Tally Page 1

Total Page:16

File Type:pdf, Size:1020Kb

Tally Page 1 tally datamatrix associated info Evidence host_class host_family symbiont_phylum symbiont_family mode route environment function symbiont scientific name host scientific name for mode(s) Insecta Alydidae Betaproteobacteria Burkholderiaceae 0 0 1 3 Burkholderia Riptortus pidestris and spp. 2,4 Insecta Coreoidea Betaproteobacteria Burkholderiaceae 0 0 1 3 Burkholderia Chilacis typhae 2,4 Insecta Blissidae Betaproteobacteria Burkholderiaceae 1 1 1 3 Burkholderia Cavelerius saccharivorus 1,4 Insecta Blissidae Betaproteobacteria Burkholderiaceae 0 0 1 3 Burkholderia Dimorphopterus pallipes 2,4 Insecta Blissidae Betaproteobacteria Burkholderiaceae 0 0 1 3 Burkholderia Blissus insularis 2,4 Insecta Geocoridae Gammaproteobacteria Enterobacteriaceae 2 2 1 3 Candidatus Sodalis baculum Henestaris halophilus 1,3 Insecta Lygaeidae Gammaproteobacteria Enterobacteriaceae 1 2 1 3 unnamed Ischnodemus sabuleti 1,4 Insecta Lygaeidae Gammaproteobacteria Enterobacteriaceae 1 2 1 3 unnamed Arocatus longiceps 1,4 Insecta Lygaeidae Gammaproteobacteria Enterobacteriaceae 1 2 1 3 unnamed Belonochilus numenius 1,4 Insecta Lygaeidae Gammaproteobacteria Enterobacteriaceae 2 2 1 3 unnamed Orsillus depressus 1,3 Insecta Lygaeidae Gammaproteobacteria Enterobacteriaceae 1 2 1 3 unnamed Ortholomus punctipennis 1,4 Insecta Lygaeidae Gammaproteobacteria Enterobacteriaceae 2 2 1 3 Candidatus Kleidoceria schneideri Kleidocerys resedae 1 Insecta Lygaeidae Gammaproteobacteria Enterobacteriaceae 2 2 1 3 Candidatus Rohrkolberia cinguli Chilacis typhae 1,3,5 Insecta Lygaeidae Gammaproteobacteria Enterobacteriaceae 2 2 1 3 Candidatus Schneideria nysicola Nysius ericae and spp. 1,3 Insecta Lygaeidae Gammaproteobacteria Enterobacteriaceae 2 2 1 3 unnamed Nithecus jacobaeae 1 Insecta Acanthosomatidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Rosenkranzia clausaccus Elasmostethus humeralis 1,3,5 Insecta Acanthosomatidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Rosenkranzia clausaccus Elasmostethus brevis 1,3,5 Insecta Acanthosomatidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Rosenkranzia clausaccus Elasmostethus nubilus 1,3,5 Insecta Acanthosomatidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Rosenkranzia clausaccus Lindbergicoris gramineus 1,3,5 Insecta Acanthosomatidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Rosenkranzia clausaccus Elasmucha putoni 1,3,5 Insecta Acanthosomatidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Rosenkranzia clausaccus Elasmucha dorsalis 1,3,5 Insecta Acanthosomatidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Rosenkranzia clausaccus Elasmucha signoreti 1,3,5 Insecta Acanthosomatidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Rosenkranzia clausaccus Sastragala scutellata 1,3,5 Insecta Acanthosomatidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Rosenkranzia clausaccus Sastragala esakii 1,3,5 Insecta Acanthosomatidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Rosenkranzia clausaccus Acanthosoma haemorrholdale 1,3,5 Insecta Acanthosomatidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Rosenkranzia clausaccus Acanthosoma labiduroides 1,3,5 Insecta Acanthosomatidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Rosenkranzia clausaccus Acanthosoma forficula 1,3,5 Insecta Acanthosomatidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Rosenkranzia clausaccus Acanthosoma denticaudum 1,3,5 Insecta Acanthosomatidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Rosenkranzia clausaccus Acanthosoma giganteum 1,3,5 Insecta Cydnidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 unnamed Adomerus triguttulus, A. rotundus 1,3 Insecta Parastrachiidae Gammaproteobacteria Enterobacteriaceae 2 1 1 0 Candidatus Benitsuchiphilus tojoi Parastrachia japonensis 1,3 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 1 1 1 3 Erwinia sp. Plautia stali 1,2,3,6 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 1 1 1 3 Erwinia sp. Nezara viridula 1,2,4 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 1 1 1 3 Candidatus Pantoea edessiphila Edessa spp. 1,4 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 1 1 1 3 Erwinia sp. Acrosternum hilare 1,4 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Pantoea sp. Chlorochroa ligata 1,3 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Pantoea sp. Chlorochroa sayi 1,3 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Pantoea sp. Chlorochroa uhleri 1,3 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 1 1 1 3 Pantoea sp. Euschistus heros 1,4 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 1 1 1 3 Erwinia sp. Murgantia histrionica 1,4 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 1 1 1 3 Erwinia sp. Thyanta pallidovirens 1,4 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 1 1 1 3 Candidatus Pantoea carbekii Halyomorpha halys 1,4 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 1 1 1 3 Erwinia sp. Sibaria englemani 1,4 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 1 1 1 3 unknown Arocera apta 1,4 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Pantoea sp. Dolycoris baccarum 1,3 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Pantoea sp. Carpocoris mediterraneus 1,3 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 1 1 1 3 Pantoea sp. Staria lunata 1,2,4 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 1 1 1 3 Pantoea sp. Peribalus sp. 1,2,4 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 1 1 1 3 unknown Rhaphigaster nebulosa 1,4 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Pantoea sp. Acrosternum sp. 1,3 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 1 1 1 3 unknown Eurydema ornata 1,4 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Pantoea sp. Aelia rostrata 1,3 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Pantoea sp. Graphosoma italicum 1,3 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Pantoea sp. Graphosoma semipunctatum 1,3 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 1 1 1 3 Erwinia sp. Graphosoma lineatum 1,4 Insecta Pentatomidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Pantoea sp. Ancyrosoma leucogrammes 1,3 Insecta Plataspidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Ishikawaella capsulatus Coptosoma sphaerula 1,5 Insecta Plataspidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Ishikawaella capsulatus Coptosoma japonicum 1,5 Insecta Plataspidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Ishikawaella capsulatus Coptosoma scutellatum 1,5 Insecta Plataspidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Ishikawaella capsulatus Coptosoma parvipictum 1,5 Insecta Plataspidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Ishikawaella capsulatus Megacopta punctatissima 1,5 Insecta Plataspidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Ishikawaella capsulatus Megacopta cribraria 1,5 Insecta Plataspidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Ishikawaella capsulatus Brachyplatys subaeneus 1,5 Insecta Plataspidae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 Candidatus Ishikawaella capsulatus Brachyplatys vahlii 1,5 Insecta Scutelleridae Gammaproteobacteria Enterobacteriaceae 2 1 1 3 unnamed Cantao ocellatus 1 Insecta Pyrrhocoridae Actinobacteria Coriobacteriaceae 1 1 1 0 Coriobacterium glomerans Dysdercus fasciatus 1 Insecta Pyrrhocoridae Actinobacteria Coriobacteriaceae 1 1 1 3 Coriobacterium glomerans and Gordonibacter sp. Pyrrhocoris apterus 1,2,4 Insecta Largidae Betaproteobacteria Burkholderiaceae 0 0 1 3 Burkholderia Largus californicus 2,4 Insecta Aleyrodidae unclassified unclassified 2 2 1 3 unnamed Aleurochiton aceris 1 Insecta Aleyrodidae unclassified unclassified 2 2 1 3 unnamed Bemisia aff. gigantea 1 Insecta Aleyrodidae unclassified unclassified 2 2 1 3 unnamed Bemisia argentifolii 1 Insecta Aleyrodidae Gammaproteobacteria Halomonadaceae 2 2 1 0 Candidatus Portiera aleyrodidarum Bemisia tabaci 1,5 Insecta Aleyrodidae Gammaproteobacteria Enterobacteriaceae 1 2 1 1 Arsenophonus Bemisia tabaci 1,2,4 Insecta Aleyrodidae Gammaproteobacteria Enterobacteriaceae 1 2 1 0 Hamiltonella defensa Bemisia tabaci 1,4,6 Insecta Aleyrodidae Alphaproteobacteria Rickettsiaceae 2 2 1 3 Candidatus Hemipteriphilus asiaticus Bemisia tabaci 1 Insecta Aleyrodidae Alphaproteobacteria Rickettsiaceae 1 2 1 3 Rickettsia bellii Bemisia tabaci 1,2 Insecta Aleyrodidae Bacteroidetes Bacteroidaceae 1 2 1 4 Cardinium hertigii Bemisia tabaci 1,4 Insecta Aleyrodidae Chlamydiae Simkaniaceae 2 2 1 3 Candidatus Fritschea bemisiae Bemisia tabaci 1 Insecta Aphididae Gammaproteobacteria Enterobacteriaceae 2 2 1 0 Buchnera aphidicola Acyrthosiphon pisum 1,3,5 Insecta Aphididae Gammaproteobacteria Enterobacteriaceae 1 2 1 1 Hamiltonella defensa Acyrthosiphon pisum 1,4 Insecta Aphididae Gammaproteobacteria Enterobacteriaceae 1 2 1 2 Serratia symbiotica Acyrthosiphon pisum 1,3,4 Insecta Aphididae Gammaproteobacteria Enterobacteriaceae 1 2 1 1 Regiella insecticola Acyrthosiphon pisum 1,4 Insecta Aphididae Gammaproteobacteria Enterobacteriaceae 1 2 1 1 Hamiltonella defensa Aphis fabae 1 Insecta Aphididae Gammaproteobacteria Enterobacteriaceae 1 2 1 1 Regiella insecticola Aphis fabae 1 Insecta Aphididae Bacteroidetes
Recommended publications
  • Primer Registro Para El Neotrópico De La Familia Artheneidae Stål, 1872
    www.biotaxa.org/rce. ISSN 0718-8994 (online) Revista Chilena de Entomología (2021) 47 (2): 311-318. Nota Científica Primer registro para el Neotrópico de la familia Artheneidae Stål, 1872 (Heteroptera: Lygaeoidea), con la especie Holcocranum saturejae (Kolenati, 1845) introducida en Argentina First record for the Neotropics of the family Artheneidae Stål, 1872 (Heteroptera: Lygaeoidea), with the species Holcocranum saturejae (Kolenati, 1845) introduced in Argentina Diego L. Carpintero1, Alberto A. de Magistris2 y Eduardo I. Faúndez3* 1División Entomología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”. Av. Ángel Gallardo 470 (C1405DJR), Ciudad Autónoma de Buenos Aires, Argentina. E-mail: [email protected]. 2Cátedras de Botánica Sistemática, y Ecología y Fitogeografía, Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Ruta Provincial 4, Km 2 (1832), Llavallol, Partido de Lomas de Zamora, Buenos Aires, Argentina. E-mail: [email protected]. 3Laboratorio de entomología y salud pública, Instituto de la Patagonia, Universidad de Magallanes, Av. Bulnes 01855, Casilla 113-D, Punta Arenas, Chile. *[email protected] ZooBank: urn:lsid:zoobank.org:pub:2C786219-0AE9-40A2-A175-E3C8750290A https://doi.org/10.35249/rche.47.2.21.17 Resumen. Se cita por primera vez para la Argentina a la especie Holcocranum saturejae (Kolenati) (Hemiptera: Heteroptera: Artheneidae), que se alimenta principalmente de totoras (Typha spp., Typhaceae) y, en menor medida de otras plantas, en base a una muestra proveniente de la Reserva Natural Provincial Santa Catalina en Lomas de Zamora, provincia de Buenos Aires. Se muestran imágenes de ejemplares recolectados y se dan sus caracteres diagnósticos. Se comenta brevemente la importancia de la aparición de esta especie en la Región Neotropical.
    [Show full text]
  • Het News Issue 22 (Spring 2015)
    Circulation : An informal newsletter circulated periodically to those interested in Heteroptera Copyright : Text & drawings © 2015 Authors. Photographs © 2015 Photographers Citation : Het News, 3 rd series, 22, Spring 2015 Editor : Tristan Bantock: 101 Crouch Hill, London N8 9RD [email protected] britishbugs.org.uk , twitter.com/BritishBugs CONTENTS ANNOUNCEMENTS Scutelleridae A tribute – Ashley Wood…………………………………………….. 1 Odonotoscelis fuliginosa ……………………………………………... 5 Updated keys to Terrestrial Heteroptera exc. Miridae…………… 2 Stenocephalidae County Recorder News……………………………………………… 2 Dicranocephalus medius feeding on Euphorbia x pseudovirgata 5 IUCN status reviews for Heteroptera………………………………. 2 Lygaeidae New RES Handbook to Shieldbugs & Allies of Britain and Ireland 2 Nysius huttoni ………………………………………………………… 5 Request for photographs of Peribalus spp…………………………. 2 Ortholomus punctipennis …………………….……………………… 5 Ischnodemus sabuleti ……………..………….……………………… 5 SPECIES NEW TO BRITAIN Rhyparochromus vulgaris ……………………………………………. 6 Centrocoris variegatus (Coreidae)………………………………….. 2 Drymus pumilio…………………………………………………….…. 6 Orius horvathi (Anthocoridae)……………………………………….. 2 Miridae Nabis capsiformis (Nabidae)………………………………………… 3 Globiceps fulvicollis cruciatus…………………….………………… 6 Psallus anaemicus (Miridae)………………………………………… 3 Hallodapus montandoni………………………………………………. 6 Psallus helenae (Miridae)……………………………………………. 3 Pachytomella parallela……………………………………………….. 6 Hoplomachus thunbergii……………………………………………… 6 SPECIES NOTES Chlamydatus evanescens……………………… …………………….
    [Show full text]
  • Thorne Moors :A Palaeoecological Study of A
    T...o"..e MO<J "S " "",Ae Oe COlOOIC'" S T<.OY OF A e"ONZE AGE slTE - .. "c euc~ , A"O a • n ,• THORNE MOORS :A PALAEOECOLOGICAL STUDY OF A BRONZE AGE SITE A contribution to the history of the British Insect fauna P.c. Buckland, Department of Geography, University of Birmingham. © Authors Copyright ISBN ~o. 0 7044 0359 5 List of Contents Page Introduction 3 Previous research 6 The archaeological evidence 10 The geological sequence 19 The samples 22 Table 1 : Insect remains from Thorne Moors 25 Environmental interpretation 41 Table 2 : Thorne Moors : Trackway site - pollen and spores from sediments beneath peat and from basal peat sample 42 Table 3 Tho~ne Moors Plants indicated by the insect record 51 Table 4 Thorne Moors pollen from upper four samples in Sphagnum peat (to current cutting surface) 64 Discussion : the flooding mechanism 65 The insect fauna : notes on particular species 73 Discussion : man, climate and the British insect fauna 134 Acknowledgements 156 Bibliography 157 List of Figures Frontispiece Pelta grossum from pupal chamber in small birch, Thorne Moors (1972). Age of specimen c. 2,500 B.P. 1. The Humberhead Levels, showing Thorne and Hatfield Moors and the principal rivers. 2 2. Thorne Moors the surface before peat extraction (1975). 5 3. Thorne Moors the same locality after peat cutting (1975). 5 4. Thorne Moors location of sites examined. 9 5. Thorne Moors plan of trackway (1972). 12 6. Thorne Moors trackway timbers exposed in new dyke section (1972) • 15 7. Thorne Moors the trackway and peat succession (1977).
    [Show full text]
  • (Pentatomidae) DISSERTATION Presented
    Genome Evolution During Development of Symbiosis in Extracellular Mutualists of Stink Bugs (Pentatomidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alejandro Otero-Bravo Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Dissertation Committee: Zakee L. Sabree, Advisor Rachelle Adams Norman Johnson Laura Kubatko Copyrighted by Alejandro Otero-Bravo 2020 Abstract Nutritional symbioses between bacteria and insects are prevalent, diverse, and have allowed insects to expand their feeding strategies and niches. It has been well characterized that long-term insect-bacterial mutualisms cause genome reduction resulting in extremely small genomes, some even approaching sizes more similar to organelles than bacteria. While several symbioses have been described, each provides a limited view of a single or few stages of the process of reduction and the minority of these are of extracellular symbionts. This dissertation aims to address the knowledge gap in the genome evolution of extracellular insect symbionts using the stink bug – Pantoea system. Specifically, how do these symbionts genomes evolve and differ from their free- living or intracellular counterparts? In the introduction, we review the literature on extracellular symbionts of stink bugs and explore the characteristics of this system that make it valuable for the study of symbiosis. We find that stink bug symbiont genomes are very valuable for the study of genome evolution due not only to their biphasic lifestyle, but also to the degree of coevolution with their hosts. i In Chapter 1 we investigate one of the traits associated with genome reduction, high mutation rates, for Candidatus ‘Pantoea carbekii’ the symbiont of the economically important pest insect Halyomorpha halys, the brown marmorated stink bug, and evaluate its potential for elucidating host distribution, an analysis which has been successfully used with other intracellular symbionts.
    [Show full text]
  • Based on Comparative Morphological Data AF Emel'yanov Transactions of T
    The phylogeny of the Cicadina (Homoptera, Cicadina) based on comparative morphological data A.F. Emel’yanov Transactions of the All-Union Entomological Society Morphological principles of insect phylogeny The phylogenetic relationships of the principal groups of cicadine* insects have been considered on more than one occasion, commencing with Osborn (1895). Some phylogenetic schemes have been based only on data relating to contemporary cicadines, i.e. predominantly on comparative morphological data (Kirkaldy, 1910; Pruthi, 1925; Spooner, 1939; Kramer, 1950; Evans, 1963; Qadri, 1967; Hamilton, 1981; Savinov, 1984a), while others have been constructed with consideration given to paleontological material (Handlirsch, 1908; Tillyard, 1919; Shcherbakov, 1984). As the most primitive group of the cicadines have been considered either the Fulgoroidea (Kirkaldy, 1910; Evans, 1963), mainly because they possess a small clypeus, or the cicadas (Osborn, 1895; Savinov, 1984), mainly because they do not jump. In some schemes even the monophyletism of the cicadines has been denied (Handlirsch, 1908; Pruthi, 1925; Spooner, 1939; Hamilton, 1981), or more precisely in these schemes the Sternorrhyncha were entirely or partially depicted between the Fulgoroidea and the other cicadines. In such schemes in which the Fulgoroidea were accepted as an independent group, among the remaining cicadines the cicadas were depicted as branching out first (Kirkaldy, 1910; Hamilton, 1981; Savinov, 1984a), while the Cercopoidea and Cicadelloidea separated out last, and in the most widely acknowledged systematic scheme of Evans (1946b**) the last two superfamilies, as the Cicadellomorpha, were contrasted to the Cicadomorpha and the Fulgoromorpha. At the present time, however, the view affirming the equivalence of the four contemporary superfamilies and the absence of a closer relationship between the Cercopoidea and Cicadelloidea (Evans, 1963; Emel’yanov, 1977) is gaining ground.
    [Show full text]
  • Brief Report Acta Palaeontologica Polonica 61 (4): 863–868, 2016
    Brief report Acta Palaeontologica Polonica 61 (4): 863–868, 2016 A new pentatomoid bug from the Ypresian of Patagonia, Argentina JULIÁN F. PETRULEVIČIUS A new pentatomoid heteropteran, Chinchekoala qunita gen. (Wilf et al. 2003). It consists of a single specimen, holotype et sp. nov. is described from the lower Eocene of Laguna MPEF-PI 944a–b, with dorsal and ventral sides, collected from del Hunco, Patagonia, Argentina. The new genus is mainly pyroclastic debris of the plant locality LH-25, latitude 42°30’S, characterised by cephalic characters such as the mandibular longitude 70°W (Wilf 2012; Wilf et al. 2003, 2005). The locality plates surpassing the clypeus and touching each other in dor- was dated using 40Ar/39Ar by Wilf et al. (2005) and recalculated sal view; head wider than long; and remarkable characters by Wilf (2012), giving an age of 52.22 ± 0.22 (analytical 2 σ), related to the eyes, which are surrounded antero-laterally ± 0.29 (full 2 σ) Ma. The specimen was originally partly covered and posteriorly by the anteocular processes and the prono- by sediment and was prepared with a pneumatic hammer. It was tum, as well as they extend medially more than usual in the drawn with a camera lucida attached to a Wild M8 stereomicro- Pentatomoidea. This is the first pentatomoid from the Ypre- scope and photographed with a Nikon SMZ800 with a DS-Vi1 sian of Patagonia and the second from the Eocene in the re- camera. For female genitalia nomenclature I use valvifers VIII gion, being the unique two fossil pentatomoids in Argentina.
    [Show full text]
  • Insects & Spiders of Kanha Tiger Reserve
    Some Insects & Spiders of Kanha Tiger Reserve Some by Aniruddha Dhamorikar Insects & Spiders of Kanha Tiger Reserve Aniruddha Dhamorikar 1 2 Study of some Insect orders (Insecta) and Spiders (Arachnida: Araneae) of Kanha Tiger Reserve by The Corbett Foundation Project investigator Aniruddha Dhamorikar Expert advisors Kedar Gore Dr Amol Patwardhan Dr Ashish Tiple Declaration This report is submitted in the fulfillment of the project initiated by The Corbett Foundation under the permission received from the PCCF (Wildlife), Madhya Pradesh, Bhopal, communication code क्रम 車क/ तकनीकी-I / 386 dated January 20, 2014. Kanha Office Admin office Village Baherakhar, P.O. Nikkum 81-88, Atlanta, 8th Floor, 209, Dist Balaghat, Nariman Point, Mumbai, Madhya Pradesh 481116 Maharashtra 400021 Tel.: +91 7636290300 Tel.: +91 22 614666400 [email protected] www.corbettfoundation.org 3 Some Insects and Spiders of Kanha Tiger Reserve by Aniruddha Dhamorikar © The Corbett Foundation. 2015. All rights reserved. No part of this book may be used, reproduced, or transmitted in any form (electronic and in print) for commercial purposes. This book is meant for educational purposes only, and can be reproduced or transmitted electronically or in print with due credit to the author and the publisher. All images are © Aniruddha Dhamorikar unless otherwise mentioned. Image credits (used under Creative Commons): Amol Patwardhan: Mottled emigrant (plate 1.l) Dinesh Valke: Whirligig beetle (plate 10.h) Jeffrey W. Lotz: Kerria lacca (plate 14.o) Piotr Naskrecki, Bud bug (plate 17.e) Beatriz Moisset: Sweat bee (plate 26.h) Lindsay Condon: Mole cricket (plate 28.l) Ashish Tiple: Common hooktail (plate 29.d) Ashish Tiple: Common clubtail (plate 29.e) Aleksandr: Lacewing larva (plate 34.c) Jeff Holman: Flea (plate 35.j) Kosta Mumcuoglu: Louse (plate 35.m) Erturac: Flea (plate 35.n) Cover: Amyciaea forticeps preying on Oecophylla smargdina, with a kleptoparasitic Phorid fly sharing in the meal.
    [Show full text]
  • Higherlevel Phylogeny of the Insect Order Hemiptera
    Systematic Entomology (2011), DOI: 10.1111/j.1365-3113.2011.00611.x Higher-level phylogeny of the insect order Hemiptera: is Auchenorrhyncha really paraphyletic? JASON R. CRYAN and JULIE M. URBAN Laboratory for Conservation and Evolutionary Genetics, New York State Museum, Albany, NY, U.S.A. Abstract. The higher-level phylogeny of the order Hemiptera remains a contentious topic in insect systematics. The controversy is chiefly centred on the unresolved question of whether or not the hemipteran suborder Auchenorrhyncha (including the extant superfamilies Fulgoroidea, Membracoidea, Cicadoidea and Cercopoidea) is a monophyletic lineage. Presented here are the results of a multilocus molecular phylogenetic investigation of relationships among the major hemipteran lineages, designed specifically to address the question of Auchenorrhyncha monophyly in the context of broad taxonomic sampling across Hemiptera. Phylogenetic analyses (maximum parsimony, maximum likelihood and Bayesian inference) were based on DNA nucleotide sequence data from seven gene regions (18S rDNA, 28S rDNA, histone H3, histone 2A, wingless, cytochrome c oxidase I and NADH dehydrogenase subunit 4 ) generated from 86 in-group exemplars representing all major lineages of Hemiptera (plus seven out-group taxa). All combined analyses of these data recover the monophyly of Auchenorrhyncha, and also support the monophyly of each of the following lineages: Hemiptera, Sternorrhyncha, Heteropterodea, Heteroptera, Fulgoroidea, Cicadomorpha, Membracoidea, Cercopoidea and Cicadoidea. Also
    [Show full text]
  • BÖCEKLERİN SINIFLANDIRILMASI (Takım Düzeyinde)
    BÖCEKLERİN SINIFLANDIRILMASI (TAKIM DÜZEYİNDE) GÖKHAN AYDIN 2016 Editör : Gökhan AYDIN Dizgi : Ziya ÖNCÜ ISBN : 978-605-87432-3-6 Böceklerin Sınıflandırılması isimli eğitim amaçlı hazırlanan bilgisayar programı için lütfen aşağıda verilen linki tıklayarak programı ücretsiz olarak bilgisayarınıza yükleyin. http://atabeymyo.sdu.edu.tr/assets/uploads/sites/76/files/siniflama-05102016.exe Eğitim Amaçlı Bilgisayar Programı ISBN: 978-605-87432-2-9 İçindekiler İçindekiler i Önsöz vi 1. Protura - Coneheads 1 1.1 Özellikleri 1 1.2 Ekonomik Önemi 2 1.3 Bunları Biliyor musunuz? 2 2. Collembola - Springtails 3 2.1 Özellikleri 3 2.2 Ekonomik Önemi 4 2.3 Bunları Biliyor musunuz? 4 3. Thysanura - Silverfish 6 3.1 Özellikleri 6 3.2 Ekonomik Önemi 7 3.3 Bunları Biliyor musunuz? 7 4. Microcoryphia - Bristletails 8 4.1 Özellikleri 8 4.2 Ekonomik Önemi 9 5. Diplura 10 5.1 Özellikleri 10 5.2 Ekonomik Önemi 10 5.3 Bunları Biliyor musunuz? 11 6. Plocoptera – Stoneflies 12 6.1 Özellikleri 12 6.2 Ekonomik Önemi 12 6.3 Bunları Biliyor musunuz? 13 7. Embioptera - webspinners 14 7.1 Özellikleri 15 7.2 Ekonomik Önemi 15 7.3 Bunları Biliyor musunuz? 15 8. Orthoptera–Grasshoppers, Crickets 16 8.1 Özellikleri 16 8.2 Ekonomik Önemi 16 8.3 Bunları Biliyor musunuz? 17 i 9. Phasmida - Walkingsticks 20 9.1 Özellikleri 20 9.2 Ekonomik Önemi 21 9.3 Bunları Biliyor musunuz? 21 10. Dermaptera - Earwigs 23 10.1 Özellikleri 23 10.2 Ekonomik Önemi 24 10.3 Bunları Biliyor musunuz? 24 11. Zoraptera 25 11.1 Özellikleri 25 11.2 Ekonomik Önemi 25 11.3 Bunları Biliyor musunuz? 26 12.
    [Show full text]
  • Influence of Plant Parameters on Occurrence and Abundance Of
    HORTICULTURAL ENTOMOLOGY Influence of Plant Parameters on Occurrence and Abundance of Arthropods in Residential Turfgrass 1 S. V. JOSEPH AND S. K. BRAMAN Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 1109 Experiment Street, GrifÞn, GA 30223-1797 J. Econ. Entomol. 102(3): 1116Ð1122 (2009) ABSTRACT The effect of taxa [common Bermuda grass, Cynodon dactylon (L.); centipedegrass, Eremochloa ophiuroides Munro Hack; St. Augustinegrass, Stenotaphrum secundatum [Walt.] Kuntze; and zoysiagrass, Zoysia spp.], density, height, and weed density on abundance of natural enemies, and their potential prey were evaluated in residential turf. Total predatory Heteroptera were most abundant in St. Augustinegrass and zoysiagrass and included Anthocoridae, Lasiochilidae, Geocoridae, and Miridae. Anthocoridae and Lasiochilidae were most common in St. Augustinegrass, and their abundance correlated positively with species of Blissidae and Delphacidae. Chinch bugs were present in all turf taxa, but were 23Ð47 times more abundant in St. Augustinegrass. Anthocorids/lasiochilids were more numerous on taller grasses, as were Blissidae, Delphacidae, Cicadellidae, and Cercopidae. Geocoridae and Miridae were most common in zoysiagrass and were collected in higher numbers with increasing weed density. However, no predatory Heteroptera were affected by grass density. Other beneÞcial insects such as staphylinids and parasitic Hymenoptera were captured most often in St. Augustinegrass and zoysiagrass. These differences in abundance could be in response to primary or alternate prey, or reßect the inßuence of turf microenvironmental characteristics. In this study, SimpsonÕs diversity index for predatory Heteroptera showed the greatest diversity and evenness in centipedegrass, whereas the herbivores and detritivores were most diverse in St. Augustinegrass lawns. These results demonstrate the complex role of plant taxa in structuring arthropod communities in turf.
    [Show full text]
  • Environment Vs Mode Horizontal Mixed Vertical Aquatic 34 28 6 Terrestrial 36 122 215
    environment vs mode horizontal mixed vertical aquatic 34 28 6 terrestrial 36 122 215 route vs mode mixed vertical external 54 40 internal 96 181 function vs mode horizontal mixed vertical nutrition 60 53 128 defense 1 33 15 multicomponent 0 9 8 unknown 9 32 70 manipulation 0 23 0 host classes vs symbiosis factors horizontal mixed vertical na external internal aquatic terrestrial nutrition defense multiple factor unknown manipulation Arachnida 0 0 2 0 0 2 0 2 2 0 0 0 0 Bivalvia 19 13 2 19 0 15 34 0 34 0 0 0 0 Bryopsida 2 0 0 2 0 0 0 2 2 0 0 0 0 Bryozoa 0 1 0 0 0 1 1 0 0 1 0 0 0 Cephalopoda 1 0 0 1 0 0 1 0 0 1 0 0 0 Chordata 0 1 0 0 1 0 1 0 1 0 0 0 0 Chromadorea 0 2 0 0 2 0 2 0 2 0 0 0 0 Demospongiae 1 2 0 1 0 2 3 0 0 0 0 3 0 Filicopsida 0 2 0 0 0 2 0 2 2 0 0 0 0 Gastropoda 5 0 0 5 0 0 5 0 5 0 0 0 0 Hepaticopsida 4 0 0 4 0 0 0 4 4 0 0 0 0 Homoscleromorpha 0 1 0 0 0 1 1 0 0 0 0 1 0 Insecta 8 112 208 8 82 238 3 325 151 43 9 105 20 Liliopsida 4 0 0 4 0 0 0 4 4 0 0 0 0 Magnoliopsida 17 4 0 17 0 4 0 21 17 4 0 0 0 Malacostraca 2 2 0 2 0 2 3 1 2 0 0 0 2 Maxillopoda 0 1 0 0 0 1 1 0 0 0 0 0 1 Nematoda 0 1 1 0 1 1 0 2 0 0 1 1 0 Oligochaeta 0 8 0 0 8 0 6 2 7 0 0 1 0 Polychaeta 6 0 0 6 0 0 6 0 6 0 0 0 0 Secernentea 0 0 7 0 0 7 0 7 0 0 7 0 0 Sphagnopsida 1 0 0 1 0 0 0 1 1 0 0 0 0 Turbellaria 0 0 1 0 0 1 1 0 1 0 0 0 0 host families vs.
    [Show full text]
  • Insects in Kansas Book: 2016 Revised Taxonomy
    Insects in Kansas Book: 2016 Revised Taxonomy TAXONOMIC CHANGES TO INSECT ORDERS 1. Order Collembola, Springtails, are no longer classified as insects (pg. 38‐39) but were elevated to Class status 2. Order Thysanura, Bristletails and Silverfish are now split into their own Orders and Thysanura no longer exists as an Order name. a. Bristletails=Order Microcoryphia (pg. 40‐41) b. Silverfish=Order Zygentoma (pg. 40‐41) 3. Order Phasmatodea, walkingsticks, are sometimes referred to as Phasmida (pg. 55) 4. Order Blattodea now includes both cockroaches and termites (Order Isoptera is now a suborder) (pg. 84‐85) 5. Order Pscoptera, barklice, are now called Psocodea(pg. 86) 6. Orders Mallophaga and Anoplura (pg. 87‐92) are now in Psocodea as suborders 7. Order Hemiptera now includes the Order Homoptera (Homoptera is now a suborder) (pg. 121‐ 418) 8. Order Neuroptera now includes lacewings, owlflies, and antlions but NOT dobsonflies (see #9) (pg. 153‐159) 9. Order Megaloptera now includes dobsonflies, alderflies, and fishflies (pg. 153‐159) TAXONOMIC CHANGES TO INSECT FAMILIES 1. Cave and camel crickets are now in the Family Rhapidophoridae not Gryllacrididae (pg. 73) 2. Ant crickets have been put into their own Family now called Myrmecophilidae (pg. 74‐75) 3. Red‐legged Earwigs are now in the Family Anisolabididae (pg. 78) 4. German and wood cockroaches are now in the Family Ectobiidae, F. Blattellidae is no longer valid (pg. 82‐83) 5. Family Liposcelidae is now called Liposcelididae (pg. 86) 6. Pubic lice are now in their own Family Phthiridae (pg. 92) 7. Family Pentatomidae no longer includes the Shield bugs or shield‐backed bugs (pg.
    [Show full text]