Max Von Laue Nobel Prize in Physics 1914
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Luis Alvarez: the Ideas Man
CERN Courier March 2012 Commemoration Luis Alvarez: the ideas man The years from the early 1950s to the late 1980s came alive again during a symposium to commemorate the birth of one of the great scientists and inventors of the 20th century. Luis Alvarez – one of the greatest experimental physicists of the 20th century – combined the interests of a scientist, an inventor, a detective and an explorer. He left his mark on areas that ranged from radar through to cosmic rays, nuclear physics, particle accel- erators, detectors and large-scale data analysis, as well as particles and astrophysics. On 19 November, some 200 people gathered at Berkeley to commemorate the 100th anniversary of his birth. Alumni of the Alvarez group – among them physicists, engineers, programmers and bubble-chamber film scanners – were joined by his collaborators, family, present-day students and admirers, as well as scientists whose professional lineage traces back to him. Hosted by the Lawrence Berkeley National Laboratory (LBNL) and the University of California at Berkeley, the symposium reviewed his long career and lasting legacy. A recurring theme of the symposium was, as one speaker put it, a “Shakespeare-type dilemma”: how could one person have accom- plished all of that in one lifetime? Beyond his own initiatives, Alvarez created a culture around him that inspired others to, as George Smoot put it, “think big,” as well as to “think broadly and then deep” and to take risks. Combined with Alvarez’s strong scientific standards and great care in execut- ing them, these principles led directly to the awarding of two Nobel Luis Alvarez celebrating the announcement of his 1968 Nobel prizes in physics to scientists at Berkeley – George Smoot in 2006 prize. -
Enrico Fermi
Fermi, Enrico Inventors and Inventions Enrico Fermi Italian American physicist Fermi helped develop Fermi-Dirac statistics, which liceo (secondary school) and, on the advice of Amidei, elucidate the group behavior of elementary particles. joined the Scuola Normale Superiore at Pisa. This elite He also developed the theory of beta decay and college, attached to the University of Pisa, admitted only discovered neutron-induced artificial radioactivity. forty of Italy’s top students, who were given free board Finally, he succeeded in producing the first sustained and lodging. Fermi performed exceedingly well in the nuclear chain reaction, which led to the discovery highly competitive entrance exam. He completed his of nuclear energy and the development of the university education after only four years of research and atomic bomb. studies, receiving his Ph.D. in physics from the Univer- sity of Pisa and his undergraduate diploma from the Born: September 29, 1901; Rome, Italy Scuola Normale Superiore in July, 1922. He became Died: November 28, 1954; Chicago, Illinois an expert theoretical physicist and a talented exper- Primary field: Physics imentalist. This rare combination provided a solid foun- Primary inventions: Controlled nuclear chain dation for all his subsequent inventions. reaction; Fermi-Dirac statistics; theory of beta decay Life’s Work After postdoctoral work at the University of Göttingen, Early Life in Germany (1922-1923), and the University of Leiden, Enrico Fermi (ehn-REE-koh FUR-mee) was the third in the Netherlands (fall, 1924), Fermi took an interim po- child of Alberto Fermi and Ida de Gattis. Enrico was very sition at the University of Florence in December, 1924. -
Scientific and Related Works of Chen Ning Yang
Scientific and Related Works of Chen Ning Yang [42a] C. N. Yang. Group Theory and the Vibration of Polyatomic Molecules. B.Sc. thesis, National Southwest Associated University (1942). [44a] C. N. Yang. On the Uniqueness of Young's Differentials. Bull. Amer. Math. Soc. 50, 373 (1944). [44b] C. N. Yang. Variation of Interaction Energy with Change of Lattice Constants and Change of Degree of Order. Chinese J. of Phys. 5, 138 (1944). [44c] C. N. Yang. Investigations in the Statistical Theory of Superlattices. M.Sc. thesis, National Tsing Hua University (1944). [45a] C. N. Yang. A Generalization of the Quasi-Chemical Method in the Statistical Theory of Superlattices. J. Chem. Phys. 13, 66 (1945). [45b] C. N. Yang. The Critical Temperature and Discontinuity of Specific Heat of a Superlattice. Chinese J. Phys. 6, 59 (1945). [46a] James Alexander, Geoffrey Chew, Walter Salove, Chen Yang. Translation of the 1933 Pauli article in Handbuch der Physik, volume 14, Part II; Chapter 2, Section B. [47a] C. N. Yang. On Quantized Space-Time. Phys. Rev. 72, 874 (1947). [47b] C. N. Yang and Y. Y. Li. General Theory of the Quasi-Chemical Method in the Statistical Theory of Superlattices. Chinese J. Phys. 7, 59 (1947). [48a] C. N. Yang. On the Angular Distribution in Nuclear Reactions and Coincidence Measurements. Phys. Rev. 74, 764 (1948). 2 [48b] S. K. Allison, H. V. Argo, W. R. Arnold, L. del Rosario, H. A. Wilcox and C. N. Yang. Measurement of Short Range Nuclear Recoils from Disintegrations of the Light Elements. Phys. Rev. 74, 1233 (1948). [48c] C. -
The Nobel Prize in Physics: Four Historical Case Studies
The Nobel Prize in Physics: Four Historical Case Studies By: Hannah Pell, Research Assistant November 2019 From left: Arnold Sommerfeld, Lise Meitner, Chien-Shiung Wu, Satyendra Nath Bose. Images courtesy of the AIP Emilio Segré Visual Archives. Grade Level(s): 11-12, College Subject(s): History, Physics In-Class Time: 50 - 60 minutes Prep Time: 15 – 20 minutes Materials • Photocopies of case studies (found in the Supplemental Materials) • Student internet access Objective Students will investigate four historical case studies of physicists who some physicists and historians have argued should have won a Nobel Prize in physics: Arnold Sommerfeld, Lise Meitner, Chien-Shiung Wu, and Satyendra Nath Bose. With each Case Study, students examine the historical context surrounding the prize that year (if applicable) as well as potential biases inherent in the structure of the Nobel Prize committee and its selection process. Students will summarize arguments for why these four physicists should have been awarded a Nobel Prize, as well as potential explanations for why they were not awarded the honor. Introduction Introduction to the Nobel Prize In 1895, Alfred Nobel—a Swedish chemist and engineer who invented dynamite—signed into his will that a large portion of his vast fortune should be used to create a series of annual prizes awarded to those who “confer the greatest benefit on mankind” in physics, chemistry, physiology or medicine, 1 literature, and peace.1 (The Nobel Prize in economics was added later to the collection of disciplines in 1968). Thus, the Nobel Foundation was founded as a private organization in 1900 and the first Nobel Prizes were awarded in 1901. -
Muonium Gravity Seminar Wichita-6-17
Antimatter Gravity MICE-U.S. Plans withDaniel Muons M. Kaplan US Spokesperson, MICE Collaboration Daniel M. Kaplan Physics Seminar WichitaMuTAC State Review Univ. June Fermilab16, 2017 16–17 March, 2006 Outline • Dramatis Personae • A Bit of History - antimatter, the baryon asymmetry of the universe, and all that... • The Ideas, The Issues, The Opportunities • Required R&D • Conclusions Our story’s a bit complicated, so please bear with me! ...and stop me if you have a question! D. M. Kaplan, IIT An#ma&er Gravity Seminar 2/41 Matter & Energy • After many decades of experimentation with subatomic particles, we now know whatDramatis everything is made of... Personae Baryons & antibaryons : p== uud & p uud ΛΛ==uds & uds ... Mesons : K00== ds & K ds B00== db & B db B+ == ub & B− ub ... ∓ ∓ ∓ Leptons : e , µ , τ , ν’s D. M. Kaplan, IIT An#ma&er Gravity Seminar 3/41 Matter & Energy • After many decades of experimentation with subatomic particles, we now know whatDramatis everything is made of... Personae “Imperfect mirror” Baryons & antibaryons : Antip== uud & p uud ΛΛ==uds & uds ... Mesons : Anti K00== ds & K ds B00== db & B db Anti B+ == ub & B− ub ... Antimatter Leptons : e∓, µ∓, τ∓, ν’s • And, don’t forget: antimatter and matter annihilate on contact D. M. Kaplan, IIT An#ma&er Gravity Seminar 3/41 Outline • Dramatis Personae ➡ • A Bit of History - antimatter, the baryon asymmetry of the universe, and all that... • The Ideas, The Issues, The Opportunities • Muonium Gravity Experiment • Required R&D • Conclusions D. M. Kaplan, IIT An#ma&er Gravity Seminar 4/41 Our story begins with.. -
Curriculum Vitae: Georg A
Curriculum Vitae: Georg A. Weidlich, Ph.D., phone 650-387-0896 403 Pratt Ln email: [email protected] Palo Alto, CA 94306 url: www.linkedin.com/pub/dir/Georg/Weidlich Professional Experience: - Founder and President, National Medical Physics and Dosimetry Company, Inc., in Palo Alto, California, from 1995 to date - Consulting Physicist and Radiation Safety Officer at ZAP Surgical Systems, Inc., San Carlos, CA, development of novel dedicated Radiosurgery device, January 2016 to date - Director of Radiological Physics at Valley Regional Cancer Center in Modesto, California, from December 1992 to December 1999 - Consulting Professor at Stanford University, Department of Neurosurgery, Palo Alto, CA, 2003 to 2008 - Adjunct Professor at California State University, Fresno, Physics Department November 2015 to date - Consulting Physicist at Siemens in the development of several major Linear Accelerator projects, beam line design, industrial applications, and shielding. - Consulting Radiological Physicist at Sierra View Medical Center, Roger S. Good Cancer Treatment Center, Porterville, California, September 1995 to date - Consulting Radiological Physicist at Sonora Regional Medical Center, Sonora, California, July 1992 to date - Reviewing Medical Physicist for Cureus Journal – Cardiac Radiosurgery, March 2016 to date - Consulting Radiological Physicist at Florence Wheeler Cancer Center, Mercy Hospital, Bakersfield, California, August 1999 to May 2003 - Consulting Radiological Physicist and RSO at California Cancer Center, Fresno, California, -
Enrico Fermi: Genius
ANNIVERSARY Enrico Fermi: genius This year marks the centenary of the birth of Enrico Fermi, one of the giants of 20th- • century science, and one of the last physicists to be both an accomplished experimentalist and an influential theorist. Here, Gianni Battimelli of the University of Rome "La Sapienza" traces the life of a genius. Enrico Fermi was born on 29 September 1901 in Rome to a family with no scientific traditions. His passion for natural sciences, and in particular for physics, was stimulated and guided in his school years by an engineer and family friend, Adolph Amidei, who recognized Fermi's exceptional intellectual abilities and suggested admission to Pisa's Scuola Normale Superiore. After finishing high-school studies in Rome, in 1918 Fermi progressed to the prestigious Pisa Institute, after producing for the admission exam an essay on the characteristics of the propagation of sound, the authenticity of which the commissioners initially refused to believe. Studies at Pisa did not pose any particular difficulties for the young Fermi, despite his having to be largely self-taught using mate rial in foreign languages because nothing existed at the time in Fermi's group discovered the Italian on the new physics emerging around relativity and quantum radioactivity induced by theory. In those years in Italy, these new theories were absent from university teaching, and only mathematicians likeTullio Levi-Civita neutrons, instead of the had the knowledge and insight to see their implications. alpha particles used in the Working alone, between 1919 and 1922, Fermi built up a solid competence in relativity, statistical mechanics and the applications Paris experiments. -
Brief Newsletter from World Scientific February 2017
Brief Newsletter from World Scientific February 2017 Exclusive Interview with 2003 Nobel Laureate One of the Top Condensed Matter Theorists and World Scientific Author Anthony Leggett Sir Professor Anthony James Leggett is a distinguished physicist who was awarded the Nobel Prize in Physics in 2003 for his pioneering contributions to the theory of superconductors and superfluids. He is currently a professor at the University of Illinois at Urbana-Champaign. Prof Leggett gave a presentation at the 2016 APS March Meeting in Baltimore, USA on “Reflections on the past, present and future of condensed matter physics”. In a phone interview, he shared with us some of his thoughts and further musings on the future of condensed matter physics. Paradigm Shift and Our Quest for the Unknown Chad Hollingsworth Your talk at the APS March Meeting 2016 mentioned developments That probably depends on your current tenure status! Certainly, if that you classified as “paradigm shifts”. Are there any recent you have a secure, tenured job (as I have been fortunate enough to discoveries that you would classify as paradigm shifts? have for the last few decades), then I think most certainly it’s better Well, if we go slightly outside the area of condensed matter physics to explore the unknown. But, of course, I appreciate that in the current as it has been conventionally defined, then, undoubtedly, any employment situation, people who have not got a tenured job need revolution which overthrew the view of quantum mechanics as a to think about their future. This may well be a rather strong pressure complete account of the world would, I think, certainly qualify as a to basically explore the known further. -
Circles of Light: a Physicist's Tale
New Journal of Physics The open access journal at the forefront of physics www.njp.org Now part of the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP3). To view the benefits for authors visit iopscience.org/NJP/articlecharge. CERN Courier March 2015 Inside Story New Journal of Physics IMPACT FACTOR The open access journal at the forefront of physics 3.673 as listed in the 2013 ISI Journal Citation Report® www.njp.org Circles of light: a physicist’s tale We are pleased to announce our participation in the Sponsoring Consortium for Open Thinker or artisan? performing calculations using the theoretical tools of particle physics. In this respect, my Access Publishing in Particle Physics Lalit Sehgal on the link occupation combined the traits of a thinker with those of an artisan. (SCOAP3). between his career in physics Did the work bring me fame and fortune? A modicum of recognition, perhaps, but and a tailor he saw long ago certainly no great wealth. The main reward SCOAP3 can get your high-energy physics article published in was the joy of working with scientists, and in Lahore. sharing in the exhilaration of search and this prestigious open access journal at no cost to you. discovery. Was the work I did held in esteem? Here I have to be guarded in my reply. The For more details visit iopscience.org/NJP/articlecharge. When I was four years old, fi eld of elementary-particle physics tends to my grandfather, who was a divide itself into groups with varying ideas respected citizen of Lahore, about the important issues, priorities and came to our home in his ultimate goals. -
The Federal Government: a Nobel Profession
The Federal Government: A Nobel Profession A Report on Pathbreaking Nobel Laureates in Government 1901 - 2002 INTRODUCTION The Nobel Prize is synonymous with greatness. A list of Nobel Prize winners offers a quick register of the world’s best and brightest, whose accomplishments in literature, economics, medicine, science and peace have enriched the lives of millions. Over the past century, 270 Americans have received the Nobel Prize for innovation and ingenuity. Approximately one-fourth of these distinguished individuals are, or were, federal employees. Their Nobel contributions have resulted in the eradication of polio, the mapping of the human genome, the harnessing of atomic energy, the achievement of peace between nations, and advances in medicine that not only prolong our lives, but “This report should serve improve their quality. as an inspiration and a During Public Employees Recognition Week (May 4-10, 2003), in an effort to recognize and honor the reminder to us all of the ideas and accomplishments of federal workers past and present, the Partnership for Public Service offers innovation and nobility of this report highlighting 50 American Nobel laureates the work civil servants do whose award-winning achievements occurred while they served in government or whose public service every day and its far- work had an impact on their career achievements. They were honored for their contributions in the fields reaching impact.” of Physiology or Medicine, Economic Sciences, and Physics and Chemistry. Also included are five Americans whose work merited the Peace Prize. Despite this legacy of accomplishment, too few Americans see the federal government as an incubator for innovation and discovery. -
Vol. 6 No. 14 ... Enrico Fermi, Distinguished Physicist, Whose Name Will Head Illinois Research Laboratory ••• ... H. Ande
Vol. 6 No. 14 April11, 1974 The National Accelerator Laboratory will become the Fermi National Accelerator Laboratory at a dedication cere mony to be held at the Laboratory on Saturday, May 11, 1974. The plan to change the name of the Laboratory was announced on April 29, 1969 by Glenn T. Seaborg, then chair man of the U. S. Atomic Energy Commission. It was understood then that the dedication and the changing of the name would take place when construction was complete. May of 1974 will find the Laboratory close to completion and running strongly in all areas. In announcing the AEC's plans, Seaborg said in 1969: ... Enrico Fermi, distinguished "It is particularly fitting that we honor Dr. Fermi in this physicist, whose name will head manner, for in so doing we further acknowledge his many con Illinois research laboratory ••• tributions to the progress of nuclear science, particularly his work on nuclear processes. Enrico Fermi was a physicist of great renown who contributed in a most significant way to the defense and welfare of his adopted land and to the enhancement of its intellectual well-being. His greatest achievement, the first sustained nuclear chain reaction, took place in a small laboratory in Chicago. It seems sin gularly appropriate, therefore, that the Federal Government recognize the memory of a man who was at the forefront of science in his day by naming in his honor a laboratory near Chicago -- a laboratory which will have a major internationa: impact on our understanding of the basic structure of matter." ... H. Anderson, student and long-time Enrico Fermi was born in Rome, Italy, on September 29, colleague of Fermi, on visit to NAL 1901. -
The Intersection of Video Games and Physics Education Cameron Pittman, LEAD Academy
Teaching With Portals: the Intersection of Video Games and Physics Education Cameron Pittman, LEAD Academy ABSTRACT The author, a high school physics teacher, describes the process of teaching with the commercial video game Portal 2. He gives his story from inception, through setbacks, to eventually teaching a semester of laboratories using the Portal 2 Puzzle Maker, a tool which allows for the easy conception and construction of levels. He describes how his students used the Puzzle Maker as a laboratory tool to build and analyze vir- tual experiments that followed real-world laws of physics. Finally, he concludes with a discussion on the current and future status of video games in education. Introduction n June of 2012 I interviewed for my current teaching position at LEAD Academy, a charter high school in Nashville, Tennessee. During my interview, I made it clear that I wanted to teach physics using video games as part of the curricu- Ilum. Well before I had even heard of LEAD or sent in a resume and cover letter, I had planned a semester of laboratories set inside the virtual world of Valve Software’s commercial video game, Portal 2. During the interview I told the principal that I fully intended to use a video game in a way that no other teacher had ever considered; I wanted to use Portal 2 as a laboratory setting. It seems self-evident. Video game realism, simulation ability, and availability have vastly improved in recent years. Video games showcase how realistically they resemble the world, both graphically and interactively. It seemed like a natural jump to take physics education to a readily available and flexible medium.