Cephalox the Cyber Squid Free

Total Page:16

File Type:pdf, Size:1020Kb

Cephalox the Cyber Squid Free FREE CEPHALOX THE CYBER SQUID PDF Adam Blade | 128 pages | 07 Mar 2013 | Hachette Children's Group | 9781408318485 | English | London, United Kingdom Cyber Monday | Digital Trends More than years ago, stories began circulating about a many-armed beast Cephalox the Cyber Squid tentacles Cephalox the Cyber Squid tall as a ship's mast living in the ocean depths. Few animals have inspired as much wonder and fear as the giant squid. Up Next Could a squid take down a submarine? How do oysters make pearls? Curiosity Project: Marine Life Pictures. Squid are swift, agile and Cephalox the Cyber Squid intelligent creatures with brains closer in proportion to those of mammals than those of fish or reptiles. In this article, you'll get to know the often misunderstood squid, meet some of the unusual animals that are part of this species, and find out what happened when scientists finally came face-to-face with the mysterious giant squid. Squid are actually mollusksalthough they look much different from their relatives the gastropods snailsand bivalves clams. Unlike other mollusks, which have a hard outer shell, squid have a soft outer body and an inner shell. Squid are part of the class Cephalopoda meaning "head-footed"a group that also includes the octopuscuttlefish and nautilus. Cephalopods are divided even further into the eight-armed octopods octopuses and the armed decapods cuttlefish and squid. The squid emerged during a particularly bountiful stage in the ecological timeline -- million years ago during the Cambrian period. So many different animal groups emerged during this period that scientists have termed it the "Cambrian explosion. Today, only four remain -- squid, cuttlefish, octopuses and nautiluses. Squid today are versatile creatures -- they can make their homes in a variety of marine environments, from the deep sea to coastal surface waters. Squid come in a wide variety of sizes and appearances. They can range from an inch to more than 65 feet in length. Most squid have a long, tube- shaped body with a small head. They have 10 arms two of which are much longer than the others for grasping preywhich are lined with rows of suckers. Some varieties have claw-like hooks instead of, or in addition to, the suckers. In the center of the arms sits a mouth with a parrot-shaped beak that surrounds a sharp, bony tongue called the radula. The squid's eyes are large and set into the sides of its head. Squid are the most intelligent of the invertebrates animals that lack a backbonewith a brain that is well-developed and larger in Cephalox the Cyber Squid to the animal's body than that of most fish and reptiles. They also have a sophisticated nervous system. The squid's body is enclosed in a soft and muscular cavity called the mantlewhich sits behind the head. As water flows through the mantle cavity, it passes over the gills and the squid absorbs oxygen to breathe. Beneath the head is a tube called the funnel. Cephalox the Cyber Squid are excreted through the funnel, as is the squid's defensive ink. We'll learn more about how squid use their funnels and the daily life of a Cephalox the Cyber Squid in the next section. A squid's funnel acts like a jet enginemaking them powerful swimmers. It draws water into its mantle cavity by expanding its muscles. The mantle stretches like a rubber band, then contracts and forcibly pushes the water out through the funnel. The squid shoots backward, tail first. When escaping from a predator, a squid can propel itself as quickly as 25 body lengths a second. With their soft bodies, squid are vulnerable prey. They rely on their speed and agility, as well as their system of camouflagefor defense. Before a squid flees its predator, it releases a cloud of Cephalox the Cyber Squid inky substance called sepia. This temporarily confuses the attacker, allowing the squid to escape. To blend in with their surroundings, squid have thousands of pigment cells on their arms called chromatophoreswhich are attached to tiny muscles. Chromatophores expand or contract to change the color or pattern of the squid's skin to match its background these same cells also help squid attract a mate and communicate with other squid. Squid even can change the texture of their skin to simulate their surroundings by raising Cephalox the Cyber Squid flaps and bumps. Cephalox the Cyber Squid are carnivorous and their favorite foods include small fish, crabs, shrimp and other squid. A squid will stalk its prey by hiding out of sight until the animal is within range, then shoots out its arms to ensnare the food. The squid then pulls the food to its mouth with its arms. It uses its Cephalox the Cyber Squid, parrot-like beak to tear off pieces, then the sharp radula on its tongue grinds up the food and pushes it down the squid's throat. Squid reproduce sexually. A female can produce thousands of eggs, which she stores in her ovary. In male squid, sperm is produced in the testis and stored in a sac. When they mate, the male uses a special arm to transfer packets of his sperm into the female's mantle cavity or around her mouth, where the eggs are waiting. Then the female ejects the gelatinous mass of fertilized eggs from her funnel or mouth and hides them under rocks or in holes. After four to eight weeks, baby squid hatch. At birth, they are smaller versions of their parents. They feed on tiny creatures called plankton while they grow to adulthood. Many squid live fast and die young -- their entire life cycle takes just one year. After male and female mate, they usually die. Less is known about the life cycles of deep-water squid, though, and they may have considerably longer life spans. About different species of squid exist. The two main suborders of squid are myopsida and oegopsida. Members of the myopsida suborder live in relatively shallow waters. Their eyes are covered by a transparent membrane, Cephalox the Cyber Squid they Cephalox the Cyber Squid suckers, rather than hooks, on their tentacles. Let's look at some common members of the myopsida suborder:. Members of the oegopsida suborder live out in the ocean and deep sea. Here are a few common varieties of the oegopsida suborder:. Image courtesy E. In the depths of the Atlantic and Pacific Ocean, pairs of glowing red eyes cut through the gloom. They belong to the vampire squid from hell Vampyroteuthis infernalispart of its own squid order -- Vampyromorpha. The vampire Cephalox the Cyber Squid sinister name comes from its appearance -- it has red eyes, a black body and webbed arms that resemble Dracula's cape. Despite its intimidating appearance, however, the vampire squid is actually quite docile. It sits motionless in the water until its prey approaches, and then it catches the food in its webbed arms. For thousands of years, people have told tales of giant, many armed sea monsters. In Homer's "Odyssey," Odysseus had to navigate his boat around a many-headed sea monster called Scylla. Jules Verne Cephalox the Cyber Squid wrote of giant squid attacking the Nautilus submarine in "20, Leagues under the Sea. These enormous animals, which live deep in the Atlantic Ocean, can reach lengths of 60 feet and can weigh nearly 1, pounds. They have eyes the size of soccer balls, and foot-long tentacles lined with suckers measuring two inches each in diameter. Very little is known about giant squid, because they are so rarely seen. Until recently, the only time scientists had seen giant squid was when they found them among the stomach contents of sperm whales their Cephalox the Cyber Squid predators. The sucker-shaped scars on the whales' jaws and lips attested to the battle the whales had to Cephalox the Cyber Squid up in order to capture their prey. Ina team of Japanese marine biologists was able to capture photographs of the elusive giant squid swimming deep in the Pacific Ocean for the first time. It took three years for the scientists to locate the squid, which they accomplished by following the migratory patterns of sperm whales. They captured the photos while the squid was attacking bait on a line. The squid became caught up in the line, and struggled for more than four hours to free itself. During the struggle, it lost one of its tentacles, which the scientists recovered. It measured 18 feet in Cephalox the Cyber Squid. A year later, the researchers were finally able to actually capture a giant squid. About seven meters 24 feet long, the Cephalox the Cyber Squid died in the process of being caught. In recent years, scientists have also learned more about the giant squid's equally intimidating relative, the colossal squid mesonychoteuthis hamiltoni. Ina New Zealand boat Cephalox the Cyber Squid on a fishing expedition in Antarctic waters when its lines snagged something much larger than fish. The fisherman struggled for nearly two hours to pull the colossal squid onto the boat. It weighed pounds, and, according to news records of the event, had the squid been cooked, it would have produced calamari "the size of tractor tires. See more squid pictures. Up Next. Squid Anatomy. Public domain image A variety of cephalopods in the subclass coleoidawhich includes squid, octopuses, and cuttlefish, from Ernst Haeckel's "Art Forms of Nature" Eating Squid. Several animals and birds like Cephalox the Cyber Squid feast on squid, including the sperm whalethe grey-headed albatross, tunamarlinsharkseals and penguins. Because several types of fish have such a predilection for squid, they make excellent bait.
Recommended publications
  • A Review of Southern Ocean Squids Using Nets and Beaks
    Marine Biodiversity (2020) 50:98 https://doi.org/10.1007/s12526-020-01113-4 REVIEW A review of Southern Ocean squids using nets and beaks Yves Cherel1 Received: 31 May 2020 /Revised: 31 August 2020 /Accepted: 3 September 2020 # Senckenberg Gesellschaft für Naturforschung 2020 Abstract This review presents an innovative approach to investigate the teuthofauna from the Southern Ocean by combining two com- plementary data sets, the literature on cephalopod taxonomy and biogeography, together with predator dietary investigations. Sixty squids were recorded south of the Subtropical Front, including one circumpolar Antarctic (Psychroteuthis glacialis Thiele, 1920), 13 circumpolar Southern Ocean, 20 circumpolar subantarctic, eight regional subantarctic, and 12 occasional subantarctic species. A critical evaluation removed five species from the list, and one species has an unknown taxonomic status. The 42 Southern Ocean squids belong to three large taxonomic units, bathyteuthoids (n = 1 species), myopsids (n =1),andoegopsids (n = 40). A high level of endemism (21 species, 50%, all oegopsids) characterizes the Southern Ocean teuthofauna. Seventeen families of oegopsids are represented, with three dominating families, onychoteuthids (seven species, five endemics), ommastrephids (six species, three endemics), and cranchiids (five species, three endemics). Recent improvements in beak identification and taxonomy allowed making new correspondence between beak and species names, such as Galiteuthis suhmi (Hoyle 1886), Liguriella podophtalma Issel, 1908, and the recently described Taonius notalia Evans, in prep. Gonatus phoebetriae beaks were synonymized with those of Gonatopsis octopedatus Sasaki, 1920, thus increasing significantly the number of records and detailing the circumpolar distribution of this rarely caught Southern Ocean squid. The review extends considerably the number of species, including endemics, recorded from the Southern Ocean, but it also highlights that the corresponding species to two well-described beaks (Moroteuthopsis sp.
    [Show full text]
  • Making Ends Meet in the Ross
    Water & Atmosphere 16(2) 2008 Marine Ecosystems Making ends meet in the Ross Sea Matt Pinkerton, Janet Bradford-Grieve, and Stuart Hanchet are developing a mass-balance model to learn how animals fit together in the Ross Sea ecosystem. fter braving some of the worst sea ice in decades, NIWA scientists returned in late March from a seven- Aweek voyage to the Ross Sea region of Antarctica. Among our goals for the voyage was to learn more about the region’s predator–prey links and the abundance of some important and poorly understood species. Antarctica's unique ecosystems Compared to temperate regions, the waters of the Southern n o rt e Ocean have low primary productivity – the production k in P t of organic matter by plants that is the basis of marine food at M e: webs. In temperate waters, like those around New Zealand, ag Im phytoplankton grows during most of the year. But in the Ross Sea there’s a long period between late May and mid July when the region is in 24-hour darkness and no plants can grow. The Based on data from NASA satellites, this image shows the phyto- plankton concentration in the Ross Sea. High concentrations are year’s entire primary production happens in brief events in the shown in green and red, lower concentrations are blue and purple. spring and summer, and these bursts of high productivity are (Data used courtesy of NASA.) often very localised. Another challenge for Antarctic animals is the dramatic change through the year to the available of the larger, mobile animals leave the region completely during environment, as sea ice forms in the autumn and then melts winter, including minke whales, most seals, petrels, and Adélie in the spring.
    [Show full text]
  • Humboldt Squid ×
    This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more × security, comfort and the best experience on this site. Photo MEDIA SPOTLIGHT Humboldt Squid 'Red Devils' haunt the Pacific Ocean For the complete photos with media resources, visit: http://education.nationalgeographic.com/media/humboldt-squid/ FAST FACTS Humboldt squid are large predators native to the deep waters of the Humboldt current, which flows northwest from Tierra del Fuego to the northern coast of Peru. The species range of the Humboldt squid, however, has expanded as far north as the U.S. state of Alaska. Both the Humboldt squid and the Humboldt current are named after Alexander von Humboldt, a German geographer who explored Central and South America in the 18th and 19th centuries. Humboldt squid are also known as jumbo squid, flying squid, and diablos rojos or red devils. Humboldt squid earned the nickname "red devils" due to their aggressive nature and ability to light themselves up (bioluminescence) in flashes of red and white. Humboldt squid earned the nickname "jumbo squid" by their sheer size. They grow up to 2 meters (6 feet) and weigh as much as 50 kilograms (110 pounds.) Jumbo squid are not the largest squid, however. Giant squid grow up to 13 meters (43 feet) and weigh as much as 275 kilograms (610 pounds). Colossal squid grow up to 14 meters (46 feet) and weigh as much as 495 kilograms (1,091 pounds). VOCABULARY Term Part of Speech Definition aggressive adjective forceful or offensive. Alexander von noun (1769-1859) German geographer and naturalist.
    [Show full text]
  • 8 Armed Bandits; a Closer Look at Cephalopods an Educator’S Guide to the Program
    8 Armed Bandits; A Closer Look at Cephalopods An Educator’s Guide to the Program Grades K-5 Program Description: This program explores the class of mollusk known as cephalopods. Cephalopods are the most intelligent group of mollusk and most of them lack a shell. The name cephalopod means “head-foot” and contains: octopus, squid, cuttlefish and nautilus. The goal of 8-armed bandits is to teach students the characteristics, defense mechanisms, and extreme intelligence of cephalopods. *Before your class visits the Oklahoma Aquarium* This guide contains information and activities for you to use both before and after your visit to the Oklahoma Aquarium. You may want to read stories about cephalopods and their abilities to the students, present information in class, or utilize some of the activities from this booklet. 1 Table of Contents 8 armed bandits abstract 3 Educator Information 4 Vocabulary 5 Internet resources and books 6 PASS/OK Science standards 7-8 Accompanying Activities Build Your Own squid (K-5) 9 How do Squid Defend Themselves? (K-5) 10 Octopus Arms (K-3) 11 Octopus Math (pre-K-K) 12 Camouflage (K-3) 13 Octopus Puppet (K-3) 14 Hidden animals (K-1) 15 Cephalopod color pages (3) (K-5) 16 Cephalopod Magic (4-5) 19 Nautilus (4-5) 20 2 8 Armed Bandits; A Closer Look at Cephalopods: Abstract Cephalopods are a class of mollusk that are highly intelligent and unlike most other mollusk, they generally lack a shell. There are 85,000 different species of mollusk; however cephalopods only contain octopi, squid, cuttlefish and nautilus.
    [Show full text]
  • Reproduction and Early Life of the Humboldt Squid
    REPRODUCTION AND EARLY LIFE OF THE HUMBOLDT SQUID A DISSERTATION SUBMITTED TO THE DEPARTMENT OF BIOLOGY AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Danielle Joy Staaf August 2010 © 2010 by Danielle Joy Staaf. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/cq221nc2303 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. William Gilly, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Mark Denny I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. George Somero Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract Dosidicus gigas, the Humboldt squid, is endemic to the eastern Pacific, and its range has been expanding poleward in recent years.
    [Show full text]
  • Marine Ecology Progress Series 370:239
    Vol. 370: 239–247, 2008 MARINE ECOLOGY PROGRESS SERIES Published October 28 doi: 10.3354/meps07673 Mar Ecol Prog Ser Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands Y. Cherel1,*, S. Ducatez1, C. Fontaine1, P. Richard2, C. Guinet1 1Centre d’Etudes Biologiques de Chizé, UPR 1934 du CNRS, BP 14, 79360 Villiers-en-Bois, France 2Centre de Recherche sur les Ecosystèmes Littoraux Anthropisés, UMR 6217 du CNRS-IFREMER-ULR, Place du Séminaire, BP 5, 17137 L’Houmeau, France ABSTRACT: Trophic interactions between organisms are the main drivers of ecosystem dynamics, but scant dietary information is available for wide-ranging predators during migration. We investi- gated feeding habits of a key consumer of the Southern Ocean, the southern elephant seal Miroun- gia leonina, by comparing its blood δ13C and δ15N values with those of various marine organisms, including crustaceans, squid, fishes, seabirds and fur seals. At the end of winter, δ13C values (–23.1 to –20.1‰) indicate that female elephant seals forage mainly in the vicinity of the Polar Front and in the Polar Frontal Zone. Trophic levels derived from δ15N values (trophic level = 4.6) show that the southern elephant seal is a top consumer in the pelagic ecosystem that is dominated by colossal squid. The mean δ15N value of seals (10.1 ± 0.3‰) indicates that they are not crustacean eaters, but instead feed on crustacean-eating prey. Surprisingly, most of the previously identified prey species have isotope δ13C and δ15N values that do not fit with those of potential food items.
    [Show full text]
  • A Network of Marine Protected Areas in the Southern Ocean Protecting One of Earth’S Last Great Wilderness Areas
    A fact sheet from May 2017 Philippe Bourseiller A Network of Marine Protected Areas in the Southern Ocean Protecting one of Earth’s last great wilderness areas Overview The Southern Ocean, surrounding Antarctica, is one of the least altered marine ecosystems on Earth. Encompassing 15 percent of the world’s ocean, it is home to thousands of species found nowhere else, from brilliantly hued starfish and bioluminescent worms to pastel octopuses. It is also home to millions of penguins that depend on large swarms of krill, a tiny shrimplike crustacean, as well as other forage species that form the base of a delicate food web. Scientists believe this ecosystem is changing due to the impact of climate change and temperatures that are warming faster than nearly anywhere else on Earth. These waters are also vital to the health of the planet, producing strong upwelling currents that carry critical nutrients to seas around the world. To protect this spectacular region, The Pew Charitable Trusts and its partners are working with the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) and its member governments to establish a network of large-scale marine protected areas (MPAs) around Antarctica. A Living Laboratory of 1 Penguins 2 Whales 3 Seals 4 Seabirds 5 Fish 6 Invertebrates Unique Biodiversity Adélie Blue Antarctic fur Snow petrel Antarctic and Patagonian Krill Chinstrap Southern bottlenose Crabeater Wandering albatross toothfish (Chilean sea bass) Antarctic sea spider Antarctic krill are a keystone species, serving as a major Gentoo Humpback Southern elephant Antarctic petrel Icefish Crawling and glass sponges food source for more than 25 percent of the species in the Emperor Antarctic minke Leopard Antarctic fulmar Lanternfish Antarctic coral diverse Antarctic food web, including penguins, seals, whales, King Long-finned pilot Ross Antarctic eel cod Bone-eating worm and many fish species.
    [Show full text]
  • Cephalopods As Predators: a Short Journey Among Behavioral Flexibilities, Adaptions, and Feeding Habits
    REVIEW published: 17 August 2017 doi: 10.3389/fphys.2017.00598 Cephalopods as Predators: A Short Journey among Behavioral Flexibilities, Adaptions, and Feeding Habits Roger Villanueva 1*, Valentina Perricone 2 and Graziano Fiorito 3 1 Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain, 2 Association for Cephalopod Research (CephRes), Napoli, Italy, 3 Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy The diversity of cephalopod species and the differences in morphology and the habitats in which they live, illustrates the ability of this class of molluscs to adapt to all marine environments, demonstrating a wide spectrum of patterns to search, detect, select, capture, handle, and kill prey. Photo-, mechano-, and chemoreceptors provide tools for the acquisition of information about their potential preys. The use of vision to detect prey and high attack speed seem to be a predominant pattern in cephalopod species distributed in the photic zone, whereas in the deep-sea, the development of Edited by: Eduardo Almansa, mechanoreceptor structures and the presence of long and filamentous arms are more Instituto Español de Oceanografía abundant. Ambushing, luring, stalking and pursuit, speculative hunting and hunting in (IEO), Spain disguise, among others are known modes of hunting in cephalopods. Cannibalism and Reviewed by: Francisco Javier Rocha, scavenger behavior is also known for some species and the development of current University of Vigo, Spain culture techniques offer evidence of their ability to feed on inert and artificial foods. Alvaro Roura, Feeding requirements and prey choice change throughout development and in some Institute of Marine Research, Consejo Superior de Investigaciones Científicas species, strong ontogenetic changes in body form seem associated with changes in (CSIC), Spain their diet and feeding strategies, although this is poorly understood in planktonic and *Correspondence: larval stages.
    [Show full text]
  • Giant Squid by Sheri Skelton
    Giant Squid By Sheri Skelton 1 Can you imagine having eyes as big as basketballs? The giant squid has eyes that big. Each of its eyes measures about 12 inches in diameter. Giant squid have the largest eyes in the animal kingdom. The only other animal with eyes that big is the colossal squid. Giant squid need big eyes. The big eyes help the squid to find food deep in the ocean where it is very dark. 2 The giant squid rivals the colossal squid for the title of the biggest invertebrate on Earth. The largest one ever found was almost 60 feet long and weighed almost one ton. The giant squid has a body called a mantle. The giant squid has small fins at the end of its mantle. The giant squid uses the fins to maneuver itself through the water. The giant squid propels itself through the water by pushing water out of its mantle through a siphon. The giant squid breathes through pairs of gills inside the mantle. The giant squid has eight arms and two longer tentacles. The giant squid uses the tentacles to bring food to its mouth. 3 Almost everything we know about giant squid has been learned from studying the carcasses of giant squid. The bodies of the giant squid either wash up on beaches or are captured in nets by fishermen. In 2004 researchers in Japan took the first pictures of a live giant squid living in the ocean. Two years later the same researchers made a film of a live giant squid.
    [Show full text]
  • Environmental Determinants of Latitudinal Size-Trends in Cephalopods
    Vol. 464: 153–165, 2012 MARINE ECOLOGY PROGRESS SERIES Published September 19 doi: 10.3354/meps09822 Mar Ecol Prog Ser Environmental determinants of latitudinal size-trends in cephalopods Rui Rosa1,*, Liliana Gonzalez2, Heidi M. Dierssen3, Brad A. Seibel4 1Laboratório Marítimo da Guia, Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal 2Department of Computer Science and Statistics, University of Rhode Island, 9 Greenhouse Road, Kingston, Rhode Island 02881, USA 3Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, Connecticut 06340-6048, USA 4Department of Biological Sciences, University of Rhode Island, 100 Flagg Road, Kingston, Rhode Island 02881, USA ABSTRACT: Understanding patterns of body size variation is a fundamental goal in ecology, but although well studied in the terrestrial biota, little is known about broad-scale latitudinal trends of body size in marine fauna and much less about the factors that drive them. We conducted a com- prehensive survey of interspecific body size patterns in coastal cephalopod mollusks, covering both hemispheres in the western and eastern Atlantic. We investigated the relationship between body size and thermal energy, resource and habitat availability and depth ranges. Both latitude and depth range had a significant effect on maximum body size in each of the major cephalopod groups (cuttlefishes, squids and octopuses). We observed significant negative associations between sea surface temperature (SST) and body size. No consistent relationships between body size and either net primary productivity (NPP), habitat extent (shelf area) or environmental varia- tion (range of SST and NPP) were found.
    [Show full text]
  • (Mesonychoteuthis Hamiltoni) and the Antarctic Toothfish (Dissostichus Mawsoni) A.V
    Journal of Natural History, 2015 Vol. 49, Nos. 41–42, 2483–2491, http://dx.doi.org/10.1080/00222933.2015.1040477 Alien vs. Predator: interactions between the colossal squid (Mesonychoteuthis hamiltoni) and the Antarctic toothfish (Dissostichus mawsoni) A.V. Remesloa*, M.R. Yakusheva and V. Laptikhovskyb aAtlantic Research Institute of Fisheries and Oceanography, Kaliningrad, Russia; bCEFAS, Lowestoft, UK (Received 16 December 2014; accepted 9 April 2015; first published online 2 June 2015) Data collected onboard two South Korean longliners in 2011–2014 targeting Antarctic toothfish provided insights into trophic interactions between two Antarctic top predators: the colossal squid Mesonychoteuthis hamiltoni and the Antarctic toothfish Dissostichus mawsoni. Adults of each species opportunistically prey upon weakened representatives of the other species: squid will feed on longline- caught toothfish, and toothfish on dying and dead squid. The highest occurrence of squid attacks was recorded in the Davis Sea and Commonwealth Sea, and the lowest in the Ross Sea. Squid depredation rates were around 1% on average, though regionally they might rise to 2–3%, which is of a similar magnitude to rates caused by sperm whales and killer whales in some areas. Keywords: longline; depredation; colossal squid; Antarctic toothfish; Mesonychoteuthis hamiltoni Introduction The colossal squid (Mesonychoteuthis hamiltoni Robson, 1925) is one of the largest known cephalopods that has ever existed, attaining a maximum mantle length (ML) of about 250 cm, and maximum recorded weight of 495 kg (Roper and Jereb 2010). The species was originally described from the remains found in a sperm whale (Physeter macrocephalus) stomach (Robson 1925) and until recently was recorded mostly from stomachs of these whales (Korabelnikov 1959; Klumov and Yukhov 1975; Clarke 1980; Filippova 2002).
    [Show full text]
  • Deep Sea Coloring Booklet
    SUBMARINE STEM Explore life in the deep sea Deep sea coloring booklet About XL Catlin XL Catlin, is the global brand used by XL Group PLC’s (NYSE:XL) insurance and reinsurance companies which provide property, casualty, professional and specialty products to industrial, commercial and professional firms, insurance companies and other enterprises throughout the world. Clients look to XL Catlin for answers to their most complex risks and to help move their world forward. XL Catlin is proud to sponsor research and educational programmes which explore how our planet’s oceans may be changing. The XL Catlin Deep Ocean Survey is its third major scientific sponsorship following the Catlin Arctic Surveys, (2009 – 2011) that investigated the impacts of changes to the Arctic Ocean, and the XL Catlin Seaview Survey (2012-2016) which created the world’s first digital baseline of coral reef health. To learn more visit XLCatlinOceansEducation.com. About Digital Explorer Digital Explorer is an award-winning education social enterprise based in London. A pioneer in the development of innovative real-world learning programmes, Digital Explorer supports teachers and students internationally to understand and engage with critical global issues from the oceans to cultural understanding. About Nekton Nekton combines world-class experience across multi-disciplinary marine research expeditions, submersible operations, multi-platform content creation and distribution, marketing and communications, scientific research, international collaborative networks and sustainable organisational development. WELCOME Welcome to the Submarine STEM (Science, Technology, Engineering & Math) Deep sea coloring booklet. We hope you enjoy learning more about the amazing creatures that live in the deep ocean. You can find out more about deep sea life and exploring the deep from other Submarine STEM resources, available for free download from nektonmission.
    [Show full text]