The Mollusk-Inspired Pokémon

Total Page:16

File Type:pdf, Size:1020Kb

The Mollusk-Inspired Pokémon Journal of Geek Studies jgeekstudies.org Pokémollusca: the mollusk-inspired Pokémon Rodrigo B. Salvador¹ & Daniel C. Cavallari² ¹ Museum of New Zealand Te Papa Tongarewa, New Zealand. ² Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Brazil. Emails: [email protected], [email protected] The phylum Mollusca appeared during which include mussels and clams. the Cambrian Period, over 500 million years ago, alongside most other animal groups Curious creatures that they are, mollusks (including the Chordata, the group we be- make nice “monsters” and are constantly long to). There are even some older fossils being featured in video games (Cavallari, that could be mollusks, although their iden- 2015; Salvador & Cunha, 2016; Salvador, tity is still hotly debated among scientists. 2017). One very famous game that features mollusks is Pokémon, a franchise that started Mollusks are a very biodiverse group. with two games released by Nintendo for We do not yet know the precise number of the Game Boy in 1996. More than 20 years species, since many are still unknown and later, the series is still strong, currently on being described every year. However, esti- the so-called seventh generation of core mates go from 70,000 to 200,000 (Rosenberg, games, but counting with several other 2014). And that’s just for the living species. video games, an animated series, films, a As such, mollusks have long been consid- card game, and tons of merchandise. Also, ered the second most diverse group of ani- there’s an eight generation of games on the mals – the first place belongs to arthropods. horizon. Mollusks can be found in almost all sorts Most monsters in Pokémon are based on of habitats: land, freshwater and marine, real animals (see, for instance, Tomotani, including the deep sea and hot vents. The 2014; Mendes et al., 2017; Kittel, 2018), so the only thing they can’t do is fly. goal of this article is to present those based on mollusks. Some of them were just broad- They are also a very unique group in ly based on a larger group of mollusks, terms of body shapes (morphology), in- such as ‘octopuses’, while others seem to cluding extremely disparate forms: snails, have been inspired by particular species. slugs, clams, mussels, squids, octopuses, Thus, we indicate the real species or group nautiluses, chitons, tusk shells, and the odd that served as inspiration for the monsters worm-like aplacophorans. And there were and explain a little bit about their biology. other forms yet, which are now extinct: am- Whenever possible, we outline specific fea- monoids, belemnites and rudists. Mollusks tures of the real animals that were trans- go from tiny snails less than a millimeter ported to the games (such as types, moves, long to giant squids, almost 20 meters long abilities, etc.). and the largest known invertebrates. The main groups of mollusks, however, are just three: Gastropoda, or gastropods, which include snails and slugs; Cephalop- LIST OF MOLLUSK POKÉMON oda, or cephalopods, which include squids We analyze each mollusk Pokémon be- and octopuses; and Bivalvia, or bivalves, low; they are listed in the same order as in 55 Salvador & Cavallari the National Pokédex (this number is given 2006). They do have incredible eyes with with a “#” on each entry). All the illustra- a very intricate structure that allows them tions of the Pokémon reproduced here are to measure amounts and intensity of light the official art by Ken Sugimori and were coming from different directions (Morton, extracted from Bulbapedia (https://bulba- 2008). As far as we know, scallops can dis- pedia.bulbagarden.net/). Likewise, all in- criminate light from dark, spot surround- formation on the Pokémon (size, weight, ing algae, and perceive moving objects or and description of abilities and moves) obstacles (and react accordingly). Judging were taken from their entries in Bulbapedia, by its real-world counterparts, Shellder considering only the game’s current gener- shouldn’t necessarily have a hard time aim- ation (Gen VII). ing its “Clamp” or “Razor Shell” attacks, hiding from someone else’s attacks, or The systematic classification of the mol- swimming away from menacing foes. And lusks used here follows Bouchet et al. (2010, yes, scallops also have awesome swimming 2017) and WoRMS (World Register of Ma- abilities, which are also not common among rine Species). Images of real mollusks were bivalves in general. Most bivalves are very extracted from Wikimedia Commons, ex- good swimmers during their early days as cept where otherwise noted; credits are giv- planktonic larvae (known as veligers), but en in each figure’s caption. become sessile when adults, spending their lives burrowed in the sand or attached to a rock or other hard surface. Shellder (#090; Type: Water) Class: Bivalvia (bivalves) Order: Pectinida (scallops and oysters) Family: Pectinidae (scallops) With its googly eyes and what seems to be a hanging tongue, Shellder looks some- what scared or mesmerized (or perhaps both). This small shell-bearing fellow is Top: Scallops on the seabed (CSIRO, 2001). Bottom: surely designed after a bivalve mollusk. Close-up of the blue eyes (M. Krummins, 2014). And, curiously enough, the large eyes are actually not out of character: even though As for the shell itself, Shellder seems to most bivalves have no eyes, the Pectinida, belong to the family Pectinidae because a.k.a. the scallops and their allies, are an of its overall shape. Even so, Shellder’s amazing exception. These animals are found tongue, in particular, is a very interesting in all of the planet’s oceans and the family topic. It looks very similar to a bivalve’s Pectinidae is in fact one of the largest ma- foot, a bulky, muscular structure that al- rine bivalve families, including over 300 liv- lows it to burrow itself into the sand, among ing species belonging to 60 genera (Waller, other things. However, though the foot is Journal of Geek Studies 6(1): 55-75 (2019). Pokémollusca very conspicuous in most bivalve lineages, times larger and heavier than Shellder, it is reduced in pectinids (Shumway & Par- spanning up to 1.5 m wide and weighing sons, 2011). At the same time, though they over 130 kg, a size unattainable for any re- are never protruded, some of the animal’s al-world spondylid, but still not entirely fic- organs such as the gonads are often visible tional: some bivalves in the family Tridacni- from the outside in real world bivalves, and dae (a.k.a. giant clams) can weight over 200 they can resemble a tongue hanging be- kg (Knop, 1996). Nevertheless, even though tween open lips. We do, however, prefer to spondylids certainly do not grow to such think of Shellder’s tongue as a foot for ob- humongous proportions, the increased size vious reasons. Pectinids usually don’t grow and the prominent, more numerous spikes up to the huge proportions of 0.3 m and 4 make up for a more menacing and stron- kg informed by the Pokédex, but other re- ger version of the childly-looking Shellder, al-world clams can become even larger (see with a malicious look as a bonus. Cloyster below). Cloyster (#091; Type: Water / Ice) Class: Bivalvia (bivalves) Order: Pectinida (scallops and oysters) Family: Spondylidae (thorny oysters) Genus: Spondylus Linnaeus, 1758 A rather fierce-looking version of its pre-evolved state, Cloyster sports a larger, thicker and rougher shell, complete with spikes/thorns, which are typical features of the bivalve family Spondylidae. Common- ly known as thorny or spiky oysters (they are not part of the so-called “true oysters”, Top: Spondylus regius Linnaeus, 1758 (D. Descouens, which belong to the family Ostreidae), 2009). Bottom: Spondylus sp. (F. Ducarme, 2018). spondylids are close relatives of the com- mon scallops (Matsumoto & Hayami, 2000). The attacks are all very similar to Shell- Among many other striking morphological der’s, with the addition of a “Spike Cannon” characters, such as their many eyes spread move (yet another reference to the thorny along the animal’s mantle, pectinids and Spondylus shells). Likewise, if Shellder is spondylids share an overall similar shell based on pectinids and Cloyster on spon- outline but the latter are usually bulkier and dylids, the “close” relationship between the spikier. two Pokémon thus elegantly (though hard- As for being bulkier, Cloyster is many ly intentionally) reflects their real-world 57 Salvador & Cavallari kinship. tar are Rock-type. On a side note, the Helix Fossil recently spun its own mythology on Of course, spondylids are not the only Twitch Plays Pokémon, where it acted as a spiky bivalves out there. The Japanese spiky sort of oracle to the players (for the whole oyster, Saccostraea kegaki Torigo & Inaba, story, see Salvador, 2014). 1981 (family Ostreidae), for example, also has a spiky shell that seems quite uninviting Despite being very similar to a real am- to the touch. But spikes aside, it lacks some monoid fossil, Omanyte bears a huge flaw other traits observable in Cloyster that indi- in its design. The soft body is positioned in cates it was probably inspired by real-world an inverted manner in relation to the shell. spondylids, e.g., the bulkier shell. Besides, That is, Omanyte’s body is positioned like true oysters have very variable shape, not the body of a snail (a gastropod), rather very similar to Cloyster’s symmetrical, scal- than like the body of a cephalopod (Sal- lop-like profile. Its shell also includes wing- vador, 2014). Omanyte is depicted with 10 like or ear-like projections located at the arms, but the real numbers an ammonoid rear (called auricles), which also appear in would actually have is unknown because some spondylid species (Shumway & Par- other living cephalopods have a variable sons, 2011).
Recommended publications
  • A Review of Southern Ocean Squids Using Nets and Beaks
    Marine Biodiversity (2020) 50:98 https://doi.org/10.1007/s12526-020-01113-4 REVIEW A review of Southern Ocean squids using nets and beaks Yves Cherel1 Received: 31 May 2020 /Revised: 31 August 2020 /Accepted: 3 September 2020 # Senckenberg Gesellschaft für Naturforschung 2020 Abstract This review presents an innovative approach to investigate the teuthofauna from the Southern Ocean by combining two com- plementary data sets, the literature on cephalopod taxonomy and biogeography, together with predator dietary investigations. Sixty squids were recorded south of the Subtropical Front, including one circumpolar Antarctic (Psychroteuthis glacialis Thiele, 1920), 13 circumpolar Southern Ocean, 20 circumpolar subantarctic, eight regional subantarctic, and 12 occasional subantarctic species. A critical evaluation removed five species from the list, and one species has an unknown taxonomic status. The 42 Southern Ocean squids belong to three large taxonomic units, bathyteuthoids (n = 1 species), myopsids (n =1),andoegopsids (n = 40). A high level of endemism (21 species, 50%, all oegopsids) characterizes the Southern Ocean teuthofauna. Seventeen families of oegopsids are represented, with three dominating families, onychoteuthids (seven species, five endemics), ommastrephids (six species, three endemics), and cranchiids (five species, three endemics). Recent improvements in beak identification and taxonomy allowed making new correspondence between beak and species names, such as Galiteuthis suhmi (Hoyle 1886), Liguriella podophtalma Issel, 1908, and the recently described Taonius notalia Evans, in prep. Gonatus phoebetriae beaks were synonymized with those of Gonatopsis octopedatus Sasaki, 1920, thus increasing significantly the number of records and detailing the circumpolar distribution of this rarely caught Southern Ocean squid. The review extends considerably the number of species, including endemics, recorded from the Southern Ocean, but it also highlights that the corresponding species to two well-described beaks (Moroteuthopsis sp.
    [Show full text]
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Metabolic Response of Antarctic Pteropods (Mollusca: Gastropoda) to Food Deprivation and Regional Productivity
    Vol. 441: 129–139, 2011 MARINE ECOLOGY PROGRESS SERIES Published November 15 doi: 10.3354/meps09358 Mar Ecol Prog Ser Metabolic response of Antarctic pteropods (Mollusca: Gastropoda) to food deprivation and regional productivity Amy E. Maas1,*, Leanne E. Elder1, Heidi M. Dierssen2, Brad A. Seibel1 1Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA 2Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, USA ABSTRACT: Pteropods are an abundant group of pelagic gastropods that, although temporally and spatially patchy in the Southern Ocean, can play an important role in food webs and biochem- ical cycles. We found that the metabolic rate in Limacina helicina antarctica is depressed (~23%) at lower mean chlorophyll a (chl a) concentrations in the Ross Sea. To assess the specific impact of food deprivation on these animals, we quantified aerobic respiration and ammonia (NH3) produc- tion for 2 dominant Antarctic pteropods, L. helicina antarctica and Clione limacina antarctica. Pteropods collected from sites west of Ross Island, Antarctica were held in captivity for a period of 1 to 13 d to determine their metabolic response to laboratory-induced food deprivation. L. helicina antarctica reduced oxygen consumption by ~20% after 4 d in captivity. Ammonia excretion was not significantly affected, suggesting a greater reliance on protein as a substrate for cellular res- piration during starvation. The oxygen consumption rate of the gymnosome, C. li macina antarc- tica, was reduced by ~35% and NH3 excretion by ~55% after 4 d without prey. Our results indi- cate that there is a link between the large scale chl a concentrations of the Ross Sea and the baseline metabolic rate of pteropods which impacts these animals across multiple seasons.
    [Show full text]
  • Tropical Range Extension for the Temperate, Endemic South-Eastern Australian Nudibranch Goniobranchus Splendidus (Angas, 1864)
    diversity Article Tropical Range Extension for the Temperate, Endemic South-Eastern Australian Nudibranch Goniobranchus splendidus (Angas, 1864) Nerida G. Wilson 1,2,*, Anne E. Winters 3 and Karen L. Cheney 3 1 Western Australian Museum, 49 Kew Street, Welshpool WA 6106, Australia 2 School of Animal Biology, University of Western Australia, Crawley 6009 WA, Australia 3 School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia; [email protected] (A.E.W.); [email protected] (K.L.C.) * Correspondence: [email protected]; Tel.: +61-08-9212-3844 Academic Editor: Michael Wink Received: 25 April 2016; Accepted: 15 July 2016; Published: 22 July 2016 Abstract: In contrast to many tropical animals expanding southwards on the Australian coast concomitant with climate change, here we report a temperate endemic newly found in the tropics. Chromodorid nudibranchs are bright, colourful animals that rarely go unnoticed by divers and underwater photographers. The discovery of a new population, with divergent colouration is therefore significant. DNA sequencing confirms that despite departures from the known phenotypic variation, the specimen represents northern Goniobranchus splendidus and not an unknown close relative. Goniobranchus tinctorius represents the sister taxa to G. splendidus. With regard to secondary defences, the oxygenated terpenes found previously in this specimen are partially unique but also overlap with other G. splendidus from southern Queensland (QLD) and New South Wales (NSW). The tropical specimen from Mackay contains extracapsular yolk like other G. splendidus. This previously unknown tropical population may contribute selectively advantageous genes to cold-water species threatened by climate change.
    [Show full text]
  • Shellfish Allergy - an Asia-Pacific Perspective
    Review article Shellfish allergy - an Asia-Pacific perspective 1 1 1 2 Alison Joanne Lee, Irvin Gerez, Lynette Pei-Chi Shek and Bee Wah Lee Summary Conclusion: Shellfish allergy is common in the Background and Objective: Shellfish forms a Asia Pacific. More research including food common food source in the Asia-Pacific and is challenge-proven subjects are required to also growing in the West. This review aims to establish the true prevalence, as well as to summarize the current literature on the understand clinical cross reactivity and epidemiology and research on shellfish allergy variations in clinical features. (Asian Pac J Allergy with particular focus on studies emerging from Immunol 2012;30:3-10) the Asia-Pacific region. Key words: Shellfish allergy, Prawn allergy, Shrimp Data Sources: A PubMed search using search allergy, Food allergy, Anaphylaxis, Tropomyosin, strategies “Shellfish AND Allergy”, “Shellfish Allergy Asia”, and “Shellfish AND anaphylaxis” Allergens, Asia was made. In all, 244 articles written in English were reviewed. Introduction Shellfish, which include crustaceans and Results: Shellfish allergy in the Asia-Pacific molluscs, is one of the most common causes of food ranks among the highest in the world and is the allergy in the world in both adults and children, and most common cause of food-induced anaphylaxis. it has been demonstrated to be one of the top Shellfish are classified into molluscs and ranking causes of food allergy in children in the arthropods. Of the arthropods, the crustaceans Asia-Pacific.1-3 In addition, shellfish allergy usually in particular Penaeid prawns are the most persists, is one of the leading causes of food-induced common cause of allergy and are therefore most anaphylaxis, and has been implicated as the most extensively studied.
    [Show full text]
  • A New Species of Crayfish (Decapoda: Cambaridae) Of
    CAMBARUS (TUBERICAMBARUS) POLYCHROMATUS (DECAPODA: CAMBARIDAE) A NEW SPECIES OF CRAYFISH FROM OHIO, KENTUCKY, INDIANA, ILLINOIS AND MICHIGAN Roger F Thoma Department of Evolution, Ecology, and Organismal Biology Museum of Biological Diversity 1315 Kinnear Rd., Columbus, Ohio 43212-1192 Raymond F. Jezerinac Deceased, 21 April 1996 Thomas P. Simon Division of Crustaceans, Aquatic Research Center, Indiana Biological Survey, 6440 South Fairfax Road, Bloomington, Indiana 47401 2 Abstract. --A new species of crayfish Cambarus (Tubericambarus) polychromatus is described from western Ohio, Indiana, southern and east-central Illinois, western Kentucky, and southern Michigan areas of North America. Of the recognized members of the subgenus, it is most closely related to Cambarus (T.) thomai, found primarily in eastern Ohio, Kentucky, and Tennessee and western West Virginia. It is easily distinguished from other recognized members of the subgenus by its strongly deflected rostral tip. __________________________________ Raymond F. Jezerinac (RFT) studied the Cambarus diogenes species complex for two decades. He described one new species and erected the subgenus Tubericambarus (Jezerinac, 1993) before his untimely death in 1996. This paper is the continuing efforts of the senior author (RFT) to complete Ray’s unfinished work. Ray had long recognized this species as distinct, but was delayed in its description by his work on the crayfishes of West Virginia (Jezerinac et. al., 1995). After his death, a partial manuscript was found on Ray’s computer at the Ohio State University Museum of Biodiversity, Columbus, Ohio. That manuscript served as the impetus for this paper. This species first came to the 3 attention of RFJ and RFT in 1978 when conducting research into the Cambarus bartonii species complex.
    [Show full text]
  • Validation of Holoplanktonic Molluscan Taxa from the Oligo- Miocene of the Maltese Archipelago, Introduced in Violation with ICZN Regulations
    Cainozoic Research, 9(2), pp. 189-191, December 2012 ! ! ! Validation of holoplanktonic molluscan taxa from the Oligo- Miocene of the Maltese Archipelago, introduced in violation with ICZN regulations Arie W. Janssen Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; currently: 12 Triq tal’Hamrija, Xewkija XWK 9033, Gozo, Malta; email: [email protected] Received 29 August 2012, accepted 6 September 2012 Five gymnosomatous molluscan taxa were recently introduced applying ‘open generic nomenclature’ by using the indication ‘Genus Clionidarum’ instead of a formal genus name and therefore violating ICZN art. 11.9.3 of the Code. Herein those taxa are validated by placing them in the type genus of the family Clionidae, followed by a question mark indicating here that they might as well belong to any other of the known (or as yet unknown) genera in the family Clionidae . Introduction Clionidarum’ as used in my paper indeed cannot be con- sidered to be an unambiguous genus name. In my study of Maltese fossil holoplanktonic molluscs I herewith validate the new names by combining them with (Janssen, 2012) a number of new species of gymnosoma- the unambiguous genus name Clione, followed by a ques- tous larval shells were introduced, more or less resembling tion mark, indicating here that those species might as well the few Recent larval shells known from this group of Gas- belong to any other known or unknown genus in the tropoda, but obviously (also considering their ages) repre- Clionidae. senting undescribed species. Recent Gymnosomata are RGM-registration numbers refer to the collections of Natu- shell-less in the adult stage, and their larval shell is shed at ralis Biodiversity Center, Palaeontology Department (Lei- metamorphosis from larva to adult.
    [Show full text]
  • Making Ends Meet in the Ross
    Water & Atmosphere 16(2) 2008 Marine Ecosystems Making ends meet in the Ross Sea Matt Pinkerton, Janet Bradford-Grieve, and Stuart Hanchet are developing a mass-balance model to learn how animals fit together in the Ross Sea ecosystem. fter braving some of the worst sea ice in decades, NIWA scientists returned in late March from a seven- Aweek voyage to the Ross Sea region of Antarctica. Among our goals for the voyage was to learn more about the region’s predator–prey links and the abundance of some important and poorly understood species. Antarctica's unique ecosystems Compared to temperate regions, the waters of the Southern n o rt e Ocean have low primary productivity – the production k in P t of organic matter by plants that is the basis of marine food at M e: webs. In temperate waters, like those around New Zealand, ag Im phytoplankton grows during most of the year. But in the Ross Sea there’s a long period between late May and mid July when the region is in 24-hour darkness and no plants can grow. The Based on data from NASA satellites, this image shows the phyto- plankton concentration in the Ross Sea. High concentrations are year’s entire primary production happens in brief events in the shown in green and red, lower concentrations are blue and purple. spring and summer, and these bursts of high productivity are (Data used courtesy of NASA.) often very localised. Another challenge for Antarctic animals is the dramatic change through the year to the available of the larger, mobile animals leave the region completely during environment, as sea ice forms in the autumn and then melts winter, including minke whales, most seals, petrels, and Adélie in the spring.
    [Show full text]
  • Australasian Nudibranchnews No.9 May 1999 Editors Notes Indications Are Readership Is Increasing
    australasian nudibranchNEWS No.9 May 1999 Editors Notes Indications are readership is increasing. To understand how much I’m Chromodoris thompsoni asking readers to send me an email. Your participation, comments and feed- Rudman, 1983 back is appreciated. The information will assist in making decisions about dis- tribution and content. The “Nudibranch of the Month” featured on our website this month is Hexabranchus sanguineus. The whole nudibranch section will be updated by the end of the month. To assist anNEWS to provide up to date information would authors include me on their reprint mailing list or send details of the papers. Name Changes and Updates This column is to help keep up to date with mis-identifications or name changes. An updated (12th May 1999) errata for Neville Coleman’s 1989 Nudibranchs of the South Pacific is available upon request from the anNEWS editor. Hyselodoris nigrostriata (Eliot, 1904) is Hypselodoris zephyra Gosliner & © Wayne Ellis 1999 R. Johnson, 1999. Page 33C Nudibranchs of the South Pacific, Neville Coleman 1989 A small Australian chromodorid with Page 238C Nudibranchs and Sea Snails Indo Pacific Field Guide. an ovate body and a fairly broad mantle Helmut Debilius Edition’s One (1996) and Edition Two (1998). overlap. The mantle is pale pink with a blu- ish tinged background. Chromodoris loringi is Chromodoris thompsoni. The rhinophores are a translucent Page 34C Nudibranchs of the South Pacific. N. Coleman 1989. straw colour with cream dashes along the Page 32 Nudibranchs. Dr T.E. Thompson 1976 edges of the lamellae. The gills are coloured similiarly. In a recent paper in the Journal of Molluscan Studies, Valdes & Gosliner This species was described by Dr Bill have synonymised Miamira and Orodoris with Ceratosoma.
    [Show full text]
  • Phylum MOLLUSCA
    285 MOLLUSCA: SOLENOGASTRES-POLYPLACOPHORA Phylum MOLLUSCA Class SOLENOGASTRES Family Lepidomeniidae NEMATOMENIA BANYULENSIS (Pruvot, 1891, p. 715, as Dondersia) Occasionally on Lafoea dumosa (R.A.T., S.P., E.J.A.): at 4 positions S.W. of Eddystone, 42-49 fm., on Lafoea dumosa (Crawshay, 1912, p. 368): Eddystone, 29 fm., 1920 (R.W.): 7, 3, 1 and 1 in 4 hauls N.E. of Eddystone, 1948 (V.F.) Breeding: gonads ripe in Aug. (R.A.T.) Family Neomeniidae NEOMENIA CARINATA Tullberg, 1875, p. 1 One specimen Rame-Eddystone Grounds, 29.12.49 (V.F.) Family Proneomeniidae PRONEOMENIA AGLAOPHENIAE Kovalevsky and Marion [Pruvot, 1891, p. 720] Common on Thecocarpus myriophyllum, generally coiled around the base of the stem of the hydroid (S.P., E.J.A.): at 4 positions S.W. of Eddystone, 43-49 fm. (Crawshay, 1912, p. 367): S. of Rame Head, 27 fm., 1920 (R.W.): N. of Eddystone, 29.3.33 (A.J.S.) Class POLYPLACOPHORA (=LORICATA) Family Lepidopleuridae LEPIDOPLEURUS ASELLUS (Gmelin) [Forbes and Hanley, 1849, II, p. 407, as Chiton; Matthews, 1953, p. 246] Abundant, 15-30 fm., especially on muddy gravel (S.P.): at 9 positions S.W. of Eddystone, 40-43 fm. (Crawshay, 1912, p. 368, as Craspedochilus onyx) SALCOMBE. Common in dredge material (Allen and Todd, 1900, p. 210) LEPIDOPLEURUS, CANCELLATUS (Sowerby) [Forbes and Hanley, 1849, II, p. 410, as Chiton; Matthews. 1953, p. 246] Wembury West Reef, three specimens at E.L.W.S.T. by J. Brady, 28.3.56 (G.M.S.) Family Lepidochitonidae TONICELLA RUBRA (L.) [Forbes and Hanley, 1849, II, p.
    [Show full text]
  • Interspecific Differences in the Reaction to Atropine and in the Histology of the Esophagi of the Common California Sea Hares of the Genus Aplysia
    Interspecific Differences in the Reaction to Atropine and in the Histology of the Esophagi of the Common California Sea Hares of the Genus Aplysia LINDSAY R. WINKLER and BERNARD E. TILTON! DURING A STUDY of the effects of certain cho­ through two 5 gal. carboys maintained in a re­ linergic agents on the tissues of Aplysia, it was frigerator. It was thus possible to keep the water noted that the esophagi of the two California clean and cooled to approximately the tempera­ species (A. califarnica and A. vaccaria) reacted ture of the intertidal environment of these ani­ divergently to atropine. This is of interest to mals. Parsley obtained in the local market was both the taxonomy and physiology of the genus eaten in quantity by A. califarnica but was re­ as well as potentially to a better understanding fused by A. vaccaria. Consequently all speci­ of the mode of action of atropine. Other drugs mens of the latter were used as soon as prac­ commonly known to show activity on muscle ticable. tissue were also tested on the two species to Animals were sacrificed by incising the entire determine if any other interspecifically diver­ length of the foot, turning the animal inside out gent reactions existed. These pharmacological and removing the esophagus after tying it at reactions will be reported later. both ends. The esophagi were suspended from Botazzi (1898) observed the periodic con­ a plastic holder in conventional baths using 30 tractions of the esophagus of the European ml. of sea water. The movable end of the esoph­ Aplysia and made a thorough study of its phys­ agus was ligated to a Grass force-displacement iology.
    [Show full text]
  • Molluscs of the Dürrenstein Wilderness Area
    Molluscs of the Dürrenstein Wilderness Area S a b i n e F ISCHER & M i c h a e l D UDA Abstract: Research in the Dürrenstein Wilderness Area (DWA) in the southwest of Lower Austria is mainly concerned with the inventory of flora, fauna and habitats, interdisciplinary monitoring and studies on ecological disturbances and process dynamics. During a four-year qualitative study of non-marine molluscs, 96 sites within the DWA and nearby nature reserves were sampled in cooperation with the “Alpine Land Snails Working Group” located at the Natural History Museum of Vienna. Altogether, 84 taxa were recorded (72 land snails, 12 water snails and mussels) including four endemics and seven species listed in the Austrian Red List of Molluscs. A reference collection (empty shells) of molluscs, which is stored at the DWA administration, was created. This project was the first systematic survey of mollusc fauna in the DWA. Further sampling might provide additional information in the future, particularly for Hydrobiidae in springs and caves, where detailed analyses (e.g. anatomical and genetic) are needed. Key words: Wilderness Dürrenstein, Primeval forest, Benign neglect, Non-intervention management, Mollusca, Snails, Alpine endemics. Introduction manifold species living in the wilderness area – many of them “refugees”, whose natural habitats have almost In concordance with the IUCN guidelines, research is disappeared in today’s over-cultivated landscape. mandatory for category I wilderness areas. However, it may not disturb the natural habitats and communities of the nature reserve. Research in the Dürrenstein The Dürrenstein Wilderness Area Wilderness Area (DWA) focuses on providing invento- (DWA) ries of flora and fauna, on interdisciplinary monitoring The Dürrenstein Wilderness Area (DWA) was as well as on ecological disturbances and process dynamics.
    [Show full text]