Chilacis Typhae

Total Page:16

File Type:pdf, Size:1020Kb

Chilacis Typhae APPLIED AND ENVIRONMENTAL MICROBIOLOGY, May 2011, p. 2869–2876 Vol. 77, No. 9 0099-2240/11/$12.00 doi:10.1128/AEM.02983-10 Copyright © 2011, American Society for Microbiology. All Rights Reserved. Characterization of an Obligate Intracellular Bacterium in the Midgut Epithelium of the Bulrush Bug Chilacis typhae (Heteroptera, Lygaeidae, Artheneinae)ᰔ Stefan Martin Kuechler,* Konrad Dettner, and Siegfried Kehl Department of Animal Ecology II, University of Bayreuth, Universita¨tsstraße 30, 95440 Bayreuth, Germany Received 21 December 2010/Accepted 21 February 2011 Many members of the suborder Heteroptera have symbiotic bacteria, which are usually found extracellularly in specific sacs or tubular outgrowths of the midgut or intracellularly in mycetomes. In this study, we describe the second molecular characterization of a symbiotic bacterium in a monophagous, seed-sucking stink bug of the family Lygaeidae (sensu stricto). Chilacis typhae possesses at the end of the first section of the midgut a structure which is composed of circularly arranged, strongly enlarged midgut epithelial cells. It is filled with an intracellular endosymbiont. This “mycetocytic belt” might represent an evolutionarily intermediate stage of the usual symbiotic structures found in stink bugs. Phylogenetic analysis based on the 16S rRNA and the groEL genes showed that the bacterium belongs to the Gammaproteobacteria, and it revealed a phylogenetic relation- ship with a secondary bacterial endosymbiont of Cimex lectularius and free-living plant pathogens such as Pectobacterium and Dickeya. The distribution and ultrastructure of the rod-shaped Chilacis endosymbiont were studied in adults and nymph stages using fluorescence in situ hybridization (FISH) and electron microscopy. The detection of symbionts at the anterior poles of developing eggs indicates that endosymbionts are trans- mitted vertically. A new genus and species name, “Candidatus Rohrkolberia cinguli,” is proposed for this newly characterized clade of symbiotic bacteria. The large number of species as well as individuals make sacs or tubular outgrowths are still connected with the midgut insects the most successful animal group in the terrestrial eco- lumen, but a complete separation from gut lumen has also system. This great diversity would hardly be possible without been reported for Acanthosomatidae (36). The importance of the help of symbiosis with microorganisms, in particular, bac- these specific symbionts is apparent in aposymbiotic nymphs of teria. It is estimated that 20 to 50% of all insects are associated several heteropterans, where the absence of symbionts results with symbiotic microorganisms (8, 16, 32). They reside extra- in retarded growth, mortality, and/or sterility (1, 17, 24, 32, 36, or intracellularly in the gut or body cavity or in specific host 44, 47, 48). Typically, symbionts of midgut crypts will be trans- cells called bacteriocytes or mycetocytes, which form complex mitted vertically by three postnatal transmission mechanisms: organs called bacteriomes or mycetomes (9). In particular, (i) direct superficial bacterial contamination of egg surfaces insects that feed exclusively on nutritionally restricted diets (egg smearing; Pentatomidae, Acanthosomatidae) (1, 36, 46, such as cellulose (woody material), plant sap, seeds, vertebrate 50), (ii) deposition of bacteria-containing capsules with eggs blood, or keratin materials possess obligate mutualistic symbi- (capsule transmission; Plataspidae) (17, 22, 44), and (iii) feed- onts. They aid in the degradation of the diet or supply essential ing on parental bacteria-containing excrement (coprophagy; nutrients (amino acids and vitamins) to the host that the insect Cydnidae, Coreidae, Reduviidae) (6, 14, 27, 54). itself can neither synthesize nor obtain from its diet in sufficient Other intestinal tract symbionts are described from different quantities (5). families of superfamilies Lygaeoidea and Coreoidea (Blissidae, A variety of symbiotic associations is found in the large Rhyparochromidae, Pachygronthidae, Coreidae, and Alydi- group of the true bugs (suborder Heteroptera), which consists dae), as well as reduviid and pyrrhocorid stink bugs, which are of 42,300 described species (20). Bacterial symbionts are asso- associated with betaproteobacterial symbionts (Burkholderia ciated with the intestinal tract, especially in plant-sucking stink spp.) and actinobacterial symbionts, respectively (30, 35, 37). bugs of the infraorder Pentatomorpha. Species of the families In contrast to symbionts in midgut crypts of stink bugs of the Acanthosomatidae, Cydnidae, Plataspidae, Scutelleridae, and superfamily Pentatomoidea, Burkholderia symbionts of lygae- Pentatomidae as well as the small family of Parastrachiidae oid and coreoid stink bugs, which do not form a monophyletic harbor their bacterial symbionts, which belong to a distinct group, are not transmitted vertically by eggs, but instead their lineage of Gammaproteobacteria, extracellularly in well-sepa- symbionts must be acquired by every new generation from the rated sections of the posterior midgut, so-called crypts or ceca environment again (34). (21, 26, 29, 36, 44, 46, 50, 54). Normally, the lumina of these Stink bugs of the families Cimicidae and Lygaeidae (sensu stricto) harbor their symbionts in specific mycetomes, which are well separated from the gut system (23, 38, 51, 53). As a * Corresponding author. Mailing address: Department of Animal consequence of living intracellularly in the body cavity, these Ecology II, University of Bayreuth, Universita¨tsstrasse 30, 95440 Bay- reuth, Germany. Phone: 49 0921 55 2733. Fax: 49 0921 55 2743. E-mail: symbionts are transmitted vertically by transovarial mecha- [email protected]. nisms, which is typical for intracellular symbiosis (43). The ᰔ Published ahead of print on 4 March 2011. occurrence of facultative, secondary symbiotic strains of 2869 2870 KUECHLER ET AL. APPL.ENVIRON.MICROBIOL. Wolbachia sp. and Rickettsia sp. in the midgut epithelium, fat protocol. Slides were hybridized in hybridization buffer (20 mM Tris-HCl [pH 8.0], 0.9 M NaCl, 0.01% sodium dodecyl sulfate [SDS], 20% formamide) con- body, and hemolymph of different stink bugs appears to be Ϫ1 widespread, as in other insects (11, 14, 33, 38). Interestingly, taining 10 pmol of fluorescent probes ml , incubated at 46°C for 90 min, rinsed in washing buffer (20 mM Tris-HCl [pH 8.0], 450 mM NaCl, 0.01% SDS), the Wolbachia endosymbiont of the bedbug Cimex lectularius mounted with antibleaching solution (Vectashields Mounting Medium; Vector occurs in mycetomes and has an obligate, nutritional, mutual- Laboratories, Peterborough, United Kingdom), and viewed under a fluorescent istic function (23). microscope. In this study, we report the first finding of a rod-shaped, Electron microscopy. The midgut of C. typhae was fixed in 2.5% glutaralde- hyde in 0.1 M cacodylate buffer (pH 7.3) for 1 h, embedded in 2% agarose, and endosymbiotic bacterium in epithelial cells of the first midgut fixed again in 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.3) overnight. section in the bulrush bug Chilacis typhae (Heteroptera: The midgut was washed in 0.1 M cacodylate three times for 20 min. Following Lygaeidae). The palearctic lygaeoid C. typhae, present in North fixation in 2% osmium tetroxide for 2 h, the sample was washed and stained en America since 1987 (59), spends most of its time on bulrush bloc in 2% uranyl acetate for 90 min. After fixation, the midgut was dehydrated (Typha latifolia and T. angustifolia) and feeds on seeds at dif- serially in ethanol (30%, 50%, 70%, 95%, and three times at 100%), transferred to propylene oxide, and embedded in Epon. Ultrathin sections (70 nm) were cut ferent stages of maturation (58). Both fresh and old seed heads using a diamond knife (Micro-Star, Huntsville, TX) on a Leica Ultracut UCT are used. Up to 1,000 animals were once found in one seed microtome (Leica Microsystems, Vienna, Austria). Ultrathin sections were head. We investigated the localization as well as the transmis- mounted on polyvinyl butyral (Pioloform)-coated copper grids and stained with sion route of the C. typhae symbiont using molecular tech- saturated uranyl acetate, followed by lead citrate. The sections were viewed using a Zeiss CEM 902 A transmission electron microscope (Carl Zeiss, Oberkochen, niques (fluorescence in situ hybridization [FISH]). The phylo- Germany) at 80 kV. genetic position of the bacterial symbiont was elucidated by Phylogenetic analysis. High-quality sequences of the 16S rRNA and the groEL analysis of the 16S rRNA and groEL genes. Finally, the mor- genes were aligned using the ClustalW software in BioEdit (19) and edited phological characteristics of the gammaproteobacterium were manually. A likelihood ratio test was performed using MrModeltest, version 2.3 analyzed by electron microscopic (EM) observations. (45), to find the best-fitting models for the underlying molecular data. The Akaike criterion selected the GTRϩIϩG (general time-reversible model of nucleotide substitution with a proportion of invariant sites and gamma-distrib- uted rate heterogeneity) model for 16S rRNA and groEL gene data. Using this MATERIALS AND METHODS assumption of sequence evolution, a Bayesian analysis with MrBayes (version Sampling. Adults and larval stages of C. typhae were collected from bulrushes 3.1.2) (28) was performed with four simultaneous Markov chains for each data of the species Typha latifolia. Altogether, we investigated four populations from set. For the
Recommended publications
  • Primer Registro Para El Neotrópico De La Familia Artheneidae Stål, 1872
    www.biotaxa.org/rce. ISSN 0718-8994 (online) Revista Chilena de Entomología (2021) 47 (2): 311-318. Nota Científica Primer registro para el Neotrópico de la familia Artheneidae Stål, 1872 (Heteroptera: Lygaeoidea), con la especie Holcocranum saturejae (Kolenati, 1845) introducida en Argentina First record for the Neotropics of the family Artheneidae Stål, 1872 (Heteroptera: Lygaeoidea), with the species Holcocranum saturejae (Kolenati, 1845) introduced in Argentina Diego L. Carpintero1, Alberto A. de Magistris2 y Eduardo I. Faúndez3* 1División Entomología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”. Av. Ángel Gallardo 470 (C1405DJR), Ciudad Autónoma de Buenos Aires, Argentina. E-mail: [email protected]. 2Cátedras de Botánica Sistemática, y Ecología y Fitogeografía, Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Ruta Provincial 4, Km 2 (1832), Llavallol, Partido de Lomas de Zamora, Buenos Aires, Argentina. E-mail: [email protected]. 3Laboratorio de entomología y salud pública, Instituto de la Patagonia, Universidad de Magallanes, Av. Bulnes 01855, Casilla 113-D, Punta Arenas, Chile. *[email protected] ZooBank: urn:lsid:zoobank.org:pub:2C786219-0AE9-40A2-A175-E3C8750290A https://doi.org/10.35249/rche.47.2.21.17 Resumen. Se cita por primera vez para la Argentina a la especie Holcocranum saturejae (Kolenati) (Hemiptera: Heteroptera: Artheneidae), que se alimenta principalmente de totoras (Typha spp., Typhaceae) y, en menor medida de otras plantas, en base a una muestra proveniente de la Reserva Natural Provincial Santa Catalina en Lomas de Zamora, provincia de Buenos Aires. Se muestran imágenes de ejemplares recolectados y se dan sus caracteres diagnósticos. Se comenta brevemente la importancia de la aparición de esta especie en la Región Neotropical.
    [Show full text]
  • Harmful Non-Indigenous Species in the United States
    Harmful Non-Indigenous Species in the United States September 1993 OTA-F-565 NTIS order #PB94-107679 GPO stock #052-003-01347-9 Recommended Citation: U.S. Congress, Office of Technology Assessment, Harmful Non-Indigenous Species in the United States, OTA-F-565 (Washington, DC: U.S. Government Printing Office, September 1993). For Sale by the U.S. Government Printing Office ii Superintendent of Documents, Mail Stop, SSOP. Washington, DC 20402-9328 ISBN O-1 6-042075-X Foreword on-indigenous species (NIS)-----those species found beyond their natural ranges—are part and parcel of the U.S. landscape. Many are highly beneficial. Almost all U.S. crops and domesticated animals, many sport fish and aquiculture species, numerous horticultural plants, and most biologicalN control organisms have origins outside the country. A large number of NIS, however, cause significant economic, environmental, and health damage. These harmful species are the focus of this study. The total number of harmful NIS and their cumulative impacts are creating a growing burden for the country. We cannot completely stop the tide of new harmful introductions. Perfect screening, detection, and control are technically impossible and will remain so for the foreseeable future. Nevertheless, the Federal and State policies designed to protect us from the worst species are not safeguarding our national interests in important areas. These conclusions have a number of policy implications. First, the Nation has no real national policy on harmful introductions; the current system is piecemeal, lacking adequate rigor and comprehensiveness. Second, many Federal and State statutes, regulations, and programs are not keeping pace with new and spreading non-indigenous pests.
    [Show full text]
  • Lists of Names of Prokaryotic Candidatus Taxa
    NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code.
    [Show full text]
  • Cultivation-Independent Methods Reveal Differences Among Bacterial Gut Microbiota in Triatomine Vectors of Chagas Disease
    Cultivation-Independent Methods Reveal Differences among Bacterial Gut Microbiota in Triatomine Vectors of Chagas Disease Fabio Faria da Mota1, Lourena Pinheiro Marinho2, Carlos Jose´ de Carvalho Moreira3, Marli Maria Lima4, Cı´cero Brasileiro Mello5, Eloi Souza Garcia2, Nicolas Carels6*, Patricia Azambuja2 1 Laborato´rio de Biologia Computacional e Sistemas, IOC, FIOCRUZ, Rio de Janeiro, Brazil, 2 Laborato´rio de Bioquı´mica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil, 3 Laborato´rio de Doenc¸as Parasita´rias, IOC, FIOCRUZ, Rio de Janeiro, Brazil, 4 Laborato´rio de Ecoepidemiologia da Doenc¸a de Chagas, IOC, FIOCRUZ, Rio de Janeiro, Brazil, 5 Laborato´rio de Biologia de Insetos, UFF, Rio de Janeiro, Brazil, 6 Laborato´rio de Genoˆmica Funcional e Bioinforma´tica, IOC, FIOCRUZ, Rio de Janeiro, Brazil Abstract Background: Chagas disease is a trypanosomiasis whose agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous bugs known as triatomines. Even though insecticide treatments allow effective control of these bugs in most Latin American countries where Chagas disease is endemic, the disease still affects a large proportion of the population of South America. The features of the disease in humans have been extensively studied, and the genome of the parasite has been sequenced, but no effective drug is yet available to treat Chagas disease. The digestive tract of the insect vectors in which T. cruzi develops has been much less well investigated than blood from its human hosts and constitutes a dynamic environment with very different conditions. Thus, we investigated the composition of the predominant bacterial species of the microbiota in insect vectors from Rhodnius, Triatoma, Panstrongylus and Dipetalogaster genera.
    [Show full text]
  • PDF File Includes: 46 Main Text Supporting Information Appendix 47 Figures 1 to 4 Figures S1 to S7 48 Tables 1 to 2 Tables S1 to S2 49 50
    UVicSPACE: Research & Learning Repository _____________________________________________________________ Faculty of Science Faculty Publications _____________________________________________________________ This is a post-print version of the following article: Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens Vincent G. Martinson, Ryan M. R. Gawryluk, Brent E. Gowen, Caitlin I. Curtis, John Jaenike, & Steve J. Perlman December 2020 The final publication is available at: https://doi.org/10.1073/pnas.2000860117 Citation for this paper: Martinson, V. G., Gawryluk, R. M. R., Gowen, B. E., Curits, C. I., Jaenike, J., & Perlman, S. J. (2020). Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens. Proceedings of the National Academy of Sciences of the United States of America, 117(50), 31979-31986. https://doi.org/10.1073/pnas.2000860117. 1 Accepted Manuscript: 2 3 Martinson VG, Gawryluk RMR, Gowen BE, Curtis CI, Jaenike J, Perlman SJ. 2020. Multiple 4 origins of oBligate nematode and insect symBionts By a clade of Bacteria closely related to plant 5 pathogens. Proceedings of the National Academy of Sciences, USA. 117, 31979-31986. 6 doi/10.1073/pnas.2000860117 7 8 Main Manuscript for 9 Multiple origins of oBligate nematode and insect symBionts By memBers of 10 a newly characterized Bacterial clade 11 12 13 Authors. 14 Vincent G. Martinson1,2, Ryan M. R. Gawryluk3, Brent E. Gowen3, Caitlin I. Curtis3, John Jaenike1, Steve 15 J. Perlman3 16 1 Department of Biology, University of Rochester, Rochester, NY, USA, 14627 17 2 Department of Biology, University of New Mexico, AlBuquerque, NM, USA, 87131 18 3 Department of Biology, University of Victoria, Victoria, BC, Canada, V8W 3N5 19 20 Corresponding author.
    [Show full text]
  • Harmful Non-Indigenous Species in the U.S
    Harmful Non-Indigenous Species in the United States September 1993 OTA-F-565 NTIS order #PB94-107679 GPO stock #052-003-01347-9 Recommended Citation: U.S. Congress, Office of Technology Assessment, Harmful Non-Indigenous Species in the United States, OTA-F-565 (Washington, DC: U.S. Government Printing Office, September 1993). For Sale by the U.S. Government Printing Office ii Superintendent of Documents, Mail Stop, SSOP. Washington, DC 20402-9328 ISBN O-1 6-042075-X Foreword on-indigenous species (NIS)-----those species found beyond their natural ranges—are part and parcel of the U.S. landscape. Many are highly beneficial. Almost all U.S. crops and domesticated animals, many sport fish and aquiculture species, numerous horticultural plants, and most biologicalN control organisms have origins outside the country. A large number of NIS, however, cause significant economic, environmental, and health damage. These harmful species are the focus of this study. The total number of harmful NIS and their cumulative impacts are creating a growing burden for the country. We cannot completely stop the tide of new harmful introductions. Perfect screening, detection, and control are technically impossible and will remain so for the foreseeable future. Nevertheless, the Federal and State policies designed to protect us from the worst species are not safeguarding our national interests in important areas. These conclusions have a number of policy implications. First, the Nation has no real national policy on harmful introductions; the current system is piecemeal, lacking adequate rigor and comprehensiveness. Second, many Federal and State statutes, regulations, and programs are not keeping pace with new and spreading non-indigenous pests.
    [Show full text]
  • Multiple Origins of Obligate Nematode and Insect Symbionts by by a Clade of Bacteria Closely Related to Plant Pathogens
    Multiple origins of obligate nematode and insect symbionts by by a clade of bacteria closely related to plant pathogens Vincent G. Martinsona,b,1, Ryan M. R. Gawrylukc, Brent E. Gowenc, Caitlin I. Curtisc, John Jaenikea, and Steve J. Perlmanc aDepartment of Biology, University of Rochester, Rochester, NY, 14627; bDepartment of Biology, University of New Mexico, Albuquerque, NM 87131; and cDepartment of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada Edited by Joan E. Strassmann, Washington University in St. Louis, St. Louis, MO, and approved October 10, 2020 (received for review January 15, 2020) Obligate symbioses involving intracellular bacteria have trans- the symbiont Sodalis has independently given rise to numer- formed eukaryotic life, from providing aerobic respiration and ous obligate nutritional symbioses in blood-feeding flies and photosynthesis to enabling colonization of previously inaccessible lice, sap-feeding mealybugs, spittlebugs, hoppers, and grain- niches, such as feeding on xylem and phloem, and surviving in feeding weevils (9). deep-sea hydrothermal vents. A major challenge in the study of Less studied are young obligate symbioses in host lineages that obligate symbioses is to understand how they arise. Because the did not already house obligate symbionts (i.e., “symbiont-naive” best studied obligate symbioses are ancient, it is especially chal- hosts) (10). Some of the best known examples originate through lenging to identify early or intermediate stages. Here we report host manipulation by the symbiont via addiction or reproductive the discovery of a nascent obligate symbiosis in Howardula aor- control. Addiction or dependence may be a common route for onymphium, a well-studied nematode parasite of Drosophila flies.
    [Show full text]
  • Appendix 5: Fauna Known to Occur on Fort Drum
    Appendix 5: Fauna Known to Occur on Fort Drum LIST OF FAUNA KNOWN TO OCCUR ON FORT DRUM as of January 2017. Federally listed species are noted with FT (Federal Threatened) and FE (Federal Endangered); state listed species are noted with SSC (Species of Special Concern), ST (State Threatened, and SE (State Endangered); introduced species are noted with I (Introduced). INSECT SPECIES Except where otherwise noted all insect and invertebrate taxonomy based on (1) Arnett, R.H. 2000. American Insects: A Handbook of the Insects of North America North of Mexico, 2nd edition, CRC Press, 1024 pp; (2) Marshall, S.A. 2013. Insects: Their Natural History and Diversity, Firefly Books, Buffalo, NY, 732 pp.; (3) Bugguide.net, 2003-2017, http://www.bugguide.net/node/view/15740, Iowa State University. ORDER EPHEMEROPTERA--Mayflies Taxonomy based on (1) Peckarsky, B.L., P.R. Fraissinet, M.A. Penton, and D.J. Conklin Jr. 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press. 456 pp; (2) Merritt, R.W., K.W. Cummins, and M.B. Berg 2008. An Introduction to the Aquatic Insects of North America, 4th Edition. Kendall Hunt Publishing. 1158 pp. FAMILY LEPTOPHLEBIIDAE—Pronggillled Mayflies FAMILY BAETIDAE—Small Minnow Mayflies Habrophleboides sp. Acentrella sp. Habrophlebia sp. Acerpenna sp. Leptophlebia sp. Baetis sp. Paraleptophlebia sp. Callibaetis sp. Centroptilum sp. FAMILY CAENIDAE—Small Squaregilled Mayflies Diphetor sp. Brachycercus sp. Heterocloeon sp. Caenis sp. Paracloeodes sp. Plauditus sp. FAMILY EPHEMERELLIDAE—Spiny Crawler Procloeon sp. Mayflies Pseudocentroptiloides sp. Caurinella sp. Pseudocloeon sp. Drunela sp. Ephemerella sp. FAMILY METRETOPODIDAE—Cleftfooted Minnow Eurylophella sp. Mayflies Serratella sp.
    [Show full text]
  • Fungal Associates of Soft Scale Insects (Coccomorpha: Coccidae)
    cells Article Fungal Associates of Soft Scale Insects (Coccomorpha: Coccidae) Teresa Szklarzewicz 1, Katarzyna Michalik 1, Beata Grzywacz 2 , Małgorzata Kalandyk-Kołodziejczyk 3 and Anna Michalik 1,* 1 Department of Developmental Biology and Morphology of Invertebrates, Faculty of Biology, Institute of Zoology and Biomedical Research, Gronostajowa 9, 30-387 Kraków, Poland; [email protected] (T.S.); [email protected] (K.M.) 2 Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland; [email protected] 3 Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-12-664-5089 Abstract: Ophiocordyceps fungi are commonly known as virulent, specialized entomopathogens; however, recent studies indicate that fungi belonging to the Ophiocordycypitaceae family may also reside in symbiotic interaction with their host insect. In this paper, we demonstrate that Ophiocordyceps fungi may be obligatory symbionts of sap-sucking hemipterans. We investigated the symbiotic systems of eight Polish species of scale insects of Coccidae family: Parthenolecanium corni, Parthenolecanium fletcheri, Parthenolecanium pomeranicum, Psilococcus ruber, Sphaerolecanium prunasti, Eriopeltis festucae, Lecanopsis formicarum and Eulecanium tiliae. Our histological, ultrastructural and molecular analyses showed that all these species host fungal symbionts in the fat body cells. Analyses of ITS2 and Beta-tubulin gene sequences, as well as fluorescence in situ hybridization, Citation: Szklarzewicz, T.; Michalik, confirmed that they should all be classified to the genus Ophiocordyceps. The essential role of the K.; Grzywacz, B.; Kalandyk fungal symbionts observed in the biology of the soft scale insects examined was confirmed by -Kołodziejczyk, M.; Michalik, A.
    [Show full text]
  • Studies of Organismical Biodiversity
    Part II Studies of organismical biodiversity 64 3 Animal diversity and ecology of wood decay fungi Contents 3.1 Methods of sampling arthropods in the canopy of the Leipzig floodplain forest 66 3.2 Arboricolous spiders (Arachnida, Araneae) of the Leipzig floodplain forest – first results . 72 3.3 Species diversity and tree association of Heteroptera (Insecta) in the canopy of a Quercus-Fraxinus-Tilia floodplain forest . 81 3.4 Spatial distribution of Neuropterida in the LAK stand: significance of host tree specificity . 91 3.5 Ecological examinations concerning xylobiontic Coleoptera in the canopy of a Quercus-Fraxinus forest . 97 3.6 Ground beetles (Coleoptera: Carabidae) in the forest canopy: species com- position, seasonality, and year-to-year fluctuation . 106 3.7 Diversity and spatio-temporal activity pattern of nocturnal macro-Lepidoptera in a mixed deciduous forest near Leipzig . 111 3.8 Arthropod communities of various deciduous trees in the canopy of the Leipzig riparian forest with special reference to phytophagous Coleoptera . 127 3.9 Vertical stratification of bat activity in a deciduous forest . 141 3.10 Influence of small scale conditions on the diversity of wood decay fungi in a temperate, mixed deciduous forest canopy . 150 65 Sampling design for arthropod studies 3.1 Methods of sampling arthropods in the canopy of the Leipzig floodplain forest Erik Arndt1, Martin Unterseher & Peter J. Horchler SHORT COMMUNICATION Window trap (Flight interception traps) Intensive entomological investigations have been car- Composite flight-interception traps (Basset et al. ried out at the Leipzig crane site in the years 2001 1997, Schubert 1998) were used to catch flying in- to 2003, to evaluate the diversity and distribution of sects (e.g.
    [Show full text]
  • Heteroptera: Stenocephalidae)
    Microbes Environ. Vol. 31, No. 2, 145-153, 2016 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME16042 Phylogenetically Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae) STEFAN MARTIN KUECHLER1, YU MATSUURA2,3, KONRAD DETTNER1, and YOSHITOMO KIKUCHI3,4* 1Department of Animal Ecology II, University of Bayreuth, Universitaetsstraße 30, 95440 Bayreuth, Germany; 2Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, 903–0213, Japan; 3Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 2–17–2–1 Tsukisamu-higashi, Toyohira-ku, Sapporo 062–8517, Japan; and 4Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060–8589, Japan (Received March 3, 2016—Accepted April 12, 2016—Published online June 3, 2016) Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the “stinkbug-associated beneficial and environmental (SBE)” group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia.
    [Show full text]
  • Multiple Origins of Obligate Nematode and Insect Symbionts by a Clade of Bacteria Closely Related to Plant Pathogens
    Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens Vincent G. Martinsona,b,1, Ryan M. R. Gawrylukc, Brent E. Gowenc, Caitlin I. Curtisc, John Jaenikea, and Steve J. Perlmanc aDepartment of Biology, University of Rochester, Rochester, NY, 14627; bDepartment of Biology, University of New Mexico, Albuquerque, NM 87131; and cDepartment of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada Edited by Joan E. Strassmann, Washington University in St. Louis, St. Louis, MO, and approved October 10, 2020 (received for review January 15, 2020) Obligate symbioses involving intracellular bacteria have trans- the symbiont Sodalis has independently given rise to numer- formed eukaryotic life, from providing aerobic respiration and ous obligate nutritional symbioses in blood-feeding flies and photosynthesis to enabling colonization of previously inaccessible lice, sap-feeding mealybugs, spittlebugs, hoppers, and grain- niches, such as feeding on xylem and phloem, and surviving in feeding weevils (9). deep-sea hydrothermal vents. A major challenge in the study of Less studied are young obligate symbioses in host lineages that obligate symbioses is to understand how they arise. Because the did not already house obligate symbionts (i.e., “symbiont-naive” best studied obligate symbioses are ancient, it is especially chal- hosts) (10). Some of the best known examples originate through lenging to identify early or intermediate stages. Here we report host manipulation by the symbiont via addiction or reproductive the discovery of a nascent obligate symbiosis in Howardula aor- control. Addiction or dependence may be a common route for onymphium, a well-studied nematode parasite of Drosophila flies.
    [Show full text]