Science-8 Module-8 Version-3.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Science-8 Module-8 Version-3.Pdf Republic of the Philippines Department of Education Regional Office IX, Zamboanga Peninsula 8 SCIENCE Quarter 3 - Module 8 PERIODIC PROPERTIES OF ELEMENTS Name of Learner: ___________________________ Grade & Section: ___________________________ Name of School: ___________________________ Science- Grade 8 Support Material for Independent Learning Engagement (SMILE) Quarter 3 - Module 8: Periodic Properties of Elements First Edition, 2021 Republic Act 8293, section 176 states that: No copyright shall subsist in any work of the Government of the Philippines. However, prior approval of the government agency or office wherein the work is created shall be necessary for the exploitation of such work for a profit. Such agency or office may, among other things, impose as a condition the payment of royalty. Borrowed materials (i.e., songs, stories, poems, pictures, photos, brand names, trademarks, etc.) included in this book are owned by their respective copyright holders. Every effort has been exerted to locate and seek permission to use these materials from their respective copyright owners. The publisher and authors do not represent nor claim ownership over them. Development Team of the Module Writer: Galo M. Salinas Editor: Teodelen S. Aleta Reviewers: Teodelen S. Aleta, Zyhrine P. Mayormita Lay-out Artists: Zyhrine P. Mayormita, Chris Raymund M. Bermudo Management Team: Virgilio P. Batan Jr. - Schools Division Superintendent Lourma I. Poculan - Asst. Schools Division Superintendent Amelinda D. Montero - Chief Education Supervisor, CID Nur N. Hussien - Chief Education Supervisor, SGOD Ronillo S. Yarag - Education Program Supervisor, LRMS Zyhrine P. Mayormita - Education Program Supervisor, Science Leo Martinno O. Alejo - Project Development Officer II, LRMS Janette A. Zamoras - Public Schools District Supervisor Adrian G. Refugio - School Principal, Zamboanga del Norte NHS Printed in the Philippines by Department of Education – Region IX - Dipolog City Schools Division Office Address: Purok Farmers, Olingan, Dipolog City, Zamboanga del Norte, 7100 Telefax: (065) 212-6986 and (065) 212-5818 E-mail Address: [email protected] What I Need to Know The modern periodic table is a very valuable tool for predicting the chemistry of elements. It summarizes relationships that exist among elements and their compounds. Thus, many individual properties of elements need not be memorized if periodic relationships are known. This module will further broaden your knowledge about the elements. It allows you to explore the modern periodic table in terms of the following periodic properties of the elements: atomic size, ionization energy, metallic character, electronegativity, and electron affinity. After going through this module, you are expected to: 1. Use the periodic table to predict the chemical behavior of an element (S8MT- IIIi-j-12). Specifically, this module will let you recognize the trends in atomic size, ionization energy, metallic character, electronegativity, and electron affinity of elements across the period and down the family. What's In In the previous module, you were able to identify the elements in the modern periodic table arranged in groups and periods; representative and transition elements, metals, metalloids, and non-metals. In this module, we focus on the variations in atomic properties that are useful in predicting the chemical behavior of elements. Activity 1: The Periodic Properties Direction: Use the clues to solve the puzzle. Across 1. ability to attract electrons 4. repeating trends in element properties Down 2. ability to accept electrons 3. adj., the character of an atom to readily lose an electron 5. energy to remove an electron from an atom 1 What's New The periodic properties of elements can be related to human behavior. Below is a short excerpt from the chapter Argon in Primo Levi's book "The Periodic Table". “The little I know about my ancestors presents many similarities to these gases. Not all of them were materially inert, for that was not granted them. On the contrary, they were—or had to be— quite active, in order to earn a living and because of a reigning morality that held that “he who does not work shall not eat.” But there is no doubt that they were inert in their inner spirits, inclined to disinterested speculation, witty discourses, elegant, sophisticated, and gratuitous discussion. It can hardly be by chance that all deeds attributed to them, though quite various, have in common a touch of the static, an attitude of dignified abstention, of voluntary (or accepted) relegation to the margins of the great river of life.” Adopted from: What Element Are You Lesson Plan. https://kenanfellows.org//kfp-cp-sites/cp04/cp04/sites/kfp-cp- sites.localhost.com.cp04/files/What%20Element%20are%20You%20Lesson%20Plan.pdf According to Levi, a chemist, and writer, each element had an associative value—its properties symbolizing certain thoughts and activating specific memories. He describes Argon as a rare gas, part of the air we breathe and need to survive but not always noticed or appreciated. In what way does Levi identify with Argon? What does the element symbolize about his Jewish background? The rotations of planets, seasons, high and low tides are periodic processes in our solar system and nature. Ancient astronomers and astrologers used these observations to regulate the activities of individuals or even of nations. Periodicity is an essential part of our life, as evidenced by the beating of the heart and our eating, sleeping, and waking patterns. The elements in the periodic table are arranged in order of increasing atomic number. These elements display several other trends, and we can use the periodic table to predict their chemical, physical, and atomic properties. Activity 2: Connecting circles! Direction: Using graphs A and B, connect all circles by increasing atomic number with a thin straight line. Figure 1. Graphical Representation of Atomic Radius vs Atomic Number Source: http://homework.sdmesa.edu/dgergens/chem100l/periodicity/periodic_table_lab.pdf 2 Figure 2. Graphical Representation of First Ionization Energy vs Atomic Number Source: http://homework.sdmesa.edu/dgergens/chem100l/periodicity/periodic_table_lab.pdf Interpret the data as presented in the graph and answer these questions: 1. How do you describe the line that connects all circles in Graph A? What about Graph B? _________________________________________________________________ ____________________________________________________ 2. What does the line in Graph A mean? What about the line in Graph B? You may refer to the periodic table for your answer. ____________________________ ____________________________________________________ What is It The periodic law states that when the elements are arranged in order of increasing atomic number, their physical and chemical properties vary periodically. In this module, we will look at the following physical and chemical properties of an atom, namely; atomic size, ionization energy, metallic character, electronegativity, and electron affinity. Periodic trends are specific patterns present in the periodic table that illustrate different aspects of a certain element. The trends provide chemists with an invaluable tool to quickly predict an element's properties. These trends exist because of the similar atomic structure of the elements within their respective group families or periods and because of the periodic nature of the elements. Atomic Size The atomic radius of a chemical element is the measure of the size of its atoms. The atomic radius is one-half the distance between the nuclei of two atoms (just like a radius is half the diameter of a circle). Thus, based on the atomic radii, the atomic size patterns are observed throughout the periodic table. The following are the general trends in the size of atomic radii: Periodic table showing trends in atomic size Image Source: https://lavelle.chem.ucla.edu/forum/viewtopic. 3 1. Within each period (horizontal row), the atomic radius tends to decrease with the atomic number (nuclear charge). The largest atom in a period is a Group IA atom and the smallest is a Group VIIIA or noble gas atom. 2. Within each group (vertical column), the atomic radius tends to increase with the period number. Ionization Energy Ionization energy is the energy required to remove an electron from a neutral atom in its gaseous phase. Conceptually, ionization energy is the opposite of electronegativity. The lower this energy is, the more readily the atom becomes a cation. Therefore, the higher this energy is, the more unlikely it is that the atom becomes a cation (kat·ai·aan). Generally, Periodic table showing ionization energy trends Source: https://chem.libretexts.org/Bookshelves/Inorganic. elements on the right side of Chemistry/Modules_and_Websites_(Inorganic_Chemistry) /Descriptive_Chemistry/Periodic_Trends_of_Elemental_Properties/Periodic_Trends the periodic table have higher ionization energy because their outermost level occupied by the electron is nearly filled. Elements on the left side of the periodic table have low ionization energies because of their willingness to lose electrons and become cations. Thus, ionization energy increases from left to right on the periodic table. Metallic Character The metallic character of an element can be defined as how readily an atom can lose an electron. From right to left across a period, the metallic character increases because the attraction between the outermost electron and the atomic nucleus is weaker, enabling
Recommended publications
  • Introduction to Chemistry
    Introduction to Chemistry Author: Tracy Poulsen Digital Proofer Supported by CK-12 Foundation CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook Introduction to Chem... materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based Authored by Tracy Poulsen collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and 8.5" x 11.0" (21.59 x 27.94 cm) distribution of high-quality educational content that will serve both as core text as well as provide Black & White on White paper an adaptive environment for learning. 250 pages ISBN-13: 9781478298601 Copyright © 2010, CK-12 Foundation, www.ck12.org ISBN-10: 147829860X Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made Please carefully review your Digital Proof download for formatting, available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share grammar, and design issues that may need to be corrected. Alike 3.0 Unported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc- sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), We recommend that you review your book three times, with each time focusing on a different aspect. which is incorporated herein by this reference. Specific details can be found at http://about.ck12.org/terms. Check the format, including headers, footers, page 1 numbers, spacing, table of contents, and index. 2 Review any images or graphics and captions if applicable.
    [Show full text]
  • Study of Heavy Metal Contamination on Soil and Water in Major Vegetable Tracks of Pathanamthitta District, Kerala, India
    International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org ||Volume 3 Issue 12 || December 2014 || PP.34-39 Study of Heavy Metal Contamination on Soil and Water in Major Vegetable Tracks of Pathanamthitta District, Kerala, India 1,Shakhila.S.S, 2,Keshav Mohan 1.PhD (Environmental Chemistry) Scholor, Karpagam University, Coimbatore 2.Director, Institute of Land and Disaster Management, Govt of Kerala ABSTRACT : Heavy metal contamination on soil and water causes a serious environmental problem because it does not biodegrade. It accumulates in different levels of the food chain. The aim of the present study is to assess the heavy metal contamination on soil and water in the major vegetable tracks of Pathanamthitta district, Kerala, India. The concentrations of heavy metals namely Zinc, Iron, Lead,Chromium, Copper and Cadmium were determined by Atomic Absorption Spectroscopy. The concentration of heavy metals in soil from the study sites ranged from Zn (0.07-0.2mg/kg), Fe(0.2-1.4 mg/kg), Pb(0-0.5mg/kg), and Cu (0.1-1.0 mg/kg) respectively. Iron was detected in water samples (0.35-0.41 mg/kg). Water sample showed low values of BOD , COD and slightly acidic pH. KEY WORDS: AAS, Heavy metals, Pesticide, pH, Pesticides impact assessment. I. INTRODUCTION The term heavy metal refers to any metallic chemical element that is toxic. Examples of heavy metals include Iron, Mercury, Cadmium, Arsenic, Copper, Chromium, Thallium, Lead etc. Of these Iron, Cobalt, Copper, Manganese, Molybdenum, and Zinc are essential elements. Other heavy metals such as Mercury, Plutonium, and Lead are toxic and their accumulation over time in the bodies of animals can cause serious health problems.
    [Show full text]
  • 90398. O Conceito De Vida
    OUTROS TEMAS O Conceito de Vida: uma discussão à luz da educação José Luís Schifino FerraroI IPontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre/RS – Brasil RESUMO – O Conceito de Vida: uma discussão à luz da educação. Recolo- car o conceito de vida no centro da discussão epistemológica é essencial para que se possa compreender sua potência e seus efeitos no interior de um discurso que antes de pretender ser científico, é filosófico. Nesse sen- tido, o presente ensaio joga luzes sobre a vida inserindo-a em uma espécie de grade de inteligibilidade construída a partir de autores como Nietzsche, Bachelard, Canguilhem, Wittgenstein, Foucault, Deleuze, Guattari entre outros. Assim, trata-se de uma aproximação epistemológica possível para esse conceito no entrecruzamento da filosofia e das ciências biológicas com referências práticas que advém do campo da educação, onde percebe- mos sua funcionalidade. Palavras-chave: Conceito de Vida. Discurso sobre a Vida. Epistemologia. Educação. Biologia. ABSTRACT – Life Concept: a debate in the light of education. Reestablish- ing the concept of life at the center of the epistemological discussion is essential to understanding its power and effects within a discourse that, prior to being scientific, is philosophical. In this sense, the present essay provides some insights into the concept of life by placing it in a kind of grid of intelligibility created according to authors such as Nietzsche, Bachelard, Canguilhem, Wittgenstein, Foucault, Deleuze, Guattari, and others. Thus, it is a possible epistemological approach to this concept at the interface between philosophy and the biological sciences with practical references from the field of education, where its function has been observed.
    [Show full text]
  • The Periodic System of Chemical Elements: Old and New Developments
    ^o-f^oiî-irt, Lycen 87*i^ bept. lyfl; THE PERIODIC SYSTEM OF CHEMICAL ELEMENTS: OLD AND NEW DEVELOPMENTS fl. KIBl.EH Institut de Physique Nucléaire (et IN2P3)» Université Lyon-1. 43. Bd du 11 Novembre 1918. 69622 Villeurbanne Cedex (France) (Invited conference to the: "XVII CONGRESO DE BUI Ml COS TEORICOS DE EXPRES I ON LATIN A". Pemscola. Spain. September 20-25. 1987. ) Article accepted for publication in J. Mol. Struct. (THEOCHEM). THE PERIODIC SYSTEM OF CHEMICAL ELEMENTS: OLD AND NEW DEVELOPMENTS M. K1BLER Institut de Physique Nucléaire (et IN2P3). Université Lyon-1. 43. Bd du 11 Novembre 1918. 69622 Villeurbanne Cedex (France) SUMMARY Some historical facts about the construction of a periodic system of chemical elements are reviewed. The Madelung rule is used to generate an unusual format for the periodic table. Following the uork of Byakov< Kulakov. Rumer and Fet. such a format is further refined on the basis of a chain of groups starting with SU(2)xS0(4.2). HISTORICAL FACETS The list of chemical elements has not stopped to grow during the last two centuries. In a schematic way. ue have the following guiding-marks (where [xxx. xxx. xxx ] stands for [year. number of elements. representative person(a) ]): (1789. 23. Lavoisier!. C1815. 30. FroutJ. C1818. 40. Berzeliusl. C1828. 49, Berzeliusl. C1849, 61. Gmelin]. I 1865. 63. Meyer and Mendeleev]. C1940. 86. - 3, C1973. 105. - ] and C1987. 109. - 3. Among the first attempts to classify chemical elements. we may mention the Doebereiner triads, the Pettenkofer groupings. the Chancourtois spiral. the Newlands octaves and the tableB by Olding and Lothar Meyer (cf.
    [Show full text]
  • Metal Lithium Physical and Chemical Properties
    Metal Lithium Physical And Chemical Properties UnmerchantableToffee-nosed Jan Loren piffled knobs believably. availably. Gyrose and percoid Ravil never cringe his embroideries! The lithium and metal What patch found however nice that the chemical and physical properties of the. Kay redfield jamison, whereas brine in many surface tension of the metal, the skin lesions differ somewhat protects the lighter. Before the use of molten li on being recovered from toxic effects following is lithium, conjunctivitis and metal lithium and physical properties are the winter snap and possible. Luca Attanasio and form other two die without his UN convoy is attacked near Goma. When placed in contact with less, pure lithium reacts to form lithium hydroxide and her gas. He did each and metal lithium physical properties are brines are packed in. Elemental lithium metal by physical properties? Workers should be educated in possible hazards, and proper engineering controls should be installed during production of microelectronic devices where exposure to gallium arsenide is likely. Articles manufactured air during a chemical properties are very radioactive isotopes are related to keep alkali metals have produced on a material is why is. It reacts with water gives off so visit this? Oxidation: Lithium is extra strong reducing agent and thwart a weak oxidizing agent in contract to other alkali metals. To sky for these repeating trends, Mendeleev grouped the elements in job table that concept both rows and columns. Lithium and Lithium Compounds Wietelmann Major. Chlorine atom new gosling. Corrosiveness, flammability, toxicity, acidity, or chemical reactivity are all examples of chemical properties of matter.
    [Show full text]
  • Superheavy Elements: Existence, Classification and Experiment
    UDC 541.2 Superheavy elements: existence, classification and experiment V.A.Kostyghin1, V.M.Vaschenko2, Ye.A.Loza2 1 "Akvatekhinzhiniring", Cherkassy, Ukraine, e-mail:[email protected] 2 State Ecological academy for post-graduate education and management, Kyiv, Ukraine, e-mail:[email protected] This paper proposes spatial periodic table developed based on classic electron shell structure model. The periodic table determines location and chemical properties of superheavy elements. 14 new long-living superheavy elements found by Proton-21 laboratory and one long-living superheavy element found by A.Marinov were identified. Introduction At present there are 118 elements known [1]. However, there are only 104 of them well-studied. The superheavy nuclei existence problem and also nuclones collective states problems (super-nuclei, nuclear associations, multi-nuclei clusters, nuclear condensate etc.) long ago have become subject of experimental and theoretical research [2-7]. This problem is specially important for modern astrophysical concepts [8-10]. The main branch of experimental research of superheavy nuclei isotopes and exotic isotopes of light nuclei is a new elements synthesis by different accelerator with latter investigation of nuclei collision results. However this method has two important and unsolved problems [11, 12]. The first one is the excess energy of the synthesized nucleus. The energy required to overcome the Coulomb barrier during the nuclei collision transforms 1 into internal energy of the newly formed nucleus and it is usually enough for instant nuclei fission, because the internal clusters of the nuclei have energy over Coulomb barrier. This leads to a very complex experimental task of "discharge" of excess energy by high-energy particle radiation - gamma-quantum, neutron, positron, proton, alpha-particle [13] etc.
    [Show full text]
  • Python Module Index 79
    mendeleev Documentation Release 0.9.0 Lukasz Mentel Sep 04, 2021 CONTENTS 1 Getting started 3 1.1 Overview.................................................3 1.2 Contributing...............................................3 1.3 Citing...................................................3 1.4 Related projects.............................................4 1.5 Funding..................................................4 2 Installation 5 3 Tutorials 7 3.1 Quick start................................................7 3.2 Bulk data access............................................. 14 3.3 Electronic configuration......................................... 21 3.4 Ions.................................................... 23 3.5 Visualizing custom periodic tables.................................... 25 3.6 Advanced visulization tutorial...................................... 27 3.7 Jupyter notebooks............................................ 30 4 Data 31 4.1 Elements................................................. 31 4.2 Isotopes.................................................. 35 5 Electronegativities 37 5.1 Allen................................................... 37 5.2 Allred and Rochow............................................ 38 5.3 Cottrell and Sutton............................................ 38 5.4 Ghosh................................................... 38 5.5 Gordy................................................... 39 5.6 Li and Xue................................................ 39 5.7 Martynov and Batsanov........................................
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • A Short History of Chemistry J.R.Partington January 22-29, 2017
    A Short History of Chemistry J.R.Partington January 22-29, 2017 What are the major discoveries in Chemistry, who are the mayor players? When it comes to (classical) music, ten composers cover most of it that deserves to be part of the indispensable culture, when it comes to painting let us say a hundred might be necessary, and as to literature, maybe a thousand. What about mathematics, physics and chemistry? Here the situation may be thought of as more complicated as many minor workers, if not individually at least collectively, have contributed significantly to the discipline, and this might be particularly the case with chemistry, which more than mathematics and physics depends on tedious work carried out by armies of anonymous toilers in laboratories. But Chemistry is not just routine work but as any science depends on daring hypotheses and flights of fancy to be confronted with an unforgiving empirical reality. Who are the Gausses and Eulers of Chemistry, to say nothing of a Newton. Is there in analogy with Bell’s ’Men of Mathematics’ a corresponding compilation of chemical heroes? In one sense there is, names such as Scheele, Priestley. Pasteure, may be more well-known to the general public than Gauss, Euler or Lagrange. On the other hand a mathematician taking part of the cavalcade is invariably a bit disappointed, none of the names mentioned and lauded, seem to have the same luster as the kings of mathematics, instead diligence and conscientious steadfast work seems to carry the day. In one way it is unfair, in spite of mathematics supposedly being the least accessible of all the sciences, literally it is the opposite, being entirely cerebral.
    [Show full text]
  • Lecture 4 Lecture 4
    Lecture 4 http://www.tcd.ie/Chemistry/teaching/chemistry/jf/i ntro/intro.php Outline Lecture 4 4.1 Law of conversation of massC h emical Bonding 4.2 Law of definite composition 4.3 Bonding in chemical substances Ionic, covalent and metallic bonding 4.4 Electronegativity 1 Law of Conservation of Mass: The total mass of substances does not change during a chemical reaction. reactant 1 + reactant 2 product total mass = total mass calcium oxide + carbon dioxide calcium carbonate CaO + CO 2 CaCO 3 56.08g + 44.00g 100.08g Law of Definite (or Constant) Composition: No matter what its source, a particular chemical compound is composed of the same elements in the same parts (fractions) by mass. 1 atom of Ca 40.08 amu 3 O 1 atom of C 12.00 amu aC C 3 atoms of O 3 x 16.00 amu 100.08 amu 40.08 amu Biominerals = 0.401 parts Ca 100.08 amu 12.00 amu = 0.120 parts C 100.08 amu 48.00 amu = 0.480 parts O 100.08 amu 2 Bonding in chemical substances Compounds: Inter-atomic interactions lead to aggregation A) “Infinite” assemblies of atoms e.g. metals, extended ionic or covalent compounds B) Clearly defined assemblies molecules Chemical Formula: Element symbols of the atoms involved in the compound Composition given by the indices (bottom right of the element symbol) Bonding in chemical substances Molecules H2: Molecule of two atoms of hydrogen Molecule of the element hydrogen S8: Molecule of eight sulphur atoms Molecule of the element sulphur HCl: Molecule built from one atom of hydrogen and one atom of chlorine Molecule of the compound hydrogenchloride H2O: Molecule built from two atoms of hydrogen and one atom of oxygen H2O: Molecule of the compound water 3 Bonding in chemical substances A molecular formula shows the exact number of atoms of each element in the smallest unit of a substance.
    [Show full text]
  • Can Artificially Created Isotopes of Chemical Elements Be Patented
    California Law Review NE2BER NATIONAL AND WESTERN CONFERENCES OF LAW REVIEWS Published Five Times Yearly by Students of the School of Law of the University of California, Berkeley, California. Indexed in Index to Legal Periodicals and Public Affairs Information Service. Subscription Price, $5.00 Current Single Copies, $1.50 BOARD OF EJ)ITORS DEAN C. DUNTvLEY Editor GRAmA B. MOODY, JR. Assistant Editor ROBERT S. DAGGETT FRANK F. MANKIEWICz Managing Editor Article Editor Revising Editors MERR.L K. ALBERT WILInm D. MOORE GORDON E. DAvIs NORMAN G. RuDmAN JOIN K. MANGUM Associate Editors HERBERT A. BLUER EDWARD M. FORD JR. DONALD L. EDGAR J. CL oRD WALLACE MARLYN MITc General Secretary CmArL.s W. FROEMCH, JR. H. RANDALL STox H. HEL UT LORING Comment CAN ARTIFICIALLY CREATED ISOTOPES OF CHEMICAL ELEMENTS BE PATENTED? The continuing achievements of scientists in creating new chemical elements and isotopes' portend a unique problem in the field of patent law. ' 91 chemical elements and over 325 isotopes thereof have been discovered 'The definition of an "isotope" should be precisely comprehended by the reader. An atom is a physical unit of matter; formerly believed to be indivisible, it is now known to be com- prised of particles such as protons, neutrons, electrons and mesons. By varying the number of these ingredient particles, different atoms obviously are produced. The number of protons and neutrons in an atom primarily determines its chemical and physical properties; all atoms having the same number of protons comprise one chemical element. Thus, tin is a chemical element comprised of all those different atoms (18 in number) having 50 protons.
    [Show full text]
  • Chem!Stry Class: ………………
    Name: …………………… ( ) Chem!stry Class: ……………… Date: …… / …… / …… Electronegativity and Bond Polarity – Answers Electronegativity is a measure of the relative tendency of an atom to attract a bonding pair of electrons. The chemist Linus Pauling assigned electronegativity values to the chemical elements on an arbitrary scale from 0.0 – 4.0, 0.0 being the least electronegative and 4.0 the most electronegative. The electronegativity values of the first 36 chemical elements are given in the Periodic Table below: 1 2 Group 13 14 15 16 17 18 H He 1 2.1 – Li Be B C N O F Ne 2 1.0 1.5 2.0 2.5 3.0 3.5 4.0 – Period Na Mg Al Si P S Cl Ar 3 0.9 1.2 1.5 1.8 2.1 2.5 3.0 – K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 4 0.8 1.0 1.3 1.5 1.6 1.6 1.5 1.8 1.8 1.8 1.9 1.6 1.6 1.8 2.0 2.4 2.8 – Question 1: Why are no electronegativity values assigned to the Nobel Gases in Group 18? By definition, electronegativity is the relative tendency of an atom to attract a bonding pair of electrons. However, the Noble Gases are relatively unreactive and do not combine with other chemical elements to form molecules that contain a bonding pair of electrons. It is therefore impossible to determine the relative tendency / ability of a Noble Gas to attract a bonding pair of electrons.
    [Show full text]