BMC Plant Biology BioMed Central Research article Open Access Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta Joel R McNeal*1,2, Jennifer V Kuehl3, Jeffrey L Boore3,4 and Claude W de Pamphilis2 Address: 1Department of Plant Biology, University of Georgia, Athens, GA 30602, USA, 2Department of Biology, Huck Institutes of the Life Sciences, and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802-5301, USA, 3DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA and 4Genome Project Solutions, Hercules, CA 94547, USA Email: Joel R McNeal* -
[email protected]; Jennifer V Kuehl -
[email protected]; Jeffrey L Boore -
[email protected]; Claude W de Pamphilis -
[email protected] * Corresponding author Published: 24 October 2007 Received: 6 June 2007 Accepted: 24 October 2007 BMC Plant Biology 2007, 7:57 doi:10.1186/1471-2229-7-57 This article is available from: http://www.biomedcentral.com/1471-2229/7/57 © 2007 McNeal et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Plastid genome content and protein sequence are highly conserved across land plants and their closest algal relatives. Parasitic plants, which obtain some or all of their nutrition through an attachment to a host plant, are often a striking exception.