What Can I Do with a Major in Physics

Total Page:16

File Type:pdf, Size:1020Kb

What Can I Do with a Major in Physics What can I do With a Major in . .? What can I do With a Major in Physics? Physics can be best described as the study of laws that govern the behaviour and interactions of energy and matter. Physics encompasses the entire physical universe and everything in it, therefore a variety of topics can be studied while pursuing a major in Physics. Topics can include mechanics, electromagnetism, thermodynamics, statistical mechanics and quantum mechanics. Physicists believe everything can be explained in terms of a set of fundamental physical laws, therefore it is the goal of physics to discover these laws and to understand the world at its most basic level. A student majoring in Physics can build strong analytical and experimental skills, as well as mathematical abilities. Learning how to synthesize and summarize data compliments theoretical and experimental skills to enhance career opportunities. The completion of a physics degree can enable a student to develop occupational skills such as mathematical modelling, utilizing math formulas, theory development, testing an idea or hypothesis, organizing ideas and materials, adapting ideas, preparing technical reports and computer technology. Many people with undergraduate degrees in Physics can expect to find work in the areas of health, education, the federal government, computer technology or other applied sciences. Careers in Physics The occupations noted below may be directly or indirectly related to Physics. Some of these careers may require additional education beyond a Bachelor’s degree. Research Computational Scientist /Science Design Physicist Acoustics Physicist Electronics Physicist Aero Dynamist Environmental Analyst Aerospace Non-destructive Testing Environmental Health Specialist Agriculture Scientist Flight Management Analyst Associate Research Scientist Fluids Physicist Astronomer Forensic Scientist Astrophysicist Geodesist Atomic Physicist Geophysical Surveyor Biological Physicist Health Physicist Biomedical Technician High Energy Mechanics Physicist Chemical Physicist Inertial Guidance Analyst What can I do With a Major in . .? Laboratory Supervisor Product Engineering Supervisor Laser Physicist Product Manager Marine Geophysicist Quality Control Engineer Medical Physicist Research & Development Engineer Meteorologist Software Engineer Molecular Physicist Systems Support Representative Navigation Equipment Specialist Television Chief Engineer Nuclear Power Plant Manger Test Engineer Oceanographer Photogrammeter Education Physicist Assistant Professor Physiognomist Associate Department Chair Plasma Physicist Dean Process Control Specialist Department Chairperson Radiological Laboratory Director Graduate Research Assistant Research Assistant Graduate Teaching Assistant Research Scientist Professor Satellite Data Analyst Teacher Satellite Missions Analyst Scientist Optical Physicist Other Science Writer Air Traffic Controller Scientific Photographer Assistant Director Seismic Observer Cartographer Seismologist Commercial Press Manager Senior Medical Physicist Computer Specialist Senior Scientist Defence Contractor Solid Earth Physicist Dentist Solid State Physicist Development Associate Space Technician Executive Vice President Stratigrapher Theoretical Physicist Engineering Applications Programmer Application Specialist Automotive Engineer Computer System Engineer Computer Technician Hydrologist Consultant Industrial Hygienist Electrical Engineer Laboratory Technician Engineering Manager Lawyer (Technology Specialty) Geophysical Surveyor Master Navigator High-Tech Designer Mathematician Process Engineer Medical Products Designer What can I do With a Major in . .? Network Security Administrator Project Manager Occupational Safety Specialist Radiation Safety Officer Operations & Production Manager Systems Analyst Operations Analyst Technical Consultant Optical Medical Devices Designer Technical Illustrator Oral Surgeon Technical Salesperson Particle Accelerator Technical Writer Product Manager Physics Sites The Canadian Association of Physicists http://www.cap.ca/ Canadian College of Physicists in Medicine http://www.medphys.ca/ The American Institute of Physics http://www.aip.org/ Physics and Astronomy Online http://www.physlink.com/ Physics News, Jobs and Resources http://physicsweb.org/resources/ Biophysical Society of Canada http://ncseweb.org/media/voices/biophysical-society Canadian Astronomical Society http://www.casca.ca/ Canadian Meteorological and Oceanographic Society http://www.cmos.ca/ Institute of Physics http://www.iop.org/ Association of Science Technology Centres http://www.astc.org/index.htm What can I do With a Major in . .? Physics Central http://www.physicscentral.com/ NASA www.nasa.gov/ Physics Links http://www.phys.psu.edu/~cteq/HEPlinks/ Careers in Physics Job Futures (Physical Science Professionals) http://jobfutures.ca/noc/211.shtml Science Jobs http://scijobs.org/ Science Web http://www.scienceweb.org/can/careers/jobpostings.html New Scientist Jobs http://www.newscientistjobs.com/splash.action American Physical Society Careers and Employment http://www.aps.org/jobs/index.cfm High Energy Physics: Employment Links http://www.slac.stanford.edu/spires/jobs/ Careers with Physics http://careers.iop.org/ Physics and Engineering Jobs from the American Institute of Physics http://www.aip.org/careersvc/ Careers Using Physics http://www.spsnational.org/cup/ Canadian Association of Physics Careers http://www.cap.ca/careers/careers.html Careers in Physics (American Institute of Physics) http://www.aip.org/careersvc/pify/indigo.html What can I do With a Major in . .? Career in Physics http://scidiv.bcc.ctc.edu/Physics/Careers.html Jobs for Physicists (University of Adelaide) http://www.physics.adelaide.edu.au/jobs/Jobs.html Careers in Physics (Kent State University) http://phys.kent.edu/ug_pages/careers.html Career Information School of Physics (Georgia Tech) http://www.physics.gatech.edu/career/ Alternative Careers for Physics Students (University of Toronto) http://www.physics.utoronto.ca/~wiphys/jobs.html Jobs in Physics, Astronomy, and Other Fields http://www.phys-astro.sonoma.edu/advisor/Jobs.html Physics and Astronomy Careers (University of Western) http://www.physics.uwo.ca/ugrad/careers.html Careers in Physics and Astronomy http://www.physics.rutgers.edu/ugrad/physcareer.html Careers in Physics and Astronomy (Ball State University) http://www.bsu.edu/physics/careers/ .
Recommended publications
  • A Comprehensive Framework to Reinforce Evidence Synthesis Features in Cloud-Based Systematic Review Tools
    applied sciences Article A Comprehensive Framework to Reinforce Evidence Synthesis Features in Cloud-Based Systematic Review Tools Tatiana Person 1,* , Iván Ruiz-Rube 1 , José Miguel Mota 1 , Manuel Jesús Cobo 1 , Alexey Tselykh 2 and Juan Manuel Dodero 1 1 Department of Informatics Engineering, University of Cadiz, 11519 Puerto Real, Spain; [email protected] (I.R.-R.); [email protected] (J.M.M.); [email protected] (M.J.C.); [email protected] (J.M.D.) 2 Department of Information and Analytical Security Systems, Institute of Computer Technologies and Information Security, Southern Federal University, 347922 Taganrog, Russia; [email protected] * Correspondence: [email protected] Abstract: Systematic reviews are powerful methods used to determine the state-of-the-art in a given field from existing studies and literature. They are critical but time-consuming in research and decision making for various disciplines. When conducting a review, a large volume of data is usually generated from relevant studies. Computer-based tools are often used to manage such data and to support the systematic review process. This paper describes a comprehensive analysis to gather the required features of a systematic review tool, in order to support the complete evidence synthesis process. We propose a framework, elaborated by consulting experts in different knowledge areas, to evaluate significant features and thus reinforce existing tool capabilities. The framework will be used to enhance the currently available functionality of CloudSERA, a cloud-based systematic review Citation: Person, T.; Ruiz-Rube, I.; Mota, J.M.; Cobo, M.J.; Tselykh, A.; tool focused on Computer Science, to implement evidence-based systematic review processes in Dodero, J.M.
    [Show full text]
  • Molecular Biology for Computer Scientists
    CHAPTER 1 Molecular Biology for Computer Scientists Lawrence Hunter “Computers are to biology what mathematics is to physics.” — Harold Morowitz One of the major challenges for computer scientists who wish to work in the domain of molecular biology is becoming conversant with the daunting intri- cacies of existing biological knowledge and its extensive technical vocabu- lary. Questions about the origin, function, and structure of living systems have been pursued by nearly all cultures throughout history, and the work of the last two generations has been particularly fruitful. The knowledge of liv- ing systems resulting from this research is far too detailed and complex for any one human to comprehend. An entire scientific career can be based in the study of a single biomolecule. Nevertheless, in the following pages, I attempt to provide enough background for a computer scientist to understand much of the biology discussed in this book. This chapter provides the briefest of overviews; I can only begin to convey the depth, variety, complexity and stunning beauty of the universe of living things. Much of what follows is not about molecular biology per se. In order to 2ARTIFICIAL INTELLIGENCE & MOLECULAR BIOLOGY explain what the molecules are doing, it is often necessary to use concepts involving, for example, cells, embryological development, or evolution. Bi- ology is frustratingly holistic. Events at one level can effect and be affected by events at very different levels of scale or time. Digesting a survey of the basic background material is a prerequisite for understanding the significance of the molecular biology that is described elsewhere in the book.
    [Show full text]
  • Outline of Science
    Outline of science The following outline is provided as a topical overview of • Empirical method – science: • Experimental method – The steps involved in order Science – systematic effort of acquiring knowledge— to produce a reliable and logical conclusion include: through observation and experimentation coupled with logic and reasoning to find out what can be proved or 1. Asking a question about a natural phenomenon not proved—and the knowledge thus acquired. The word 2. Making observations of the phenomenon “science” comes from the Latin word “scientia” mean- 3. Forming a hypothesis – proposed explanation ing knowledge. A practitioner of science is called a for a phenomenon. For a hypothesis to be a "scientist". Modern science respects objective logical rea- scientific hypothesis, the scientific method re- soning, and follows a set of core procedures or rules in or- quires that one can test it. Scientists generally der to determine the nature and underlying natural laws of base scientific hypotheses on previous obser- the universe and everything in it. Some scientists do not vations that cannot satisfactorily be explained know of the rules themselves, but follow them through with the available scientific theories. research policies. These procedures are known as the 4. Predicting a logical consequence of the hy- scientific method. pothesis 5. Testing the hypothesis through an experiment – methodical procedure carried out with the 1 Essence of science goal of verifying, falsifying, or establishing the validity of a hypothesis. The 3 types of
    [Show full text]
  • Principal Scientist, Pharmacology (DMPK) at Entrada Therapeutics Full-Time Opportunity in Boston, MA
    Principal Scientist, Pharmacology (DMPK) at Entrada Therapeutics Full-Time Opportunity in Boston, MA Company Overview Entrada Therapeutics is a biotechnology company dedicated to transforming the treatment of devastating diseases through the intracellular delivery of biologics. Entrada’s technology enables the efficient intracellular delivery of proteins, peptides and nucleic acids, thus allowing for the development of programs across several intracellular target classes. The Company’s novel approach addresses current challenges associated with both large and small molecule therapeutics and represents a fundamental advancement in the delivery of molecules into the cytosol. Entrada is comprised of experts and leaders in both biologics development and the rare disease space. In December 2018, Entrada closed a $59 million Series A from 5AM Ventures, MPM Capital, Roche Venture Fund, MRL Ventures Fund and Agent Capital. Position Summary Entrada is hiring for a highly motivated, collaborative and innovative Principal Scientist, specializing in pharmacokinetics and pharmacology to join the Company’s intracellular biologics discovery and development efforts. The candidate will work with a world-class, multidisciplinary team of drug discovery scientists and lead the in vitro and in vivo ADME, PK, PD and toxicokinetic efforts. Specifically, the candidate will design, manage and execute in vitro and in vivo programs both in- house and at contract research organizations. The candidate will also be responsible for analyzing, interpreting and modeling
    [Show full text]
  • How Science Works
    PB 1 How science works The Scientific Method is traditionally presented in the first chapter of science text- books as a simple recipe for performing scientific investigations. Though many use- ful points are embodied in this method, it can easily be misinterpreted as linear and “cookbook”: pull a problem off the shelf, throw in an observation, mix in a few ques- tions, sprinkle on a hypothesis, put the whole mixture into a 350° experiment—and voila, 50 minutes later you’ll be pulling a conclusion out of the oven! That might work if science were like Hamburger Helper®, but science is complex and cannot be re- duced to a single, prepackaged recipe. The linear, stepwise representation of the process of science is simplified, but it does get at least one thing right. It captures the core logic of science: testing ideas with evidence. However, this version of the scientific method is so simplified and rigid that it fails to accurately portray how real science works. It more accurately describes how science is summarized after the fact—in textbooks and journal articles—than how sci- ence is actually done. The simplified, linear scientific method implies that scientific studies follow an unvarying, linear recipe. But in reality, in their work, scientists engage in many different activities in many different sequences. Scientific investigations often involve repeating the same steps many times to account for new information and ideas. The simplified, linear scientific method implies that science is done by individual scientists working through these steps in isolation. But in reality, science depends on interactions within the scientific community.
    [Show full text]
  • Luis Alvarez: the Ideas Man
    CERN Courier March 2012 Commemoration Luis Alvarez: the ideas man The years from the early 1950s to the late 1980s came alive again during a symposium to commemorate the birth of one of the great scientists and inventors of the 20th century. Luis Alvarez – one of the greatest experimental physicists of the 20th century – combined the interests of a scientist, an inventor, a detective and an explorer. He left his mark on areas that ranged from radar through to cosmic rays, nuclear physics, particle accel- erators, detectors and large-scale data analysis, as well as particles and astrophysics. On 19 November, some 200 people gathered at Berkeley to commemorate the 100th anniversary of his birth. Alumni of the Alvarez group – among them physicists, engineers, programmers and bubble-chamber film scanners – were joined by his collaborators, family, present-day students and admirers, as well as scientists whose professional lineage traces back to him. Hosted by the Lawrence Berkeley National Laboratory (LBNL) and the University of California at Berkeley, the symposium reviewed his long career and lasting legacy. A recurring theme of the symposium was, as one speaker put it, a “Shakespeare-type dilemma”: how could one person have accom- plished all of that in one lifetime? Beyond his own initiatives, Alvarez created a culture around him that inspired others to, as George Smoot put it, “think big,” as well as to “think broadly and then deep” and to take risks. Combined with Alvarez’s strong scientific standards and great care in execut- ing them, these principles led directly to the awarding of two Nobel Luis Alvarez celebrating the announcement of his 1968 Nobel prizes in physics to scientists at Berkeley – George Smoot in 2006 prize.
    [Show full text]
  • Internationalizing the University Curricula Through Communication
    DOCUMENT RESUME ED 428 409 CS 510 027 AUTHOR Oseguera, A. Anthony Lopez TITLE Internationalizing the University Curricula through Communication: A Comparative Analysis among Nation States as Matrix for the Promulgation of Internationalism, through the Theoretical Influence of Communication Rhetors and International Educators, Viewed within the Arena of Political-Economy. PUB DATE 1998-12-00 NOTE 55p.; Paper presented at the Annual Meeting of the Speech Communication Association of Puerto Rico (18th, San Juan, Puerto Rico, December 4-5, 1998). PUB TYPE Reports Research (143) Speeches/Meeting Papers (150) EDRS PRICE MF01/PC03 Plus Postage. DESCRIPTORS *College Curriculum; *Communication (Thought Transfer); Comparative Analysis; *Educational Change; Educational Research; Foreign Countries; Global Approach; Higher Education; *International Education IDENTIFIERS *Internationalism ABSTRACT This paper surveys the current situation of internationalism among the various nation states by a comparative analysis, as matrix, to promulgate the internationalizing process, as a worthwhile goal, within and without the college and university curricula; the theoretical influence and contributions of scholars in communication, international education, and political-economy, moreover, become allies toward this endeavor. The paper calls for the promulgation of a new and more effective educational paradigm; in this respect, helping the movement toward the creation of new and better schools for the next millennium. The paper profiles "poorer nations" and "richer nations" and then views the United States, with its enormous wealth, leading technology, vast educational infrastructure, and its respect for democratic principles, as an agent with agencies that can effect positive consequences to ameliorating the status quo. The paper presents two hypotheses: the malaise of the current educational paradigm is real, and the "abertura" (opening) toward a better paradigmatic, educational pathway is advisable and feasible.
    [Show full text]
  • Enrico Fermi
    Fermi, Enrico Inventors and Inventions Enrico Fermi Italian American physicist Fermi helped develop Fermi-Dirac statistics, which liceo (secondary school) and, on the advice of Amidei, elucidate the group behavior of elementary particles. joined the Scuola Normale Superiore at Pisa. This elite He also developed the theory of beta decay and college, attached to the University of Pisa, admitted only discovered neutron-induced artificial radioactivity. forty of Italy’s top students, who were given free board Finally, he succeeded in producing the first sustained and lodging. Fermi performed exceedingly well in the nuclear chain reaction, which led to the discovery highly competitive entrance exam. He completed his of nuclear energy and the development of the university education after only four years of research and atomic bomb. studies, receiving his Ph.D. in physics from the Univer- sity of Pisa and his undergraduate diploma from the Born: September 29, 1901; Rome, Italy Scuola Normale Superiore in July, 1922. He became Died: November 28, 1954; Chicago, Illinois an expert theoretical physicist and a talented exper- Primary field: Physics imentalist. This rare combination provided a solid foun- Primary inventions: Controlled nuclear chain dation for all his subsequent inventions. reaction; Fermi-Dirac statistics; theory of beta decay Life’s Work After postdoctoral work at the University of Göttingen, Early Life in Germany (1922-1923), and the University of Leiden, Enrico Fermi (ehn-REE-koh FUR-mee) was the third in the Netherlands (fall, 1924), Fermi took an interim po- child of Alberto Fermi and Ida de Gattis. Enrico was very sition at the University of Florence in December, 1924.
    [Show full text]
  • Scientific and Related Works of Chen Ning Yang
    Scientific and Related Works of Chen Ning Yang [42a] C. N. Yang. Group Theory and the Vibration of Polyatomic Molecules. B.Sc. thesis, National Southwest Associated University (1942). [44a] C. N. Yang. On the Uniqueness of Young's Differentials. Bull. Amer. Math. Soc. 50, 373 (1944). [44b] C. N. Yang. Variation of Interaction Energy with Change of Lattice Constants and Change of Degree of Order. Chinese J. of Phys. 5, 138 (1944). [44c] C. N. Yang. Investigations in the Statistical Theory of Superlattices. M.Sc. thesis, National Tsing Hua University (1944). [45a] C. N. Yang. A Generalization of the Quasi-Chemical Method in the Statistical Theory of Superlattices. J. Chem. Phys. 13, 66 (1945). [45b] C. N. Yang. The Critical Temperature and Discontinuity of Specific Heat of a Superlattice. Chinese J. Phys. 6, 59 (1945). [46a] James Alexander, Geoffrey Chew, Walter Salove, Chen Yang. Translation of the 1933 Pauli article in Handbuch der Physik, volume 14, Part II; Chapter 2, Section B. [47a] C. N. Yang. On Quantized Space-Time. Phys. Rev. 72, 874 (1947). [47b] C. N. Yang and Y. Y. Li. General Theory of the Quasi-Chemical Method in the Statistical Theory of Superlattices. Chinese J. Phys. 7, 59 (1947). [48a] C. N. Yang. On the Angular Distribution in Nuclear Reactions and Coincidence Measurements. Phys. Rev. 74, 764 (1948). 2 [48b] S. K. Allison, H. V. Argo, W. R. Arnold, L. del Rosario, H. A. Wilcox and C. N. Yang. Measurement of Short Range Nuclear Recoils from Disintegrations of the Light Elements. Phys. Rev. 74, 1233 (1948). [48c] C.
    [Show full text]
  • Application Scientist (M/F/D) Biophysical Methods
    CAREERS JOIN OUR TEAM Application Scientist (m/f/d) Biophysical Methods Munich, Germany We are a growing provider of scientific instruments for the analysis of molecular interactions and are seeking highly motivated individuals to join our team as Application Scientists for our innovative heliX® biosensors. We welcome applications from high-potentials who want to use their innovative minds to realize novel biophysical assays and to push the limits of what is possible in biosensing. If you like: • applied science and collaborating with scientists, technical sales, software developers and engineers • advanced scientific instruments for high-end research challenges in academia and industry • conformational changes, molecular interactions and investigating binding kinetics, affinities, enzymatic activity, and thermodynamics of biomolecules • advancing a pioneering biosensing technology (switchSENSE®), developing new biophysical assays to fight cancer and other diseases, and being embedded at the forefront of next-generation drug development • being a technical expert who enjoys providing advice, training, and hands-on support • traveling and an international work environment And if you have: • a friendly personality with great team spirit • training in biophysics, physics, biochemistry, chemistry, molecular biology, biotechnology, or similar (MSc, or PhD level) • a positive, hands-on attitude combined with a relentless will to get things to work • excellent communication and presentation skills • the ability to manage several projects simultaneously
    [Show full text]
  • Curriculum Vitae: Georg A
    Curriculum Vitae: Georg A. Weidlich, Ph.D., phone 650-387-0896 403 Pratt Ln email: [email protected] Palo Alto, CA 94306 url: www.linkedin.com/pub/dir/Georg/Weidlich Professional Experience: - Founder and President, National Medical Physics and Dosimetry Company, Inc., in Palo Alto, California, from 1995 to date - Consulting Physicist and Radiation Safety Officer at ZAP Surgical Systems, Inc., San Carlos, CA, development of novel dedicated Radiosurgery device, January 2016 to date - Director of Radiological Physics at Valley Regional Cancer Center in Modesto, California, from December 1992 to December 1999 - Consulting Professor at Stanford University, Department of Neurosurgery, Palo Alto, CA, 2003 to 2008 - Adjunct Professor at California State University, Fresno, Physics Department November 2015 to date - Consulting Physicist at Siemens in the development of several major Linear Accelerator projects, beam line design, industrial applications, and shielding. - Consulting Radiological Physicist at Sierra View Medical Center, Roger S. Good Cancer Treatment Center, Porterville, California, September 1995 to date - Consulting Radiological Physicist at Sonora Regional Medical Center, Sonora, California, July 1992 to date - Reviewing Medical Physicist for Cureus Journal – Cardiac Radiosurgery, March 2016 to date - Consulting Radiological Physicist at Florence Wheeler Cancer Center, Mercy Hospital, Bakersfield, California, August 1999 to May 2003 - Consulting Radiological Physicist and RSO at California Cancer Center, Fresno, California,
    [Show full text]
  • Enrico Fermi: Genius
    ANNIVERSARY Enrico Fermi: genius This year marks the centenary of the birth of Enrico Fermi, one of the giants of 20th- • century science, and one of the last physicists to be both an accomplished experimentalist and an influential theorist. Here, Gianni Battimelli of the University of Rome "La Sapienza" traces the life of a genius. Enrico Fermi was born on 29 September 1901 in Rome to a family with no scientific traditions. His passion for natural sciences, and in particular for physics, was stimulated and guided in his school years by an engineer and family friend, Adolph Amidei, who recognized Fermi's exceptional intellectual abilities and suggested admission to Pisa's Scuola Normale Superiore. After finishing high-school studies in Rome, in 1918 Fermi progressed to the prestigious Pisa Institute, after producing for the admission exam an essay on the characteristics of the propagation of sound, the authenticity of which the commissioners initially refused to believe. Studies at Pisa did not pose any particular difficulties for the young Fermi, despite his having to be largely self-taught using mate­ rial in foreign languages because nothing existed at the time in Fermi's group discovered the Italian on the new physics emerging around relativity and quantum radioactivity induced by theory. In those years in Italy, these new theories were absent from university teaching, and only mathematicians likeTullio Levi-Civita neutrons, instead of the had the knowledge and insight to see their implications. alpha particles used in the Working alone, between 1919 and 1922, Fermi built up a solid competence in relativity, statistical mechanics and the applications Paris experiments.
    [Show full text]