95(1), L993, Pp. 79-98 the WHITE PEACH SCALE

Total Page:16

File Type:pdf, Size:1020Kb

95(1), L993, Pp. 79-98 the WHITE PEACH SCALE PROC. ENTOMOL. SOC. WASH. 95(1), L993, pp. 79-98 THE WHITE PEACH SCALE, PSEUDAULACASPIS PENTAGONA (TARGIONI-TOZZETTI) (HOMOPTERA: DIASPIDIDAE): LIFE HISTORY IN MARYLAND, HOST PLANTS, AND NATURAL ENEMIES LAWRENCE M. HANKS AND RoBERT F. DENNO (LMH) Post-doctoral Fellow, Department of Entomology, University of California, Riverside, California 92521; (RFD) Professor, Department ofEntomology, University of Maryland, College Park, Maryland 20742. Abstract.- The white peach scale, Pseudaulacaspis pentagona (Targioni Tozzetti), is a severe pest of woody ornamentals and fruit trees throughout the world. In this paper we review information on the life history, host plant relationships, and natural enemies of P. pentagona. Also, we present new data on the life history (fecundity and primary sex ratio), population biology (seasonal development, dispersal, dispersion and host plant range), and natural enemies (parasitoids, hyperparasitoids and predators) of P. pentagona. Key Words: Biological control, host plants, natural history, natural enemies, Pseudau- lacaspis pentagona (Targioni Tozzetti), white peach scale The white peach scale, Pseudaulacaspis bean and Pacific Islands, and the Americas pentagona (Targioni Tozzetti), is one of the where it feeds on a tremendous diversity of most damaging armored scale pests of host plants (Davidson et al. 1983). In the woody ornamentals and fruit trees in the United States, it occurs from Florida west world (Beardsley and Gonzalez 1975, to Texas and north to Maryland and Ten­ DeBach and Rosen 1976, Johnson and Lyon nessee (Davidson et al. 1983). 1988, Miller and Davidson 1990). By killing P. pentagona has long been confusedwith mulberry trees, P. pentagona threatened the its sibling congener, the white prunicola Italian silk industry (Howard 1916), and the scale, P. prunicola (Maskell). Both species widespread ornamental oleander was nearly are broadly sympatric, share many host plant eradicated from Bermuda (Simmonds 1958, species and occur abundantly throughout Bennett and Hughes 1959). P. pentagona Maryland and Virginia (Davidson et al. was first recorded in the United States in 1983, Rhoades et al. 1985). Despite the con­ Florida in the early 1900s (Gossard 1902) fusion of these two taxa in the early litera­ where it devastated the peach industry ture, they can be easily separated by taxo­ (Gossard 1902, Van Duyn 1967) and con­ nomic characters and also the color of their tinues to be a severe pest throughout the eggs (Davidson et al. 1983). Because eggs of southeastern United States (Johnson and P. pentagona are conspicuously white or Lyon 1988). coral in color, while those of P. prunicola P. pentagona is native to China (Gossard are pink, the species can be identifiedwhere 1902, Howard 1916, Murikami 1970), but this characteristic is reported (Davidson et is presently distributed throughout western al. 1983). Also, differences in host plant uti­ Europe, Asia, Australia, Africa, the Carib- lization exist between these two armored 80 PROCEEDINGS OF THE ENTOMOLOGICAL SOCIETY OF WASHINGTON Generation 3 - C'l E 2.00 () ' I 0+ I I 0+ I • 0 1.50 I z - � 1.00 +-' ·- (/) c I (1.) 0.50 I "C I I I I (1.) I - ro 0.00 () N D J F M A M J J A 5 0 N D J F M (j) Month Fig. 1. Average density ( + SE) of female P. pentagona (No.lcm2) on mulberry trees in the urban landscape of College Park, MD. Means are based on 20 samples (cuttings) taken from 5 field trees in April, July, September and November 1986, and March 1987. Samples taken during the first, second, and third scale generations were when most females were second instars (see Hanks 1991 for detailed methods). Bars at the top indicate the 3 annual generations. The occurrence of the crawler stage (unshaded bars) and the second instar + adult stage (shaded bars) are shown for each generation. scales. P. pentagona can be readily cultured to 5 discrete generations per year occur de­ on potatoes, while P. prunicola survives pending on the regional climate (Bennett poorly on this host (LMH unpublished data). and Brown 1958, Yonce and Jacklin 1974, In this paper we review information on Kozarzevskaja and Mihajlovic 1983, Da­ the life history, host plant relationships, and vidson et al. 1983). In Maryland, there are natural enemies of P. pentagona. We also three generations per year with highest den­ present new data on the life history (fecun­ sities of adults in August-October (Fig. 1). dity and primary sex ratio), population bi­ Successful overwintering takes place only as ology (season development, dispsersal, dis­ fertilized adult females (Bennett and Brown persion and host plant range), and natural 19 58, Kuitert 1967, Bobb et al. 1973, pers. enemies (parasitoids, hyperparasitoids and obs.). Some females deposit eggs prior to predators) of this important economic pest. the onset of winter, but these eggs usually fail to survive (Yonce and Jacklin 1974, Na­ 1990, LIFE HISTORY lepa and Meyer pers. obs.). Devel­ opment time from egg through adult ranges Seasonal development from 35 to 90 days (Bennett and Brown In the equatorial climate of Trinidad, P. 1958, Hughes 1960, VanDuyn 1967, Kui­ pentagona reproduces year round (Bennett tert 1967, Kozarzevskaja and Mihajlovic 1956), while at more temperate latitudes, 2 1983).Development time for the spring and VOLUME 95, NUMBER I 81 summer generations in Maryland is 60 and produce eggs, but can live as long as 60-7 5 50 days respectively and is inversely tem­ days (Bennett and Brown 1958, VanDuyn perature dependent (LMH unpublished and Murphey 1971, LMH unpublished data). data). We estimated the fecundity and primary Mating, Sex Detennination, sex ratio of P. pentagona from 110 infested Oviposition and Fecundity cuttings taken from 25 mulberry trees in Males begin searching for mates imme­ College Park, MD in February 1986 (see diately after emergence from the pupal case Hanks 1991 for detailed methods). Each (LMH pers. obs.). Males locate mates in re­ cutting was placed in a petri dish and ringed sponse to a pheromone emitted by females with Vaseline®, and all dishes were main­ (Heath et al. 1979, Einhorn et al. 1983). tained in an incubator at 26°C and 70% RH. Both sexes commonly mate with several in­ Average fecundity and sex ratio were esti­ dividuals and during mating the male stands mated at 76.7 and 0.96:1 (M:F) by counting on top of the female's cover (VanDuyn and and sexing (by color) the emerging crawlers Murphey 1971, pers. obs.). entrapped in the vaseline and dividing the Sex determination in P. pentagona as well count for each cutting by the number of as other armored scales is haplodiploid adult females/cutting. (Bennett and Brown 1958). The chromo­ Fecundity can be increased by raising P. some number for P. pentagona females (2N pentagona under warm temperature con­ = 16) and males (N = 8) is twice that of ditions (Yasuda 1983a) or on preferred host most other diaspidids suggesting a tetra­ plant species (Hughes 1960, Kozarzevskaja ploid origin (Brown and Bennett 1957, but and Mihajlovic 1983). Host plant condition see Nur 1990). In male eggs, paternal chro­ can also influence fecundity. For example, mosomes become condensed during mitotic we examined the effect of host plant water development and all functional chromo­ deficit on the fecundity and survivorship of somes are maternal in origin, while female P. pentagona by raising them on mulberry eggs contain functional chromosomes from trees subjected to low water and high water both parents (Bennett and Brown 1958). treatments (see Hanks 1991 for methods). Yeast-like symbionts are transmitted trans­ Fecundity was significantly lower on ovarially and may play a role in scale nu­ drought-stressed trees (26.4 + 4.8 eggs/fe­ trition (Brown and Bennett 1957, Miller and male) than on watered trees (36.5 + 2.3) Kosztarab 1979, Tremblay 1990). (ANOV A, F1•18 = 12.01, P = 0.003). Sim­ Adult females usually deposit eggs for pe­ ilarly, scale survivorship was significantly riods less than 10 days, but oviposition may lower on drought-stressed trees (69 + 8%) be extended in warmer climates (Kuitert compared to well-watered trees (84 + 4%) 1967, Yonce and Jacklin 1974). The eggs (ANOV A, Fus = 5.88, P = 0.02). and first instar crawlers of P. pentagona are While the primary sex ratio averages I: 1 both sexually dichronic and dimorphic in most populations (Brown and Bennett (Bennett and Brown 1958). First-deposited 1957, VanDuyn and Murphey 1971), it can eggs are female and are coral in color, which be altered by a variety of factors. Delayed are followed by white male eggs. Generally, fertilization of females may result in a strong the primary sex ratio is 1:1 (Brown and Ben­ male bias in the eggs (Brown and Bennett nett 1957, Van Duyn and Murphey 1971) 1957). A female-biased sex ratio results and average lifetime fecundity ranges from when scales are raised on fertilized host 50 to 200 eggs per female (Bennett and plants or under warm rearing conditions Brown 1958, Kuitert 1967, VanDuyn and (Yasuda 1983a, b). Murphey 1971, Bobb et al. 1973, Ball 1980, Some females of P. pentagona produce Yasuda 1983a). Unmated females do not only male eggs under certain conditions 82 PROCEEDINGS OF THE ENTOMOLOGICAL SOCIETY OF WASHINGTON ..= � • a. 1.00 0 s... a.. ....,= ,. 0.80 • • • 0+ •• • • • • 0+ 0.60 • • 0> c • ·- 0.40 • >. • (\3 • • • • _J 0.20 I • 0> i• 0> 0.00 w 0 1 2 3 4 5 6 7 2 Density (#22tcm ) Fig. 2. Relationship between the proportion of female P. pentagona laying only male eggs and the density of female scales on mulberry trees. Mulberry trees (34 2-year-old clones in the greenhouse) were artificially infested with scale eggs yielding a range of adult densities from 0.2 to 7.0 adult females/cm2).
Recommended publications
  • Ladybirds, Ladybird Beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-170 Ladybirds, Ladybird beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1 J. H. Frank R. F. Mizell, III2 Introduction Ladybird is a name that has been used in England for more than 600 years for the European beetle Coccinella septempunctata. As knowledge about insects increased, the name became extended to all its relatives, members of the beetle family Coccinellidae. Of course these insects are not birds, but butterflies are not flies, nor are dragonflies, stoneflies, mayflies, and fireflies, which all are true common names in folklore, not invented names. The lady for whom they were named was "the Virgin Mary," and common names in other European languages have the same association (the German name Marienkafer translates Figure 1. Adult Coccinella septempunctata Linnaeus, the to "Marybeetle" or ladybeetle). Prose and poetry sevenspotted lady beetle. Credits: James Castner, University of Florida mention ladybird, perhaps the most familiar in English being the children's rhyme: Now, the word ladybird applies to a whole Ladybird, ladybird, fly away home, family of beetles, Coccinellidae or ladybirds, not just Your house is on fire, your children all gone... Coccinella septempunctata. We can but hope that newspaper writers will desist from generalizing them In the USA, the name ladybird was popularly all as "the ladybird" and thus deluding the public into americanized to ladybug, although these insects are believing that there is only one species. There are beetles (Coleoptera), not bugs (Hemiptera). many species of ladybirds, just as there are of birds, and the word "variety" (frequently use by newspaper 1.
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Iranian Aphelinidae (Hymenoptera: Chalcidoidea) © 2013 Akinik Publications Received: 28-06-2013 Shaaban Abd-Rabou*, Hassan Ghahari, Svetlana N
    Journal of Entomology and Zoology Studies 2013;1 (4): 116-140 ISSN 2320-7078 Iranian Aphelinidae (Hymenoptera: Chalcidoidea) JEZS 2013;1 (4): 116-140 © 2013 AkiNik Publications Received: 28-06-2013 Shaaban Abd-Rabou*, Hassan Ghahari, Svetlana N. Myartseva & Enrique Ruíz- Cancino Accepted: 23-07-2013 ABSTRACT Aphelinidae is one of the most important families in biological control of insect pests at a worldwide level. The following catalogue of the Iranian fauna of Aphelinidae includes a list of all genera and species recorded for the country, their distribution in and outside Iran, and known hosts in Iran. In total 138 species from 11 genera (Ablerus, Aphelinus, Aphytis, Coccobius, Coccophagoides, Coccophagus, Encarsia, Eretmocerus, Marietta, Myiocnema, Pteroptrix) are listed as the fauna of Iran. Aphelinus semiflavus Howard, 1908 and Coccophagoides similis (Masi, 1908) are new records for Iran. Key words: Hymenoptera, Chalcidoidea, Aphelinidae, Catalogue. Shaaban Abd-Rabou Plant Protection Research 1. Introduction Institute, Agricultural Research Aphelinid wasps (Hymenoptera: Chalcidoidea: Aphelinidae) are important in nature, Center, Dokki-Giza, Egypt. especially in the population regulation of hemipterans on many different plants.These [E-mail: [email protected]] parasitoid wasps are also relevant in the biological control of whiteflies, soft scales and aphids [44] Hassan Ghahari . Studies on this family have been done mainly in relation with pests of fruit crops as citrus Department of Plant Protection, and others. John S. Noyes has published an Interactive On-line Catalogue [78] which includes Shahre Rey Branch, Islamic Azad up-to-date published information on the taxonomy, distribution and hosts records for the University, Tehran, Iran. Chalcidoidea known throughout the world, including more than 1300 described species in 34 [E-mail: [email protected]] genera at world level.
    [Show full text]
  • Biocontrol Science and Technology
    This article was downloaded by:[NEICON Consortium] On: 11 September 2007 Access Details: [subscription number 781557153] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713409232 Biology and prey range of Cryptognatha nodiceps (Coleoptera: Coccinellidae), a potential biological control agent for the coconut scale, Aspidiotus destructor (Hemiptera: Diaspididae) V. F. Lopez; M. T. K. Kairo; J. A. Irish Online Publication Date: 01 August 2004 To cite this Article: Lopez, V. F., Kairo, M. T. K. and Irish, J. A. (2004) 'Biology and prey range of Cryptognatha nodiceps (Coleoptera: Coccinellidae), a potential biological control agent for the coconut scale, Aspidiotus destructor (Hemiptera: Diaspididae)', Biocontrol Science and Technology, 14:5, 475 - 485 To link to this article: DOI: 10.1080/09583150410001683493 URL: http://dx.doi.org/10.1080/09583150410001683493 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources.
    [Show full text]
  • Hemiptera: Sternorrhyncha: Coccoidea: Diaspididae) from Fiji
    Zootaxa 3384: 60–67 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Two more new species of armoured scale insect (Hemiptera: Sternorrhyncha: Coccoidea: Diaspididae) from Fiji BOZENA ŁAGOWSKA1 & CHRIS HODGSON2 1Department of Entomology, University of Life Sciences in Lublin, ul. Leszczynskiego 7, 20–069 Lublin, Poland. E-mail: [email protected] 2Department of Biodiversity and Biological Systematics, The National Museum of Wales, Cardiff, CF10 3NP, UK. E-mail: [email protected] Abstract The adult females of two new species of Diaspididae (Hemiptera: Coccoidea) are described and placed in Anzaspis Henderson (previously only known from New Zealand): A. neocordylinidis Łagowska & Hodgson and A. pandani Łagowska & Hodgson. The former is close to A. cordylinidis (Maskell), currently only known from New Zealand and found on the same host plant species, and the latter is very close to Chionaspis pandanicola Williams & Watson, only currently known from Fiji, and also collected on the same host plant species. Two previously described Chionaspis species already known from Fiji, i.e. C. freycinetiae Williams & Watson and C. pandanicola Williams & Watson are transferred to Anzaspis as Anzaspis freycinetiae (Williams & Watson) comb. nov. and A. pandanicola (Williams & Watson) comb. nov., and a third species, C. rhaphidophorae Williams & Watson, is transferred to Serenaspis as Serenaspis rhaphidophorae (Williams & Watson) comb. nov.. The reasons for these nomenclatural decisions and the relationship between the scale insect fauna of Fiji and New Zealand are discussed. A key is provided to all related species in the tropical South Pacific and New Zealand.
    [Show full text]
  • The Passionvine Mealybug, Planococcus Minor (Maskell) (Hemiptera: Pseudococcidae), and Its Natural Enemies in the Cocoa Agroecosystem in Trinidad ⇑ Antonio W
    Biological Control 60 (2012) 290–296 Contents lists available at SciVerse ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon The passionvine mealybug, Planococcus minor (Maskell) (Hemiptera: Pseudococcidae), and its natural enemies in the cocoa agroecosystem in Trinidad ⇑ Antonio W. Francis a, , Moses T.K. Kairo a, Amy L. Roda b, Oscar E. Liburd c, Perry Polar d a Florida A&M University, College of Engineering Sciences, Technology, and Agriculture, Center for Biological Control, Tallahassee, FL 32304, USA b USDA-APHIS-PPQ-Center for Plant Health Science and Technology, Miami, FL 33158, USA c Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA d Caribbean Network for Land and Urban Management, The University of the West Indies, St. Augustine, Trinidad highlights graphical abstract " Planococcus minor is found in Trinidad where little was known about the pest. " The mealybug was widely distributed on cocoa and infestation levels were low. " Cocoa field sites were surveyed for natural enemies. " We identified key natural enemies attacking the mealybug. " Their identification is a key step in the biological control process. article info abstract Article history: Planococcus minor (Maskell) is native to South Asia, but it is also present in several Neotropical locations Received 11 August 2011 including the island of Trinidad in the southern Caribbean. The mealybug poses a serious threat to unin- Accepted 2 December 2011 fested countries in this region as well as the mainland U.S. As part of an effort to gather much needed Available online 13 December 2011 information on P. minor, 33 cocoa (Theobroma cacao L.) field sites on the island were surveyed in 2006 with a view to assess the occurrence and pest status of the mealybug.
    [Show full text]
  • Rekayasa Agroekosistem Dan Konservasi Musuh Alami Revisi Pak
    Rekayasa Agroekosistem dan Konservasi Musuh Alami NANANG TRI HARYADI HARI PURNOMO UPT Percetakan dan Penerbitan Universitas Jember 2019 Nanang Tri Haryadi dan Hari Purnomo. ii Rekayasa Agroekosistem dan Konservasi Musuh Alami Penulis: NANANG TRI HARYADI HARI PURNOMO Desain Sampul dan Tata Letak M. Arifin M. Hosim ISBN: 978-623-7226-56-7 Copyright © 2019 Penerbit: UPT Percetakan & Penerbitan Universitas Jember Redaksi: Jl. Kalimantan 37 Jember 68121 Telp. 0331-330224, Voip. 00319 e-mail: [email protected] Distributor Tunggal: UNEJ Press Jl. Kalimantan 37 Jember 68121 Telp. 0331-330224, Voip. 0319 e-mail: [email protected] Hak Cipta dilindungi Undang-Undang. Dilarang memperbanyak tanpa ijin tertulis dari penerbit, sebagian atau seluruhnya dalam bentuk apapun, baik cetak, photoprint, maupun microfilm. NANANG TRI HARYADI HARI PURNOMO iii Rekayasa Agroekosistem dan Konservasi Musuh Alami KATA PENGANTAR Alhamdulillah marilah kita panjatkan puji syukur kehadirat Allah SWT, Tuhan Yang Maha Esa yang telah meridhai segala aktivitas kita, teristimewa pada selesainya pembuatan buku ajar dengan judul “Rekayasa Agroekosistem dan Konservasi Musuh Alami”. Buku ini sangat penting dalam bidang pertanian khususnya dalam proses peningkatan produksi pertanian. Masalah-masalah yang sering muncul dan dihadapi dalam budidaya pertanian yaitu semakin banyaknya model pertanian yang monokultur dalam skala yang luas. Model pertanian seperti ini kecenderungan mempunyai keanekaragaman hayati yang rendah sehingga cenderung rentan terhadap serangan organisme pengganggu tanaman (OPT). Populasi OPT pada umumnya lebih banyak dibandingkan dengan populasi musuh alaminya. Solusi untuk mengatasi kondisi agroekosistem dengan keanekaragaman hayati yang rendah yaitu dengan merekayasa agroekosistem semirip mungkin dengan ekosistem alami. Buku ini menjadi salah satu referensi bagi mahasiswa dan masyarakat umum untuk merekayasa sebuah agroekosistem dengan tujuan untuk meningkatkan peran musuh alami sehingga proses keseimbangan ekosistem dapat terwujud.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND ET MEDITERRANEENNE MEDITERRANEAN POUR LA PROTECTION DES PLANTES PLANT PROTECTION ORGANIZATION EPPO Reporting Service NO. 4 PARIS, 2018-04 General 2018/068 New data on quarantine pests and pests of the EPPO Alert List 2018/069 Quarantine lists of Kazakhstan (2017) 2018/070 EPPO report on notifications of non-compliance 2018/071 EPPO communication kits: templates for pest-specific posters and leaflets 2018/072 Useful publications on Spodoptera frugiperda Pests 2018/073 First report of Tuta absoluta in Tajikistan 2018/074 First report of Tuta absoluta in Lesotho 2018/075 First reports of Grapholita packardi and G. prunivora in Mexico 2018/076 First report of Scaphoideus titanus in Ukraine 2018/077 First report of Epitrix hirtipennis in France 2018/078 First report of Lema bilineata in Italy 2018/079 Eradication of Anoplophora glabripennis in Brünisried, Switzerland 2018/080 Update on the situation of Anoplophora glabripennis in Austria Diseases 2018/081 First report of Ceratocystis platani in Turkey 2018/082 Huanglongbing and citrus canker are absent from Egypt 2018/083 Xylella fastidiosa eradicated from Switzerland 2018/084 Update on the situation of Ralstonia solanacearum on roses in Switzerland 2018/085 First report of ‘Candidatus Phytoplasma fragariae’ in Slovenia Invasive plants 2018/086 Ambrosia artemisiifolia control in agricultural areas in North-west Italy 2018/087 Optimising physiochemical control of invasive Japanese knotweed 2018/088 Update on LIFE project IAP-RISK 2018/089 Conference: Management and sharing of invasive alien species data to support knowledge-based decision making at regional level (2018-09-26/28, Bucharest, Romania) 21 Bld Richard Lenoir Tel: 33 1 45 20 77 94 E-mail: [email protected] 75011 Paris Fax: 33 1 70 76 65 47 Web: www.eppo.int EPPO Reporting Service 2018 no.
    [Show full text]
  • References, Sources, Links
    History of Diaspididae Evolution of Nomenclature for Diaspids 1. 1758: Linnaeus assigned 17 species of “Coccus” (the nominal genus of the Coccoidea) in his Systema Naturae: 3 of his species are still recognized as Diaspids (aonidum,ulmi, and salicis). 2. 1828 (circa) Costa proposes 3 subdivisions including Diaspis. 3. 1833, Bouche describes the Genus Aspidiotus 4. 1868 to 1870: Targioni-Tozzetti. 5. 1877: The Signoret Catalogue was the first compilation of the first century of post-Linnaeus systematics of scale insects. It listed 9 genera consisting of 73 species of the diaspididae. 6. 1903: Fernaldi Catalogue listed 35 genera with 420 species. 7. 1966: Borschenius Catalogue listed 335 genera with 1890 species. 8. 1983: 390 genera with 2200 species. 9. 2004: Homptera alone comprised of 32,000 known species. Of these, 2390 species are Diaspididae and 1982 species of Pseudococcidae as reported on Scalenet at the Systematic Entomology Lab. CREDITS & REFERENCES • G. Ferris Armored Scales of North America, (1937) • “A Dictionary of Entomology” Gordh & Headrick • World Crop Pests: Armored Scale Insects, Volume 4A and 4B 1990. • Scalenet (http://198.77.169.79/scalenet/scalenet.htm) • Latest nomenclature changes are cited by Scalenet. • Crop Protection Compendium Diaspididae Distinct sexual dimorphism Immatures: – Nymphs (mobile, but later stages sessile and may develop exuviae). – Pupa & Prepupa (sessile under exuviae, Males Only). Adults – Male (always mobile). – Legs. – 2 pairs of Wing. – Divided head, thorax, and abdomen. – Elongated genital organ (long style & penal sheath). – Female (sessile under exuviae). – Legless (vestigial legs may be present) & Wingless. – Flattened sac-like form (head/thorax/abdomen fused). – Pygidium present (Conchaspids also have exuvia with legs present).
    [Show full text]
  • The Citrus Blackfly' in Asia, and the Importation of Its Natural Enemies Into Tropical America
    TECHNICAL BULLETIN NO, 320 August, 1932 UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON. D. C. THE CITRUS BLACKFLY' IN ASIA, AND THE IMPORTATION OF ITS NATURAL ENEMIES INTO TROPICAL AMERICA By CURTIS 1*. CLAUSEN, Senior Entomologist, and PAUL A. BEERY, Junior Ento- mologist, Division of Frxiit and Shade Tree Insects, Bureau of Entomology- CONTENTS Page Foreword (by C L. Marlatt).- 1 Potential status of the blackfly in the United Introduction 3 Stales 19 The citrus blackfly 4 Natural enemies of the blackily 19 Distribution 4 Parasites in tropical Asia 20 Status as a citrus pest in the Far East... 7 Predators in tropical Asia 36 Host plants -. - - 8 Native predators in Cuba, JPanama, and Life history and habits 10 Jamaica 45 Mortality factors,.. 11 Fungous diseases 46 Climatic conditions in the infested regions,.. 13 Methods of rearing, shipment, and colo- Relation of meteorological conditions to nization 47 blackily development 16 Summary í6 Comparison with Florida and California. 17 Iviteraturc cited 58 FOREWORD The introduction and establishment of im2)0i'tant Malayan para- sitic and predacious enemies of the blackily in the American Tropics, recorded in this bulletin, is one of the outstanding successes in this rapidly growing field. The eiiort was a cooperative one, supported by Cuba and the United States. The blackily in Cuba has been for juany years a very serious obstacle to the citrus industr}^ and had in adilition a fairly wdde distribution elsewhere in the American Tropics. The interest of the TJnited States was to reduce the risk of entry of this pest into the citrus areas of Florida or other of our subtropical areas, and also as provision for aid in future control ^ Alcurocanthus woylumi Ashby.
    [Show full text]
  • The Biology and Ecology of Armored Scales
    Copyright 1975. All rights resenetl THE BIOLOGY AND ECOLOGY +6080 OF ARMORED SCALES 1,2 John W. Beardsley Jr. and Roberto H. Gonzalez Department of Entomology, University of Hawaii. Honolulu. Hawaii 96822 and Plant Production and Protection Division. Food and Agriculture Organization. Rome. Italy The armored scales (Family Diaspididae) constitute one of the most successful groups of plant-parasitic arthropods and include some of the most damaging and refractory pests of perennial crops and ornamentals. The Diaspididae is the largest and most specialized of the dozen or so currently recognized families which compose the superfamily Coccoidea. A recent world catalog (19) lists 338 valid genera and approximately 1700 species of armored scales. Although the diaspidids have been more intensively studied than any other group of coccids, probably no more than half of the existing forms have been recognized and named. Armored scales occur virtually everywhere perennial vascular plants are found, although a few of the most isolated oceanic islands (e.g. the Hawaiian group) apparently have no endemic representatives and are populated entirely by recent adventives. In general. the greatest numbers and diversity of genera and species occur in the tropics. subtropics. and warmer portions of the temperate zones. With the exclusion of the so-called palm scales (Phoenicococcus. Halimococcus. and their allies) which most coccid taxonomists now place elsewhere (19. 26. 99). the armored scale insects are a biologically and morphologically distinct and Access provided by CNRS-Multi-Site on 03/25/16. For personal use only. Annu. Rev. Entomol. 1975.20:47-73. Downloaded from www.annualreviews.org homogenous group.
    [Show full text]
  • Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea
    Biodiversity Data Journal 4: e8013 doi: 10.3897/BDJ.4.e8013 Taxonomic Paper Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea Natalie Dale-Skey‡, Richard R. Askew§‡, John S. Noyes , Laurence Livermore‡, Gavin R. Broad | ‡ The Natural History Museum, London, United Kingdom § private address, France, France | The Natural History Museum, London, London, United Kingdom Corresponding author: Gavin R. Broad ([email protected]) Academic editor: Pavel Stoev Received: 02 Feb 2016 | Accepted: 05 May 2016 | Published: 06 Jun 2016 Citation: Dale-Skey N, Askew R, Noyes J, Livermore L, Broad G (2016) Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea. Biodiversity Data Journal 4: e8013. doi: 10.3897/ BDJ.4.e8013 Abstract Background A revised checklist of the British and Irish Chalcidoidea and Mymarommatoidea substantially updates the previous comprehensive checklist, dating from 1978. Country level data (i.e. occurrence in England, Scotland, Wales, Ireland and the Isle of Man) is reported where known. New information A total of 1754 British and Irish Chalcidoidea species represents a 22% increase on the number of British species known in 1978. Keywords Chalcidoidea, Mymarommatoidea, fauna. © Dale-Skey N et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Dale-Skey N et al. Introduction This paper continues the series of checklists of the Hymenoptera of Britain and Ireland, starting with Broad and Livermore (2014a), Broad and Livermore (2014b) and Liston et al.
    [Show full text]