Diseases of Tropical Perennial Crops: Challenging Problems in Diverse Environments

Total Page:16

File Type:pdf, Size:1020Kb

Diseases of Tropical Perennial Crops: Challenging Problems in Diverse Environments R. C. Ploetz University of Florida, Tropical Research and Education Center, Homestead Diseases of Tropical Perennial Crops: Challenging Problems in Diverse Environments The world’s oldest ecosystems are found practices, regardless of the host and envi- boldt (63) discussed the relationship two in the tropics. They are diverse, highly ronment in which it is grown. These in- centuries ago, and Darwin (26) wrote evolved, but barely understood. Diseases clude the avoidance, exclusion, and eradi- about it in his famous book. This increase that impact crops in these regions can be cation of the causal agents. Host protection in diversity is most pronounced in tropical significant contraints to production, is of great importance, as is the identifica- rain forests, which are thought to host 50% especially when they occur in lowland tion and incorporation of resistance in the of all species but occupy only 7% of the environments with high rainfall and host plant. All of these approaches are world’s landmass (162). And it appears to uniform, warm temperatures; respites from discussed with tropical perennial exam- be a general rule on our planet since it is disease pressure there are often infrequent. ples. found in the fossil record and re-estab- Difficulties in managing diseases in the lishes after mass extinctions (67). humid tropics are multiplied when the Agriculture Begins Plants are among the most prominent or- affected crops are perennial. The favorable Agriculture began after the Pleistocene ganisms that conform to the LDG. Thus, it conditions for disease development and the (last ice age) and started independently in is not surprising that most of the early presence of susceptible host tissue over several different regions (Table 1). It devel- agricultural hubs (nine of the above 12) long periods make diseases of tropical oped first in the Near East (sites in the and first crop domestications occurred in perennial crops serious management chal- Fertile Crescent and in present-day Israel the tropics, i.e., between the Tropics of lenges. and Turkey) due to a fortuitous combina- Cancer and Capricorn (Table 1). More than This topic is introduced with a few con- tion of suitable climate and useful plants half the crops in Table 2, 69 of 126 (55%), cepts on the occurrence and development and animals that could be domesticated originated in the tropics. Some tropical of these pathosystems. Peculiar aspects (33,76,144). These first farmers appeared annuals, e.g., rice, potato, and maize, are and scenarios that influence the types of at least 11,000 years ago, and were fol- now also grown in temperate zones during and extent to which different diseases lowed in quick succession by others in the summer. But essentially all tropical develop are summarized. Measures that are Northern and Southern China, Meso- perennials are restricted to the tropics due useful on annual or short-term crops may america, New Guinea, the Andes, and the to their cold sensitivity. be ineffective against these diseases. They Eastern United States (32–34). Additional A wide range of habitats is found in the are scientifically interesting problems. areas of independent development may tropics, including humid lowlands, deserts, New vectors, as for mango malformation, also include Amazonia, Ethiopia, the Sa- seasonally dry forests, grasslands, savan- or pathogens, as for bunchy top of papaya, hel, Southeast Asia, and Western Africa. nahs, montane environments, and swamps are associated with some of the diseases. During agriculture’s brief history, hu- (148,161). Further diversity in each of And some of the diseases are caused by mans have utilized numerous plants these habitats results from variable ed- two or more distinct taxa; for example, (12,21,91,135,148). At least 3,000 taxa aphic, meterologic, and biotic conditions. citrus greening, mango malformation, have been used for food and several hun- This vast array of environments enables an Panama disease, and tracheomycosis of dred more have been used for other pur- equally wide range of plants to be grown; coffee. Some of the most important poses. In Table 2, the following categories almost every crop in Table 2 can be grown diseases are host-specific and are caused have been considered: beverage, drug, somewhere in the tropical world. For ex- by either coevolved or new-encounter elastomer, fiber, food, insecticide, oil, ample, important temperate domesticates pathogens. Resistance, the most effective spice, and timber and pulp. are grown in the lowland tropics (members tool with which many of these diseases are Despite the large numbers of useful spe- of the Brassicaceae and Fabaceae are espe- managed, is usually available in coevolved cies, only a subset is very significant and cially common) and at high elevations pathosystems but may be uncommon in few are of major importance (114,128,136, where moderate temperatures exist (mem- new-encounter situations. Inadequate host 143,148). Scarcely more than a hundred bers of the Fabaceae, Poaceae, and resistance can be a significant barrier in species enter world commerce, and among Rosaceae are most notable) (114). the management of both coevolved and the food crops, few are staples: About Thurston’s (148) estimate that twice as new encounter diseases. 0.5% of the food species supply more than many crops are grown in the tropics as in General tactics are described that are 90% of the world’s food (42,148). the temperate zones of the world is proba- useful against diseases of tropical bly accurate. perennials. The successful management of Biological Diversity Studies that compare tropical and tem- plant disease utilizes several principles and in the Tropics perate ecosystems are uncommon, and a Biological diversity increases with de- disproportionate amount of the research on creasing latitude (61,67,162). This trend, Corresponding author: R. C. Ploetz, University of microorganisms has been conducted in Florida, Department of Plant Pathology, Tropical called the Latitudinal Diversity Gradient temperate zones. For example, in review- Research and Education Center, 18905 S.W. 280th (LDG), has been observed for a wide range ing the literature on fungi and bacteria in Street, Homestead, FL 33031-3314, USA; E-mail: of trophic levels and life forms. In general, forest ecosystems since 1963, Lodge et al. [email protected] species numbers increase dramatically as (87) found only 96 references for tropical one moves from the poles to the equator. forests, but 2,411 for temperate forests. doi:10.1094/ PDIS-91-6-0644 The LDG is one of the oldest recognized Despite this disparity, the LDG is also © 2007 The American Phytopathological Society patterns in the biological sciences. Hum- evident among microbes. 644 Plant Disease / Vol. 91 No. 6 Three groups of nonpathogenic fungi, temperate climates; comparatively little inoculum buildup and epidemic disease decomposers (86), endophytes (6), and plant pathological research has been con- development. arbuscular mycorrhizae (64), are very di- ducted in the developing tropical world Managing the large reservoirs of inocu- verse in the tropics, as are fungi in general (143). Work in the tropics has made sig- lum and high disease pressures that de- (156,157). Plant pathogens also appear to nificant contributions to the discipline of velop in perennial monocultures can be be more numerous and diverse in the trop- plant pathology (100,132), but much more difficult and costly. For example, manage- ics. One group, the flagellated protozoa would be revealed if resources that ap- ment of black Sigatoka leaf spot of banana (Phytomonas spp.), is rare outside the proached those used in temperate zones (black leaf streak), caused by Mycosphae- tropics (2), and 60% of the described vi- were devoted to research in the tropics. rella fijiensis, contributes as much as 25% roid species have tropical, natural hosts Perennial crops: Challenging hosts for of the final retail cost of export bananas (55). disease managers. When one considers and can fail during periods of high rainfall If one considers diseases of crop plants, the total areas planted and annual yields, or less than adequate fungicide applica- there may be an even greater difference the most important food crops are annuals. tions (105). In India, 10% of the total costs between temperate and tropical areas. Other than sugarcane (its total represents of coffee production went toward the con- Wellman (161) found a pronounced tem- harvested cane, not a final product), only trol of rust (130). And eradication efforts perate/tropical bias among the crops that production figures for maize, rice, and can be very expensive. Cacao swollen were well represented in both zones: wheat exceed 500 million metric tons per shoot, caused by Cacao swollen shoot pumpkin and squash, 19 temperate dis- year (Table 2). Although they are minor virus, in West Africa and citrus canker, eases and 111 tropical; sweet potato, components of most natural floras, annuals caused by Xanthomonas axonopodis pv. 15/187; tomato, 32/278; common bean, predominate in agriculture for the follow- citri, in Florida are worst-case examples of 52/253+; and potato, 91/175. Wellman ing reasons: they produce quick results where large sums of money were invested (159–161) concluded that for every disease after planting; when stored, they enable in ultimately unsuccessful campaigns. that occurred on a given crop in temperate escape from unfavorable climatic condi- Due to long-term selection pressure, areas there were 10 in the tropics.
Recommended publications
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis Fimbriata
    RESEARCH ARTICLE Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis fimbriata Tarcísio Visintin da Silva Galdino1☯*, Sunil Kumar2☯, Leonardo S. S. Oliveira3‡, Acelino C. Alfenas3‡, Lisa G. Neven4‡, Abdullah M. Al-Sadi5‡, Marcelo C. Picanço6☯ 1 Department of Plant Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil, 2 Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, United States of America, 3 Department of Plant Pathology, Universidade Federal de Viçosa, Viçosa, MG, Brazil, 4 United States Department of a11111 Agriculture-Agriculture Research Service, Yakima Agricultural Research Laboratory, Wapato, WA, United States of America, 5 Department of Crop Sciences, Sultan Qaboos University, AlKhoud, Oman, 6 Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil ☯ These authors contributed equally to this work. ‡ These authors also contributed equally to this work. * [email protected] OPEN ACCESS Citation: Galdino TVdS, Kumar S, Oliveira LSS, Abstract Alfenas AC, Neven LG, Al-Sadi AM, et al. (2016) Mapping Global Potential Risk of Mango Sudden The Mango Sudden Decline (MSD), also referred to as Mango Wilt, is an important disease Decline Disease Caused by Ceratocystis fimbriata. of mango in Brazil, Oman and Pakistan. This fungus is mainly disseminated by the mango PLoS ONE 11(7): e0159450. doi:10.1371/journal. pone.0159450 bark beetle, Hypocryphalus mangiferae (Stebbing), by infected plant material, and the infested soils where it is able to survive for long periods. The best way to avoid losses due Editor: Jae-Hyuk Yu, The University of Wisconsin - Madison, UNITED STATES to MSD is to prevent its establishment in mango production areas.
    [Show full text]
  • Production and Role of Hormones During Interaction of Fusarium Species with Maize (Zea Mays L.) Seedlings
    fpls-09-01936 January 9, 2019 Time: 15:47 # 1 ORIGINAL RESEARCH published: 11 January 2019 doi: 10.3389/fpls.2018.01936 Production and Role of Hormones During Interaction of Fusarium Species With Maize (Zea mays L.) Seedlings Josef Vrabka1, Eva-Maria Niehaus2, Martin Münsterkötter3, Robert H. Proctor4, Daren W. Brown4, Ondrejˇ Novák5,6, Aleš Penˇ cikˇ 5,6, Danuše Tarkowská5,6, Kristýna Hromadová1, Michaela Hradilová1, Jana Oklešt’ková5,6, Liat Oren-Young7, Yifat Idan7, Amir Sharon7, Marcel Maymon8, Meirav Elazar8, Stanley Freeman8, Ulrich Güldener9, Bettina Tudzynski2, Petr Galuszka1† and Veronique Bergougnoux1* Edited by: 1 Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty Pierre Fobert, of Science, Palacký University, Olomouc, Czechia, 2 Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology National Research and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany, 3 Functional Genomics Council Canada (NRC-CNRC), and Bioinformatics, Sopron University, Sopron, Hungary, 4 National Center for Agricultural Utilization Research, United States Canada Department of Agriculture, Peoria, IL, United States, 5 Institute of Experimental Botany, Czech Academy of Sciences, Reviewed by: Olomouc, Czechia, 6 Department of Metabolomics, Centre of the Region Haná for Biotechnological and Agricultural Nora A. Foroud, Research, Faculty of Science, Palacký University, Olomouc, Czechia, 7 Department of Molecular Biology and Ecology Agriculture and Agri-Food Canada, of Plants, Tel Aviv University, Tel Aviv, Israel, 8 Department of Plant Pathology and Weed Research, Agricultural Research Canada Organization (ARO), The Volcani Center, Rishon LeZion, Israel, 9 Department of Bioinformatics, TUM School of Life Sciences Aiping Zheng, Weihenstephan, Technical University of Munich, Munich, Germany Sichuan Agricultural University, China Rajesh N.
    [Show full text]
  • Universidade Estadual Do Maranhão Programa De Pós-Graduação Em Agroecologia Curso De Mestrado Em Agroecologia
    UNIVERSIDADE ESTADUAL DO MARANHÃO PROGRAMA DE PÓS-GRADUAÇÃO EM AGROECOLOGIA CURSO DE MESTRADO EM AGROECOLOGIA LEONARDO DE JESUS MACHADO GOIS DE OLIVEIRA ORGANIZAÇÃO, CONSERVAÇÃO E INFORMATIZAÇÃO DA MICOTECA “PROF.° GILSON SOARES DA SILVA” DA UNIVERSIDADE ESTADUAL DO MARANHÃO. São Luís – MA 2016 LEONARDO DE JESUS MACHADO GOIS DE OLIVEIRA Engenheiro Agrônomo ORGANIZAÇÃO, CONSERVAÇÃO E INFORMATIZAÇÃO DA MICOTECA “PROF.° GILSON SOARES DA SILVA” DA UNIVERSIDADE ESTADUAL DO MARANHÃO. Dissertação apresentada ao Programa de Pós-Graduação em Agroecologia da Universidade Estadual do Maranhão, como requisito parcial à obtenção do grau de Mestre em Agroecologia. Orientador(a): Prof.ª Dr.ª Antonia Alice Costa Rodrigues São Luís – MA 2016 ii LEONARDO DE JESUS MACHADO GOIS DE OLIVEIRA Dissertação apresentada ao Programa de Pós-Graduação em Agroecologia da Universidade Estadual do Maranhão, como requisito parcial à obtenção do grau de Mestre em Agroecologia. Orientador: Prof. Dr.ª Antonia Alice Costa Rodrigues. Aprovada em: 07 / 10 / 2016 Comissão Julgadora: ____________________________________________________ Profa. Dr.ª Antonia Alice Costa Rodrigues - Universidade Estadual do Maranhão (Orientadora) ________________________________________________ Prof. Dr. Gilson Soares da Silva - Universidade Estadual do Maranhão ____________________________________________________ Profa. Dr.ª Maria Claudene Barros - Universidade Estadual do Maranhão São Luís 2016 iii Ao Senhor Deus, alicerce de minhas atitudes aqui na Terra, Aos meus pais, Iris e Manoel pelo amor e esforço a mim dedicados, Aos meus irmãos Leonam, Débora e Diego e as irmãs de coração Bruna e Adriana. DEDICO! iv AGRADECIMENTOS Á Deus, por ter me guiado e removido todos os obstáculos do meu caminho. Á Profª Dra. Antonia Alice Costa Rodrigues, pelos ensinamentos, incentivos e amizade, nesse processo tão importante da minha vida que foi o Mestrado.
    [Show full text]
  • The Evolution of Secondary Metabolism Regulation and Pathways in the Aspergillus Genus
    THE EVOLUTION OF SECONDARY METABOLISM REGULATION AND PATHWAYS IN THE ASPERGILLUS GENUS By Abigail Lind Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Informatics August 11, 2017 Nashville, Tennessee Approved: Antonis Rokas, Ph.D. Tony Capra, Ph.D. Patrick Abbot, Ph.D. Louise Rollins-Smith, Ph.D. Qi Liu, Ph.D. ACKNOWLEDGEMENTS Many people helped and encouraged me during my years working towards this dissertation. First, I want to thank my advisor, Antonis Rokas, for his support for the past five years. His consistent optimism encouraged me to overcome obstacles, and his scientific insight helped me place my work in a broader scientific context. My committee members, Patrick Abbot, Tony Capra, Louise Rollins-Smith, and Qi Liu have also provided support and encouragement. I have been lucky to work with great people in the Rokas lab who helped me develop ideas, suggested new approaches to problems, and provided constant support. In particular, I want to thank Jen Wisecaver for her mentorship, brilliant suggestions on how to visualize and present my work, and for always being available to talk about science. I also want to thank Xiaofan Zhou for always providing a new perspective on solving a problem. Much of my research at Vanderbilt was only possible with the help of great collaborators. I have had the privilege of working with many great labs, and I want to thank Ana Calvo, Nancy Keller, Gustavo Goldman, Fernando Rodrigues, and members of all of their labs for making the research in my dissertation possible.
    [Show full text]
  • Molecular Identification of Fungi
    Molecular Identification of Fungi Youssuf Gherbawy l Kerstin Voigt Editors Molecular Identification of Fungi Editors Prof. Dr. Youssuf Gherbawy Dr. Kerstin Voigt South Valley University University of Jena Faculty of Science School of Biology and Pharmacy Department of Botany Institute of Microbiology 83523 Qena, Egypt Neugasse 25 [email protected] 07743 Jena, Germany [email protected] ISBN 978-3-642-05041-1 e-ISBN 978-3-642-05042-8 DOI 10.1007/978-3-642-05042-8 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009938949 # Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany, kindly supported by ‘leopardy.com’ Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dedicated to Prof. Lajos Ferenczy (1930–2004) microbiologist, mycologist and member of the Hungarian Academy of Sciences, one of the most outstanding Hungarian biologists of the twentieth century Preface Fungi comprise a vast variety of microorganisms and are numerically among the most abundant eukaryotes on Earth’s biosphere.
    [Show full text]
  • Chicago Joins New York in Battle with the Asian Longhorned Beetle Therese M
    Chicago Joins New York in Battle with the Asian Longhorned Beetle Therese M. Poland, Robert A. Haack, Toby R. Petrice USDA Forest Service, North Central Research Station, 1407 S. Harrison Rd., Rm. 220, E. Lansing, MI 48823 The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), was positively iden- would follow New York’s lead tified on 13 July 1998 attacking trees in an area of and that infested trees would northern Chicago known as Ravenswood. Previ- be cut, chipped, burned and ously, the only known North American occur- replaced by new trees at the rence of this Asian cerambycid beetle was in the city’s expense. Amityville area and the Brooklyn area of Long The city of Chicago ben- Island, New York, where it was discovered in efited greatly from New August 1996 (Haack et al. 1996, Cavey et al. York’s experience in imple- 1998). In New York, this woodborer has attacked menting its eradication program. With an excellent species of maple (Acer), horsechestnut (Aesculus well as 1 square mile each in Addison and in leadership team and organization, the city of hippocastanum), birch (Betula), poplar (Populus), Summit. Extensive surveys were conducted out Chicago obtained public cooperation and support willow (Salix), and elm (Ulmus) (Haack et al. to 1 ¼ miles past the outer boundary of known for the eradication program from the outset. The 1997). Because of the potential for longterm infested trees at all three locations. Survey crews media provided excellent, factual and accurate ecological and economic damage an aggressive were composed of APHIS inspectors, federal, information through extensive television, newspa- eradication program that involves locating, re- state and city employees as well as APHIS trained per, and radio coverage.
    [Show full text]
  • Notes on Currently Accepted Species of Colletotrichum
    Mycosphere 7(8) 1192-1260(2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/si/2c/9 Copyright © Guizhou Academy of Agricultural Sciences Notes on currently accepted species of Colletotrichum Jayawardena RS1,2, Hyde KD2,3, Damm U4, Cai L5, Liu M1, Li XH1, Zhang W1, Zhao WS6 and Yan JY1,* 1 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 4 Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany 5State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China 6Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China. Jayawardena RS, Hyde KD, Damm U, Cai L, Liu M, Li XH, Zhang W, Zhao WS, Yan JY 2016 – Notes on currently accepted species of Colletotrichum. Mycosphere 7(8) 1192–1260, Doi 10.5943/mycosphere/si/2c/9 Abstract Colletotrichum is an economically important plant pathogenic genus worldwide, but can also have endophytic or saprobic lifestyles. The genus has undergone numerous revisions in the past decades with the addition, typification and synonymy of many species. In this study, we provide an account of the 190 currently accepted species, one doubtful species and one excluded species that have molecular data. Species are listed alphabetically and annotated with their habit, host and geographic distribution, phylogenetic position, their sexual morphs and uses (if there are any known).
    [Show full text]
  • Crop Profile for Avocados in Florida
    Crop Profile for Avocados in Florida Prepared: August, 2008 Production Facts • As of 2002, the Florida avocado industry consisted of about 6,600 bearing acres, 737 growers, and 35 registered handlers/shippers. The majority of avocados (80 percent) produced in Florida are sold outside the state. Permits must be obtained for anyone wishing to sell more that 55 pounds of avocados per day. Consequently, most are sold to packinghouses from the farm (1). • In 2004-2005, Florida produced an estimated 28,000 tons of avocados. The value of the 2004-2005 crop was approximately $14.5 million or $0.26 per pound (1). • In 2004-2005, Florida was second behind California in avocado production nationally. Florida accounted for 9 percent of the production nationally, but only accounted for 5 percent of the value, owing to the fact that Florida avocados sell for less than the price (on a weight basis) garnered by California avocados (1). • Three “races” of avocado are recognized: West Indian, Guatemalan, and Mexican. These differ in blooming/maturity season, development period, fruit size, skin texture/color, oil content, and cold hardiness. West Indian and West Indian- Guatemalan hybrid cultivars predominate in Florida (2). • Avocado may be self- or cross-pollinating, and they are separated into A and B varieties based on reproductive functionality (2). Production Region Avocado (Persea americana) is grown exclusively in south Florida. Over 99 percent of Florida-grown avocado is produced in Miami-Dade County. Of the 737 farms reported in 2002, 88 percent were less than 15 acres, accounting for about a third of production, while those 50 acres and above (5 percent) accounted for approximately half of the production.
    [Show full text]
  • LARA CARRARO VARGAS.Pdf
    UNIVERSIDADE FEDERAL DO PARANÁ LARA CARRARO VARGAS PATOGENICIDADE E IDENTIFICAÇÃO DE ESPÉCIES DE Fusarium ASSOCIADAS A RAÍZES DE PLANTAS COM FUSARIOSE E SEMENTES EM ERVA-MATE CURITIBA 2020 LARA CARRARO VARGAS PATOGENICIDADE E IDENTIFICAÇÃO DE ESPÉCIES DE Fusarium ASSOCIADAS A RAÍZES DE PLANTAS COM FUSARIOSE E SEMENTES EM ERVA-MATE Dissertação apresentada ao Programa de Pós Graduação em Agronomia, Área de Concentração Produção Vegetal, Departamento de Fitotecnia e Fitossanitarismo, Setor de Ciências Agrárias, Universidade Federal do Paraná, como parte das exigências para obtenção do título de Mestre em Ciências. Orientador: Prof. Dr. Álvaro Figueredo dos Santos Coorientador: Prof. Dr. Tiago Miguel Jarek CURITIBA 2020 Vargas, Lara Carraro Patogenicidade e identificação de espécies de Fusarium associadas a raízes de plantas com fusariose e sementes em erva-mate. / Lara Carraro Vargas. - Curitiba, 2020. Dissertação (Mestrado) - Universidade Federal do Paraná. Setor de Ciências Agrárias, Programa de Pós-Graduação em Agronomia. Orientador: Álvaro Figueredo dos Santos. Coorientador: Tiago Miguel Jarek. 1. Erva-mate (Ilex paraguariensis). 2. Raízes - Doenças e pragas. 3. Solos – Microbiologia. 4. Fusarium. I. Santos, Álvaro Figueredo dos. II. Jarek, Tiago Miguel. III. Título. IV. Universidade Federal do Paraná. Sistema de Bibliotecas/UFPR Guilherme Luiz Cintra Neves - CRB9/1572 AGRADECIMENTOS A Deus. A minha família por todo apoio e suporte durante o período em que me dediquei ao mestrado e em especial ao Rodrigo por toda ajuda, paciência e compreensão durante todo o processo de estudo e aplicação do Projeto. Ao Programa de Pós-graduação em Agronomia e Produção Vegetal da Universidade Federal do Paraná pela oportunidade de realizar o Mestrado. Ao meu Orientador Professor Doutor Álvaro Figueredo dos Santos por entrar comigo nesse desafio, que foi trabalhar com erva-mate e por todos os conselhos e ensinamentos.
    [Show full text]
  • (Colletotrichum Kahawae) in Borena and Guji Zones, Southern Ethiopia Abdi Mohammed* and Abu Jambo Bule Hora University, Bule Hora, 144, Ethiopia
    atholog P y & nt a M l i P c r Journal of f o o b l i a o Mohammed and Jambo, J Plant Pathol Microb 2015, 6:9 l n o r g u y DOI: 10.4172/2157-7471.1000302 o J Plant Pathology & Microbiology ISSN: 2157-7471 Research Article Open Access Importance and Characterization of Coffee Berry Disease (Colletotrichum kahawae) in Borena and Guji Zones, Southern Ethiopia Abdi Mohammed* and Abu Jambo Bule Hora University, Bule Hora, 144, Ethiopia Abstract Coffee (Coffea arabica L.) is one of the most important cash crops in Ethiopia. Coffee Berry Disease (CBD) caused by Colletotrichum kahawae is the severe disease threatening coffee production in most coffee-growing regions of the country. Field survey was conducted in three major coffee growing districts (Abaya, Bule Hora and Kercha) of Borena and Guji zones during 2012 cropping season to determine the incidence, severity and prevalence of CBD. CBD was prevalent in all the surveyed districts with the overall mean incidence and severity of 49.3 and 14.7%, respectively. Laboratory experiment was conducted at Haramaya University to investigate the characteristics of C. kahawae and other fungal pathogens associated with coffee berries. The proportion frequencies of infected and non-infected coffee berries were ranged from 24-42 and 3-21%, respectively. C. kahawae, F. lateritium and Phoma spp. of fungal pathogens were isolated from infected coffee berries with the proportions of 89.2, 15.2 and 3%, respectively. In general, the study revealed high occurrence, distribution and contamination of CBD in the study areas.
    [Show full text]