Metabolic Response of Antarctic Pteropods (Mollusca: Gastropoda) to Food Deprivation and Regional Productivity

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Response of Antarctic Pteropods (Mollusca: Gastropoda) to Food Deprivation and Regional Productivity Vol. 441: 129–139, 2011 MARINE ECOLOGY PROGRESS SERIES Published November 15 doi: 10.3354/meps09358 Mar Ecol Prog Ser Metabolic response of Antarctic pteropods (Mollusca: Gastropoda) to food deprivation and regional productivity Amy E. Maas1,*, Leanne E. Elder1, Heidi M. Dierssen2, Brad A. Seibel1 1Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA 2Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, USA ABSTRACT: Pteropods are an abundant group of pelagic gastropods that, although temporally and spatially patchy in the Southern Ocean, can play an important role in food webs and biochem- ical cycles. We found that the metabolic rate in Limacina helicina antarctica is depressed (~23%) at lower mean chlorophyll a (chl a) concentrations in the Ross Sea. To assess the specific impact of food deprivation on these animals, we quantified aerobic respiration and ammonia (NH3) produc- tion for 2 dominant Antarctic pteropods, L. helicina antarctica and Clione limacina antarctica. Pteropods collected from sites west of Ross Island, Antarctica were held in captivity for a period of 1 to 13 d to determine their metabolic response to laboratory-induced food deprivation. L. helicina antarctica reduced oxygen consumption by ~20% after 4 d in captivity. Ammonia excretion was not significantly affected, suggesting a greater reliance on protein as a substrate for cellular res- piration during starvation. The oxygen consumption rate of the gymnosome, C. li macina antarc- tica, was reduced by ~35% and NH3 excretion by ~55% after 4 d without prey. Our results indi- cate that there is a link between the large scale chl a concentrations of the Ross Sea and the baseline metabolic rate of pteropods which impacts these animals across multiple seasons. KEY WORDS: Pteropod · Zooplankton · Antarctica · Metabolism · Feeding · Temperature Resale or republication not permitted without written consent of the publisher INTRODUCTION regions where their populations are dense, their grazing results in a substantial flux of biogenic car- Limacina helicina antarctica (hereafter Limacina) bon from surface waters as strings of mucus-bound is a thecosomatous (shelled) pteropod that is often a discarded particles (‘pseudo-feces’, Gilmer & Harbi- major component of the planktonic community in the son 1986), remnants of mucus webs, and waste pel- Ross Sea (Hopkins 1987, Hunt et al. 2008, Ross et al. lets, sink to depth. Ac cornero et al. (2003) found that, 2008, Elliott et al. 2009). These omnivorous pelagic during certain seasons, Limacina fecal pellets were gastropods use mucus webs and ciliary action to responsible for 95.5% of the mass flux in the Ross entrain large quantities of phytoplankton, efficiently Sea. Further research suggested that pteropods ingesting ~2000 to 6000 ng of pigment ind.−1 d−1 could contribute up to 72% of the Ross Sea organic (Pakhomov et al. 2002). The unique mucus webs of carbon export during bloom periods (Manno et al. thecosome pteropods allow them to trap particles 2010). from 2 µm to ~1 mm, a size range which enables Due to their aragonite shells, thecosomatous ptero- them to feed on diatoms as well as both the unicellu- pods are also responsible for a large portion of cal- lar and colonial aggregates of Phaeocystis antarctica cium carbonate (CaCO3) flux in polar waters. These ice algae (Hopkins 1987, Gilmer & Harbison 1991). In shells have been documented to contribute substan- *Email: [email protected] © Inter-Research 2011 · www.int-res.com 130 Mar Ecol Prog Ser 441: 129–139, 2011 tially to the carbonate flux south of the Polar Front ability is linked with a rise in metabolic rate, referred (Collier et al. 2000, Honjo et al. 2000, Honjo 2004). to as the specific dynamic action (SDA). SDA is a However, the pteropod contribution to the biogeo- result of the energy required to mechanically process chemical carbon cycling in Antarctic waters is still the food and the biochemical cost of processing and not well understood, in part due to the variability in assimilating the nutrients (for review see Secor 2009). pteropod population density, lack of knowledge As a result of lower basal metabolic rates in frigid about life cycles, lack of direct measurements of dis- waters, the SDA of polar marine ectotherms often solution and sinking rates and an incomplete under- results in a lower absolute increase in oxygen con- standing of metabolic rates (Hunt et al. 2008). This sumption, but it has been shown that the effect lasts dearth of information about pteropods has become for a longer period of time (Peck & Veal 2001). The notable as the growing concerns about ocean acidifi- extended duration of SDA in these species impacts cation have highlighted the potential susceptibility of longer term patterns of production in Antarctic spe- marine calcifiers in polar regions (Seibel & Fabry cies. 2003, Orr et al. 2005, Fabry et al. 2008). There has been much speculation as to how global Aside from being prominent primary consumers of climate change will affect the already highly variable phytoplankton and important contributors to the assemblages of phytoplankton in the Southern organic carbon and CaCO3 cycles in the Ross Sea, Ocean, with uncertain implications for the carbon thecosomes are prey for seabirds, whales, fish, and budget and living biomass production (Sarmiento et crustaceans (Lalli & Gilmer 1989, Foster & Mont- al. 1998, Arrigo et al. 1999, Moline et al. 2008). Irre- gomery 1993, Hunt et al. 2008). Limacina is also the spective of whether phytoplankton mass increases or exclusive food for the gym no somatous pteropod decreases, we need a clear understanding of how Clione limacina antarctica (hereafter Clione) (Gil mer changing productivity directly impacts important pri- & Lalli 1990). All gymnosome pteropods studied to mary and secondary consumer zooplankton species. date are feeding specialists on thecosomes, consum- This study presents laboratory experiments which ing the soft bodies of their prey and discarding the compare the oxygen consumption and ammonia empty CaCO3 shells. This has led to an evolutionary excretion during the first 1 to 3 d of food deprivation arms race between the families, which links the to the next 4 to 13 d in Clione and Limacina. These behavior, morphology, and physiology of each preda- measurements inform our analysis of the metabolic tor-prey pair (Seibel et al. 2007). Very little is known rate measurements for the 2 dominant pteropod spe- about the place of Clione in the Southern Ocean food cies in the Ross Sea, Antarctica, over 5 separate sea- web. It is little reported from the guts of Antarctic sons. Our data extends previous observations made organisms, perhaps due to its novel antifeedant com- by Seibel & Dierssen (2003) to an unprecedented 5 yr pound, pteroenone, which has been shown to deter a time series that illuminates an important relationship number of fishes from feeding on it (Bryan et al. between metabolism and regional productivity. 1995). Little to no research has assessed how the biol- ogy or feeding habits of Clione might affect the bio- geochemical processes in this region. However, the METHODS particularities of its diet result in an extremely high assimilation efficiency and an unambiguous source Collection of prey (Conover & Lalli 1974), which make it a good model for investigating trophic dynamics. Ross Island is located just off the coast of the Production (growth and reproduction) in the Antarctic continent in the Ross Sea, south of New Southern Ocean is generally limited by food avail- Zealand. Here, at McMurdo Station and in the north- ability rather than temperature (Clarke 1988). Phyto- ern ice-free shorelines, we caught pteropods for our plankton levels in polar seas have been linked to in study during January and February of 2007 and 2008 situ growth rates of Antarctic krill Euphausia superba (Fig. 1). At Barne Beach, Cape Bird, Cape Royds, and both within and between seasons, with krill popula- Cape Evans, organisms were hand captured using tions responding to changing phytoplankton popula- 500 ml beakers attached to long handles, sometimes tions within a week or less (Ross et al. 2000). The referred to as ‘jelly dippers’. The pteropods were ability to respond to fluctuating food levels in a short carefully placed in plastic bottles filled with ambient period of time allows polar organisms to take advan- seawater, packed in coolers and returned to the lab- tage of the highly sporadic availability of food. The oratory at McMurdo station. There we immediately increase in growth rate during periods of food avail- transferred the pteropods into a room refrigerated to Maas et al.: Antarctic pteropod metabolic response to regional productivity 131 balance before being frozen in liquid nitrogen. Stud- ies of Limacina were conducted using the same methodology, except that individuals were incubated in 10 ml syringes because of their smaller mass. To accurately weigh these organisms, water was gently blotted from the aperture and the outside of the shell. The amount of oxygen consumed and nitrogen excreted was determined by calculating the differ- ence between control and experimental concentra- tions and incorporating the adjusted volume of water, wet mass of the organism, and time elapsed. Metabolic rate (Y) was related to wet mass (M) according to the power regression Y = aMb, where a Fig. 1. Sampling sites on Ross Island (~162° to 171° E, ~77° to 78° S). Pteropods were collected with jelly dippers from all is a normalization constant and b is the scaling coef- coastal ice-free sites and returned to the laboratory at ficient. These coefficients were then used to compare McMurdo Station the oxygen consumption rates (R) of specimens over their normothermic range (T = +2 to −2°C) resulting −2°C and moved them into 0.2 µm filtered seawater in a temperature coefficient (Q10), where Q10 = [(T2−T1)/10] in 1 l nalgene bottles.
Recommended publications
  • Validation of Holoplanktonic Molluscan Taxa from the Oligo- Miocene of the Maltese Archipelago, Introduced in Violation with ICZN Regulations
    Cainozoic Research, 9(2), pp. 189-191, December 2012 ! ! ! Validation of holoplanktonic molluscan taxa from the Oligo- Miocene of the Maltese Archipelago, introduced in violation with ICZN regulations Arie W. Janssen Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; currently: 12 Triq tal’Hamrija, Xewkija XWK 9033, Gozo, Malta; email: [email protected] Received 29 August 2012, accepted 6 September 2012 Five gymnosomatous molluscan taxa were recently introduced applying ‘open generic nomenclature’ by using the indication ‘Genus Clionidarum’ instead of a formal genus name and therefore violating ICZN art. 11.9.3 of the Code. Herein those taxa are validated by placing them in the type genus of the family Clionidae, followed by a question mark indicating here that they might as well belong to any other of the known (or as yet unknown) genera in the family Clionidae . Introduction Clionidarum’ as used in my paper indeed cannot be con- sidered to be an unambiguous genus name. In my study of Maltese fossil holoplanktonic molluscs I herewith validate the new names by combining them with (Janssen, 2012) a number of new species of gymnosoma- the unambiguous genus name Clione, followed by a ques- tous larval shells were introduced, more or less resembling tion mark, indicating here that those species might as well the few Recent larval shells known from this group of Gas- belong to any other known or unknown genus in the tropoda, but obviously (also considering their ages) repre- Clionidae. senting undescribed species. Recent Gymnosomata are RGM-registration numbers refer to the collections of Natu- shell-less in the adult stage, and their larval shell is shed at ralis Biodiversity Center, Palaeontology Department (Lei- metamorphosis from larva to adult.
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • An Overview of the Fossil Record of Pteropoda (Mollusca, Gastropoda, Heterobranchia)
    Cainozoic Research, 17(1), pp. 3-10 June 2017 3 An overview of the fossil record of Pteropoda (Mollusca, Gastropoda, Heterobranchia) Arie W. Janssen1 & Katja T.C.A. Peijnenburg2, 3 1 Naturalis Biodiversity Center, Marine Biodiversity, Fossil Mollusca, P.O. Box 9517, 2300 RA Leiden, The Nether­ lands; [email protected] 2 Naturalis Biodiversity Center, Marine Biodiversity, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Katja.Peijnen­ [email protected] 3 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GE Am­ sterdam, The Netherlands. Manuscript received 23 January 2017, revised version accepted 14 March 2017 Based on the literature and on a massive collection of material, the fossil record of the Pteropoda, an important group of heterobranch marine, holoplanktic gastropods occurring from the late Cretaceous onwards, is broadly outlined. The vertical distribution of genera is illustrated in a range chart. KEY WORDS: Pteropoda, Euthecosomata, Pseudothecosomata, Gymnosomata, fossil record Introduction Thecosomata Mesozoic Much current research focusses on holoplanktic gastro- pods, in particular on the shelled pteropods since they The sister group of pteropods is now considered to belong are proposed as potential bioindicators of the effects of to Anaspidea, a group of heterobranch gastropods, based ocean acidification e.g.( Bednaršek et al., 2016). This on molecular evidence (Klussmann-Kolb & Dinapoli, has also led to increased interest in delimiting spe- 2006; Zapata et al., 2014). The first known species of cies boundaries and distribution patterns of pteropods pteropods in the fossil record belong to the Limacinidae, (e.g. Maas et al., 2013; Burridge et al., 2015; 2016a) and are characterised by sinistrally coiled, aragonitic and resolving their evolutionary history using molecu- shells.
    [Show full text]
  • Canada's Arctic Marine Atlas
    CANADA’S ARCTIC MARINE ATLAS This Atlas is funded in part by the Gordon and Betty Moore Foundation. I | Suggested Citation: Oceans North Conservation Society, World Wildlife Fund Canada, and Ducks Unlimited Canada. (2018). Canada’s Arctic Marine Atlas. Ottawa, Ontario: Oceans North Conservation Society. Cover image: Shaded Relief Map of Canada’s Arctic by Jeremy Davies Inside cover: Topographic relief of the Canadian Arctic This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0 or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. All photographs © by the photographers ISBN: 978-1-7752749-0-2 (print version) ISBN: 978-1-7752749-1-9 (digital version) Library and Archives Canada Printed in Canada, February 2018 100% Carbon Neutral Print by Hemlock Printers © 1986 Panda symbol WWF-World Wide Fund For Nature (also known as World Wildlife Fund). ® “WWF” is a WWF Registered Trademark. Background Image: Phytoplankton— The foundation of the oceanic food chain. (photo: NOAA MESA Project) BOTTOM OF THE FOOD WEB The diatom, Nitzschia frigida, is a common type of phytoplankton that lives in Arctic sea ice. PHYTOPLANKTON Natural history BOTTOM OF THE Introduction Cultural significance Marine phytoplankton are single-celled organisms that grow and develop in the upper water column of oceans and in polar FOOD WEB The species that make up the base of the marine food Seasonal blooms of phytoplankton serve to con- sea ice. Phytoplankton are responsible for primary productivity—using the energy of the sun and transforming it via pho- web and those that create important seafloor habitat centrate birds, fishes, and marine mammals in key areas, tosynthesis.
    [Show full text]
  • MOLLUSCA Nudibranchs, Pteropods, Gastropods, Bivalves, Chitons, Octopus
    UNDERWATER FIELD GUIDE TO ROSS ISLAND & MCMURDO SOUND, ANTARCTICA: MOLLUSCA nudibranchs, pteropods, gastropods, bivalves, chitons, octopus Peter Brueggeman Photographs: Steve Alexander, Rod Budd/Antarctica New Zealand, Peter Brueggeman, Kirsten Carlson/National Science Foundation, Canadian Museum of Nature (Kathleen Conlan), Shawn Harper, Luke Hunt, Henry Kaiser, Mike Lucibella/National Science Foundation, Adam G Marsh, Jim Mastro, Bruce A Miller, Eva Philipp, Rob Robbins, Steve Rupp/National Science Foundation, Dirk Schories, M Dale Stokes, and Norbert Wu The National Science Foundation's Office of Polar Programs sponsored Norbert Wu on an Artist's and Writer's Grant project, in which Peter Brueggeman participated. One outcome from Wu's endeavor is this Field Guide, which builds upon principal photography by Norbert Wu, with photos from other photographers, who are credited on their photographs and above. This Field Guide is intended to facilitate underwater/topside field identification from visual characters. Organisms were identified from photographs with no specimen collection, and there can be some uncertainty in identifications solely from photographs. © 1998+; text © Peter Brueggeman; photographs © Steve Alexander, Rod Budd/Antarctica New Zealand Pictorial Collection 159687 & 159713, 2001-2002, Peter Brueggeman, Kirsten Carlson/National Science Foundation, Canadian Museum of Nature (Kathleen Conlan), Shawn Harper, Luke Hunt, Henry Kaiser, Mike Lucibella/National Science Foundation, Adam G Marsh, Jim Mastro, Bruce A Miller, Eva
    [Show full text]
  • Metabolism of Gymnosomatous Pteropods in Waters of the Western Antarctic Peninsula Shelf During Austral Fall
    Vol. 518: 69–83, 2015 MARINE ECOLOGY PROGRESS SERIES Published January 7 doi: 10.3354/meps11050 Mar Ecol Prog Ser Metabolism of gymnosomatous pteropods in waters of the western Antarctic Peninsula shelf during austral fall Paul M. Suprenand1,2,*, Erica H. Ombres2, Joseph J. Torres2 1NMFS RTR Program, University of Florida, PO Box 110240, Gainesville, Florida 32611, USA 2College of Marine Science, University of South Florida, 140 7th Avenue South, St. Petersburg, Florida 33701, USA ABSTRACT: Two species of Southern Ocean gymnosomatous pteropods with dissimilar distribu- tional ranges were collected from western Antarctic Peninsula (WAP) shelf waters in the vicinity of Anvers, Lavoisier, Adelaide and Charcot Islands from March to April 2010 and between 0 and 500 m. The sub-Antarctic gymnosome species, Spongiobranchaea australis, typically occupies regions north of the Polar Front, whereas the true Antarctic gymnosome species, Clione antarc- tica, inhabits colder waters and higher latitudes. Oxygen consumption rates, ammonia excretion rates, proximate body compositions and the activities of 3 metabolic enzymes — lactate dehydro- genase, malate dehydrogenase, and citrate synthase (CS) — were determined in both gymnosome species. Oxygen consumption rates of S. australis and C. antarctica were found to be similar; how- ever, the mean ratio of oxygen consumed to ammonia excreted (O:N, 61.26 ± 18.68:1) indicated that S. australis was oxidizing primarily lipids while C. antarctica was oxidizing a mixture of proteins and lipids (26.41 ± 14.82:1). Proximate body compositions based on percent protein, per- cent lipid, and carbon to nitrogen ratios, suggested larger lipid storage in C. antarctica (~5%) than in S.
    [Show full text]
  • A Novel Cylindrical Overlap-And-Fling Mechanism Used by Sea Butterflies
    1 A Novel Cylindrical Overlap-and-Fling Mechanism Used by Sea Butterflies 2 Ferhat Karakas1, Amy E. Maas2 and David W. Murphy1 3 1Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620 4 2Bermuda Institute of Ocean Sciences, St. George’s GE01, Bermuda 5 6 Corresponding author contact: [email protected] 7 8 Abstract 9 The clap-and-fling mechanism is a well-studied, unsteady lift generation mechanism widely 10 used by flying insects and is considered obligatory for tiny insects flying at low to 11 intermediate Re. However, some aquatic zooplankters including some pteropod (i.e. sea 12 butterfly) and heteropod species swimming at low to intermediate Re also use the clap-and- 13 fling mechanism. These marine snails have extremely flexible, actively deformed, muscular 14 wings which they flap reciprocally to create propulsive force, and these wings may enable 15 novel lift generation mechanisms not available to insects, which have less flexible, passively 16 deformed wings. Using high-speed stereophotogrammetry and micro-particle image 17 velocimetry, we describe a novel cylindrical overlap-and-fling mechanism used by the 18 pteropod species Cuvierina atlantica. In this maneuver, the pteropod’s wingtips overlap at the 19 end of each half-stroke to sequentially form a downward-opening cone, a cylinder, and an 20 upward-opening cone. The transition from downward-opening cone to cylinder produces a 21 downward-directed jet at the trailing edges. Similarly, the transition from cylinder to upward- 22 opening cone produces downward flow into the gap between the wings, a leading edge vortex 23 ring, and a corresponding sharp increase in swimming speed.
    [Show full text]
  • Zooplankton Diel Vertical Migration During Antarctic Summer
    Deep–Sea Research I 162 (2020) 103324 Contents lists available at ScienceDirect Deep-Sea Research Part I journal homepage: http://www.elsevier.com/locate/dsri Zooplankton diel vertical migration during Antarctic summer John A. Conroy a,*, Deborah K. Steinberg a, Patricia S. Thibodeau a,1, Oscar Schofield b a Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, 23062, USA b Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA ARTICLE INFO ABSTRACT Keywords: Zooplankton diel vertical migration (DVM) during summer in the polar oceans is presumed to be dampened due Southern Ocean to near continuous daylight. We analyzed zooplankton diel vertical distribution patterns in a wide range of taxa Mesopelagic zone along the Western Antarctic Peninsula (WAP) to assess if DVM occurs, and if so, what environmental controls Copepod modulate DVM in the austral summer. Zooplankton were collected during January and February in paired day- Krill night, depth-stratifiedtows through the mesopelagic zone along the WAP from 2009-2017, as well as in day and Salp Pteropod night epipelagic net tows from 1993-2017. The copepod Metridia gerlachei, salp Salpa thompsoni, pteropod Limacina helicina antarctica, and ostracods consistently conducted DVM between the mesopelagic and epipelagic zones. Migration distance for M. gerlachei and ostracods decreased as photoperiod increased from 17 to 22 h daylight. The copepods Calanoides acutus and Rhincalanus gigas, as well as euphausiids Thysanoessa macrura and Euphausia crystallorophias, conducted shallow (mostly within the epipelagic zone) DVMs into the upper 50 m at night.
    [Show full text]
  • Time-Calibrated Molecular Phylogeny of Pteropods
    RESEARCH ARTICLE Time-calibrated molecular phylogeny of pteropods Alice K. Burridge1,2☯, Christine HoÈ rnlein2,3, Arie W. Janssen1, Martin Hughes2,4, Stephanie L. Bush5,6, Ferdinand MarleÂtaz7, Rebeca Gasca8, Annelies C. Pierrot-Bults1,2, Ellinor Michel4, Jonathan A. Todd4, Jeremy R. Young9, Karen J. Osborn5,6, Steph B. J. Menken2, Katja T. C. A. Peijnenburg1,2☯* 1 Naturalis Biodiversity Center, Leiden, The Netherlands, 2 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands, 3 Koninklijk Nederlands Instituut voor Onderzoek der Zee (NIOZ), Yerseke, The Netherlands, 4 Natural History Museum (NHM), Cromwell a1111111111 Road, London, United Kingdom, 5 Smithsonian Institution National Museum of Natural History, Washington a1111111111 DC, United States of America, 6 Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, a1111111111 California, United States of America, 7 Molecular Genetics Unit, Okinawa Institute of Science and a1111111111 Technology, Onna-son, Japan, 8 El Colegio de la Frontera Sur (ECOSUR), Unidad Chetumal, Quintana Roo, a1111111111 Chetumal, Mexico, 9 Department of Earth Sciences, University College London, London, United Kingdom ☯ These authors contributed equally to this work. * [email protected], [email protected] OPEN ACCESS Abstract Citation: Burridge AK, HoÈrnlein C, Janssen AW, Hughes M, Bush SL, MarleÂtaz F, et al. (2017) Time- Pteropods are a widespread group of holoplanktonic gastropod molluscs and are uniquely calibrated molecular phylogeny of pteropods. PLoS suitable for study of long-term evolutionary processes in the open ocean because they are the ONE 12(6): e0177325. https://doi.org/10.1371/ journal.pone.0177325 only living metazoan plankton with a good fossil record.
    [Show full text]
  • Phylogenomic Analysis and Morphological Data Suggest Left-Right Swimming Behavior Evolved Prior to the Origin of the Pelagic Phylliroidae (Gastropoda: Nudibranchia)
    Phylogenomic analysis and morphological data suggest left-right swimming behavior evolved prior to the origin of the pelagic Phylliroidae (Gastropoda: Nudibranchia) Jessica A. Goodheart & Heike Wägele Organisms Diversity & Evolution ISSN 1439-6092 Org Divers Evol DOI 10.1007/s13127-020-00458-9 1 23 Your article is protected by copyright and all rights are held exclusively by Gesellschaft für Biologische Systematik. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Organisms Diversity & Evolution https://doi.org/10.1007/s13127-020-00458-9 ORIGINAL ARTICLE Phylogenomic analysis and morphological data suggest left-right swimming behavior evolved prior to the origin of the pelagic Phylliroidae (Gastropoda: Nudibranchia) Jessica A. Goodheart1 & Heike Wägele2 Received: 13 March 2020 /Accepted: 1 September 2020 # Gesellschaft für Biologische Systematik 2020 Abstract Evolutionary transitions from benthic to pelagic habitats are major adaptive shifts. Investigations into such shifts are critical for understanding the complex interaction between co-opting existing traits for new functions and novel traits that originate during or post-transition.
    [Show full text]
  • Pteropods (Gastropoda: Opisthobranchia) in the Southern
    ICES CM 2009/A:16 Pteropods (Gastropoda: Opisthobranchia) in the Southern Ocean: First results from fatty acid and stable isotope analyses on the SYSTCO material Laura Würzberg*, Janna Peters, Enrico Schwabe, Svetlana Rodkina & Angelika Brandt Abstract The Antarctic Ocean is a complex ecosystem including planktonic herbivores like krill, salps, copepods a s w ell a s c arnivores l ike a mphipods, c tenophores, c nidarians and which are f ed upon by birds, fish, squids, seals and baleen whales. Although there are many reports about the che mical com ponents of t he Antarctic krill species Euphausia superba, as w ell as f or calanoid copepods, which are key organisms in the planktonic food web of the Antarctic Seas, there is yet little inf ormation available on the bi ochemical c onstituents of ot her c ommon species, like pteropods, which are frequently found in planktonic hols in the Southern Ocean. To find out more about the feeding ecology as well as the trophic position of these organisms, zooplankton samples were taken during the SYSTCO expedition, and preserved in order to conduct biochemical analyses, more precisely estimating stable isotope ratios and identifying fatty acid signatures. This approach will here be presented on four pteropod species (Clione limacina, Limacina helicina, Spongiobranchaea australis, Clio pyramidata sulcata). One aim of this study is to analyse and compare the fatty acid composition of these animals to discover possible adaptations to the polar environment as well as to identify the major food sources that are utilized. Furthermore, an approach is undertaken to define the trophic position of the studied animals.
    [Show full text]
  • Winners and Losers in a Changing Ocean: Impact on the Physiology and Life History of Pteropods in the Scotia Sea; Southern Ocean
    Winners and losers in a changing ocean: Impact on the physiology and life history of pteropods in the Scotia Sea; Southern Ocean A thesis submitted to the School of Environmental Sciences of the University of East Anglia in partial fulfilment of the requirements for the degree of Doctor of Philosophy By Jessie Gardner June 2019 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived therefrom must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. Winners and losers in a changing ocean: Impact on the physiology and life history of pteropods in the Scotia Sea; Southern Ocean. © Copyright 2019 Jessie Gardner 2 Winners and losers in a changing ocean: Impact on the physiology and life history of pteropods in the Scotia Sea; Southern Ocean. Abstract The Scotia Sea (Southern Ocean) is a hotspot of biodiversity, however, it is one of the fastest warming regions in the world alongside one of the first to experience ocean acidification (OA). Thecosome (shelled) pteropods are planktonic gastropods which can dominate the Scotia Sea zooplankton community, form a key component of the polar pelagic food web and are important contributors to carbon and carbonate fluxes. Pteropods have been identified as sentinel species for OA, since their aragonitic shells are vulnerable to dissolution in waters undersaturated with respect to aragonite. In this thesis I investigate the impact of a changing ocean on the physiology and life history of pteropods in the Scotia Sea.
    [Show full text]