late as the Silurian. Since then the "organic" process has been gaining importance and the "stromatolitic" process is restricted to limited occurrences at the present time. To what extent the evolution of the various classes of fossil algae is connected with these changes in car- bonate deposition is obscure. Genetic classification of the fossil algae is largely subjective owing to the great antiquity of the group and the origin of even the more recent families is shrouded in uncertainty. Lack of colour pigments and reproductive structures further adds to the difficulties of classification in the fossil algae. The classification used here is adapted from Papenfuss (1955) and Pia (1927). We are much indebted to Dr J. H. Price (British Museum of National History, London) who kindly supplied the authorities of the living families of calcareous algae. [H.M.J. & G.A.L.J.] The Fossil Record, pp. 163-180. Geological Society of London, 1967. Printed in Northern Ireland. Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 The Fossil Record, Part H SEE FIG B Carn u Lad i'n ~ An|s ~-u o o Olenek '~,.~ Induan .~. e c. 4) o Dzhulf f=__.a Z Guad _< ~ Leonard -{1 Sakm Assel U .Carb • Moscov 0~c Bashk Z 0 Namur ~,~ Vision T.... ~ .~ Famenn =~ o Frasn E U ~1~ ~.~ 7 Givet I < 1 * ~ Elfel I > I t Fins I 1 9 Siegen I Gedinn I T Z Ludl J ,,,( Lldov I b4- 9 Ashg I Z Carad I Lldeil ! :> i 9 O: I:.lvffn u 0 b~enig J 8- T,,m~ I I i Z U.Camb I I 4 -e-- M Camb I I .,~ -t i U L .Camb ! • Varang ,U,, Pre-Var Chl~176 I Rhodophyceae ? ] Xanthophyta TAXA THALLOPHYTA 1 Calcareous Algae CONTRIBUTORS G.A.L. Johnson, H.M. Johnson H. P. Banks IN. F. Hughes FIG. I.I A 164 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 Chapter 1" Thallophytaml Halo 0 Plelst PI ioc i U.Mioc ~ M. MIoc aE ~ ..1:: u L.Mioc u o U.Ollg L/M.OIig l.u U.Eoc M.Eoc J L.Eoc J Palaeoc J Dan j M.es, r 1 o So.to.Campan Ij ~In- Coniac j | o a I Turon J ! e e e e o o u o u u-~. u O o u o o 9- o ~ u 0- AIb /o-~ xo U Apt o~E o B..... I / Haut J Valang J Bert I frith' J Kimm j ~IF~ Oxf I ~]k~ Call u Both ~Baioc Toarc PI lens Sinem Hett u ~, Rhaet ~. Nor SEE FIGA Chlorophyceae J Rhodophyceae Schizophyceae T Xanthophyta TAXA THALLOPHYTA 1 Calcareous Algae CONTRIBUTORS G. A. L. Johnson, H.M. Johnson IN. F. Hughes FIG. I. I B 12 165 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 The Fossil Record, Part H Class CHLOROPHYCEAE Ktitzing 1833 Family CHLAMYOOMONACE~mStein orth. rout. G. M. Smith 1920 First, Jur Oxf-'Tith': Gleocystis oxfordiensis Lignier 1906, Europe. Extant. Cot~ment: Fossil members of the group are rare as flagellae are seldom preserved. Family PHACOWACEAE(Biitschli) Oltmanns 1904 First, Tert M.Eoc: Phacotus sp. Rutte 1953, Germany. Extant. ComJment: Fossil records few, U.Mioc P. lenticularis (Ehrenberg) Stein, also Pleist and Holo examples. Family ~TOCOCCACEAE (Trevisan) Marchand orth. mut. G. M. Smith 1950 First, Jur 'Tith" Globochaete alpina Lombard 1938, Sainte Crois de Quintillargues, Provence. Extant. Comment: Globochaete widespread in U.Jur in Tethys, Provence and Indonesia. (Colom 1955). Family CHr.Om~Lr~C~.A~. (Wille) Brunnthaler 1913 First, Tert L.Eoc: ChloreUopsiscoloniata Reis (Bradley 1929), Green River Fro., Colorado, Utah and Wyoming; Tert of Bavaria and Kansas, U.S.A. Exant. Comment: Camb record "? like Chlorellopsis coloniata Reis" (Bigot 1929) has no cellular structure so may not be algal Dec cf. Tetraedon. sp. (Ktitzing 1845; Bohlln 1901) may belong to either Chlorellaceae or Oocystaceae. [H.M.J.] Family HYDRODICaWACV.AE(S. F. Gray) Dumortier orth. rout. Cohn 1880 First, Cret Alb: Pediastrum boryanum Brunnthaler 1915, Pakistan. Extant. Conanaent: Doubtful first, Jur 'Tith': Pediastrites kidstoni Zalessky 1927, L. Volgian, nr Simbirsk, U.S.S.R. Pediastrum occurs through to present; Hydrodictyon, Tert Japan. (Koriba and Miki 1959). [H.M.J. & N.F.H.] Family COEt~ST~CEaJ~ (West) Wille 1906 First, Carb Tourn-Vis6an: Lageniastrum macrosporae Renault, Europe. Extant. Family ur OTRICHACFAF Kiatzing orth. rout. Haulk 1883 First, Jur 'Tith': Eothrix alpina Lombard 1938, Switzerland, Provence, Andalusia, Apennines, N. Africa and Indonesia. Extant. Family CHA~.TOPHORACFAFHarvey orth. rout. Stizenberger 1860 First, Tert Dan: Palaeachyla sp. Pia 1936, Diniyur gp., Trichinopoly, S. India. Extant. Family ZYOm~TACFAF. (Meneghini) Ktitzing orth. mut. Engler 1898 First, Tert L.Eoc: Spirogyra sp. Bradley 1962, Wilkins Peak member, Green River fro., Wyoming. Extant. Conanaent: The diagnostic chloroplast is seldom preserved in fossils. Family DESMmIAC~.AEKiitzing 1833 ex Ralfs (1848) orth. mut. Stizenberger 1860 First, Dev: Arthrodesmus (probable desmid); U.Jur: Xanthidium pilosum Ehrenb. Extant. Comment: Other records: Pleist and Holo, Jutland, Denmark (Fjerdugstadtl 1954) and N./kips (Messikommer 1938). [H.M.J.] Family DASYCtatOACFAEKtitzing 1833 orth. rout. Stizenberger 1860 First, Camb L.Camb: LenaeUa reticulata Korde 1959, Atdaban fro, Siberia, and Carnbroporella tuvensis Korde 1950, U.S.S.R. (Endo 1961). Extant. Comment: Pre-Camb records from the Kola Peninsula have been dated at 1720-1780 m.y. B.P. and include cf. DasyporeUa Pia and the Tribe Cyclocrineae Pia (Lyubtsov 1964). Few Palaeozoic genera, divergence in Permian. Fossil genera numerous compared with only 10 living genera. [H.M.J. & G.A.L.J.] 166 Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 Chapter 1: Thallophyta--I Family CODIACEAE (Trevisan) Zanardini 1843 First, Camb-Ord: Palaeoporella variabilis Stolley 1893, Late Camb. or basal Ord, Sweden, Norway and Texas. Extant. Comument: Pre-Camb Oldhamia and Palaeorivularia may be primitive codiaceans or the latter may be a red alga (C. L. Fenton 1943, Endo 1961). Abundant in present oceans mostly non- lime-depositing. Family VALONIACEAEN~igeli 1847 First, Jur Oxf-'Tith': Pycnoporidium lobatum Yabe and Toyama 1928, Torinosu Lst, Abukama Mountainlands, Japan and Spain. P. melobesioides (Pfender), France. Extant. Co~axnent: P. toyamai, Perm, has doubtful generic assignment. P. lobatum and P. melobesioides extend to L. Cret. P. sinuosum J. H. Johnson and Konishi L. Cret, Guatemala. No known Tert forms, living forms mostly tropical. Family ASCOSOMACEAELorenz 1904 First and Last, Camb: Ascosomiaphaneroporata Lorenz 1904 and Mitscherlichia chinensis Lorenz 1904, Tschang-duang, N. China. Class RHODOPHYCEAE Ruprecht 1901 Family CHAETANGIACEAEKtitzing orth. mut. Hauck 1883 First, Perm: Hapalophlaea scissa Pia 1935, Sumatra. Extant. Family GYMNOCODIACEAEElliott 1955 First, Perm: Gymnocodium bellerophontis (Rothpletz 1894) Pia 1920, S. Europe, India, Japan and Texas, U.S.A. Last, Cret Apt: Permocalculus irenae Elliott 1958. Cornnaent: Family regarded first as Dasycladaceae, then Codiaceae, next red algae (Chaet- angiaceae Pia 1937) and finally raised to separate family (Elliott 1955). Family SOLENOPORACEAE Pia 192 7 First, Camb L.Camb: Solenopora sp., N.W. Beardmore Glacier, Antarctica (Priestley and David 1910); S. tjanshanica Vologdin 1955, Russia; S. sp., Angara R., Siberia (Maslov 1937). Last, Tert Mioc: Neosolenopora vinassi, Italy, France and Cuba. Coma~ent: Camb records few; Ord and Sil records rare at first later few genera only but widespread, abundant and rockbuilders. Classification controversial, either sub-family of Corallinaceae (Maslov 1956) or a separate family (Pia 1927, J. H. Johnson 1959). Family CORALLINACEAE (Lamouroux) Harvey 1849 First, Carb Bashk-Moscov: Archaeolithophyllum missourensum J. H. Johnson 1956, Exline Lst, Carroll Co., Missouri; A. delicatumJ. H. Johnson 1956, ColinsviUe Lst, Illinois, also New Mexico and Texas. Carb. Komia abandans Korde 1951, N. Urals, Russia and Japan. Extant. Comaxient: Sub-family Melobesieae U.Carb to Recent as given above. Sub-family Coral- linae ?U.Carb to Recent; Archamphiroa ?U.Carb, Amphiroa Cret. Melobesieae contains Archaeo- lithothamnium, Jur to Recent, of uncertain phylogeny, which gave rise to Lithothamnium in L.Jur.