Mitogen-Activated Protein Kinase (MAPK) and Obesity-Related Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Mitogen-Activated Protein Kinase (MAPK) and Obesity-Related Cancer International Journal of Molecular Sciences Review Mitogen-Activated Protein Kinase (MAPK) and Obesity-Related Cancer Fionán Donohoe 1 , Michael Wilkinson 1, Eva Baxter 2 and Donal J. Brennan 1,3,* 1 Ireland East Hospital Gynaeoncology Group, UCD School of Medicine, Mater Misericordiae University, D07R2WY Dublin 7, Ireland; fi[email protected] (F.D.); [email protected] (M.W.) 2 Queensland Centre for Gynaecological Cancer Research, The University of Queensland, Brisbane QLD 4029, Australia; [email protected] 3 Systems Biology Ireland, UCD School of Medicine, Belfield, D04V1W8 Dublin 4, Ireland * Correspondence: [email protected]; Tel.: +353-1-7164567 Received: 31 December 2019; Accepted: 12 February 2020; Published: 13 February 2020 Abstract: Obesity is a major public health concern worldwide. The increased risk of certain types of cancer is now an established deleterious consequence of obesity, although the molecular mechanisms of this are not completely understood. In this review, we aim to explore the links between MAPK signalling and obesity-related cancer. We focus mostly on p38 and JNK MAPK, as the role of ERK remains unclear. These links are seen through the implication of MAPK in obesity-related immune paralysis as well as through effects on the endoplasmic reticulum stress response and activation of aromatase. By way of example, we highlight areas of interest and possibilities for future research in endometrioid endometrial cancer and hepatocellular carcinoma associated with non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH) and MAPK. Keywords: obesity; MAPK; cancer; endometrial cancer; hepatocellular cancer 1. Introduction Obesity is a major public health concern that develops as a result of chronic caloric excess. The excess energy is stored as lipid in adipose tissue and may accumulate in other metabolic organs (such as the liver) and skeletal muscle. Increased lipid accumulation significantly alters the normal metabolic milieu and creates an environment that chronically transmits a signal of nutrient excess to the cell, with multiple consequences, many of which are poorly understood. Global obesity rates have been increasing dramatically over the last number of years, with rates now almost triple what they were in 1975. According to the World Health Organisation, there were 1.9 billion overweight adults worldwide in 2016, with 650 million of those classified as obese, representing 13% of the world’s population. Once considered a problem confined to the developed world, obesity rates are also increasing in middle- and low-income countries with a fifty percent increase in the numbers of overweight children in Africa since the year 2000 [1,2]. The effect of obesity on cardiovascular disease and diabetes is well established, however the association between obesity and increased risk of certain types of cancer is a relatively new observation and the underlying mechanisms have not been fully elucidated. Improved understanding of the molecular interactions between obesity and cancer is important if any future public health interventions are to be successful in reducing population obesity levels and the associated cancer risk. MAPK pathways are signalling modules that transduce extracellular and intracellular signals to regulatory networks within the cell via the phosphorylation of key protein targets. Each cascade is activated by extracellular signals which lead to the activation of the MAPK through successive activations of MAPK kinase kinase (MAPKKK) and MAPK kinase (MAPKK). There are three main Int. J. Mol. Sci. 2020, 21, 1241; doi:10.3390/ijms21041241 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, 1241 2 of 19 families of MAPK—the extracellular signal regulated kinases (ERKs), the Jun amino terminal kinases (JNKs) and the stress activated protein kinases (p38/SAPKs). The ERKs respond primarily to growth factors and mitogens to induce cell growth and differentiation, while the JNKs respond primarily to stress such as ionising radiation and oxidative stress and are involved in apoptosis, cytokine production, inflammation and metabolism. Similarly, the p38 MAPKs are strongly activated by cytokines and cellular stress. The activation of the p38 MAPK pathway contributes to inflammation, apoptosis, cell differentiation and cell cycle regulation [3]. The involvement of the ERK pathway in obesity-related cancer is poorly understood at present and as the JNKs and p38 are thought to be the more important groups influencing obesity, they will be the focus of this review. In this review, we discuss the relationship between obesity and cancer and the mechanisms underlying obesity-related carcinogenesis, with a focus on mitogen-activated protein kinase (MAPK) signalling. To do this, we have chosen endometrial cancer as a case study, for the following reasons, (a) the epidemiological association between obesity and endometrial cancer is irrefutable, and (b) weight loss reduces endometrial cancer. We also discuss the role of obesity and MAPK in hepatic steatosis. 2. Obesity-Related Cancers—Epidemiological Perspective Epidemiological evidence linking obesity to cancer development is consistent and compelling for cancer of the oesophagus (adenocarcinoma), kidney, breast (postmenopausal), colon, rectum, endometrium, liver, thyroid, gallbladder, ovary and pancreas [2,4]; however, the relative risks differ between cancer types. The most compelling relationship with obesity has been demonstrated in endometrioid endometrial cancer, adenocarcinoma of the oesophagus and cholangiocarcinoma. 3. Obesity and Metabolic Dysfunction as Cancer Risk Factors Overall there is a modest but important increase in the relative risk of developing any cancer in the order of 1.06–1.62 for each increment of body mass index BMI of 5 kg/m2 [4]. In 2012, it was estimated that 3.6% of all new adult cancers over 30 years of age were attributable to high BMI, with the impact greater in countries where obesity was more prevalent, and a greater burden of risk for women than for men [5]. In those with a BMI greater than 40 kg/m2, the risk of death attributable to cancer is higher than those with a normal BMI, although most of the observed decrease in life expectancy in this group is attributable to cardiovascular events [6], again highlighting the importance of public health interventions in this population. Obviously, there are multiple confounding factors, such as levels of physical activity, energy balance and metabolism in obesity-related carcinogenesis, and many have not been fully explored from an epidemiological perspective [7]. Of these confounders, metabolic dysfunction may be the most important confounder. The concept of healthy obese patients, i.e., those with no evidence of diabetes, hypertension or other co-morbidities, has gained a lot of traction in recent years. As a result, there has been an increased interest in the role of metabolic aberrations in cancer risk and outcome. A number of studies have demonstrated that individuals with metabolic syndrome and diabetes have an increased risk of cancer of the pancreas, rectum and endometrium [8–10]. In this setting, elevated blood glucose has been associated with increased cancer risk in a number of prospective studies. Diabetes is now a recognized risk factor for cancer [8,11–15]. A large collaborative study of over 550,000 patients in six prospective cohort studies as part of the Metabolic Syndrome and Cancer Project (Me-Can) demonstrated that abnormal glucose metabolism—independent of BMI—was associated with increased cancer risk at various sites in both men and women [16]. A follow-up study from the same collaborative group demonstrated that each standard deviation increase in a metabolic risk score was associated with 56% increased risk in endometrial adenocarcinoma. Within this cohort, the association between BMI and cancer incidence was much weaker than the association between serum glucose levels and cancer incidence [17]. Furthermore, BMI was not associated with cancer mortality, while elevated blood glucose was a significant predictor of cancer mortality. Int. J. Mol. Sci. 2020, 21, 1241 3 of 19 4. Impact of Weight Loss on Cancer Risk The epidemiological links between obesity, metabolic dysfunction and cancer development are clear. What, then, is the impact of weight loss in terms of cancer risk? Observational studies have shown a decrease in cancer-related mortality for those who lose weight, to a larger extent for women than for men [18,19]. Larger cohort studies demonstrate that metabolic surgery decreases cancer incidence and mortality when compared to obese controls [20]. The Swedish Obese Subjects (SOS) study demonstrates decreased incidence of cancer in women who underwent metabolic surgery when compared with biologically matched controls [21] a finding reciprocated in a larger American cohort which demonstrated similar results, with a marked decreased risk for obesity-related cancers [22]. A recent small (n = 6) prospective cohort study demonstrated the ability of metabolic surgery to reverse complex atypical hyperplasia of the endometrium, a known endometrial cancer precursor. Hyperplasia resolved in the majority of cases (5/6; 83%) with 3/6 (50%) resolving with metabolic surgery alone [23]. Endometrial biopsies taken before and after surgery demonstrated reduced expression of oestrogen and progesterone receptors at 2 and 12 months after metabolic surgery and a 17% reduction in the Ki-67 proliferation index seen 12 months after metabolic surgery.
Recommended publications
  • Galectin-4 Interaction with CD14 Triggers the Differentiation of Monocytes Into Macrophage-Like Cells Via the MAPK Signaling Pathway
    Immune Netw. 2019 Jun;19(3):e17 https://doi.org/10.4110/in.2019.19.e17 pISSN 1598-2629·eISSN 2092-6685 Original Article Galectin-4 Interaction with CD14 Triggers the Differentiation of Monocytes into Macrophage-like Cells via the MAPK Signaling Pathway So-Hee Hong 1,2,3,4,5, Jun-Seop Shin 1,2,3,5, Hyunwoo Chung 1,2,4,5, Chung-Gyu Park 1,2,3,4,5,* 1Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul 03080, Korea 2Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 03080, Korea 3Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea 4Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea 5Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea Received: Jan 28, 2019 ABSTRACT Revised: May 13, 2019 Accepted: May 19, 2019 Galectin-4 (Gal-4) is a β-galactoside-binding protein mostly expressed in the gastrointestinal *Correspondence to tract of animals. Although intensive functional studies have been done for other galectin Chung-Gyu Park isoforms, the immunoregulatory function of Gal-4 still remains ambiguous. Here, we Department of Microbiology and Immunology, Seoul National University College of Medicine, demonstrated that Gal-4 could bind to CD14 on monocytes and induce their differentiation 103 Daehak-ro, Jongno-gu, Seoul 03080, into macrophage-like cells through the MAPK signaling pathway. Gal-4 induced the phenotypic Korea. changes on monocytes by altering the expression of various surface molecules, and induced E-mail: [email protected] functional changes such as increased cytokine production and matrix metalloproteinase expression and reduced phagocytic capacity.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Targeting the Mitogen-Activated Protein Kinase Pathway: Physiological Feedback and Drug Response
    Published OnlineFirst May 14, 2010; DOI: 10.1158/1078-0432.CCR-09-3064 Molecular Pathways Clinical Cancer Research Targeting the Mitogen-Activated Protein Kinase Pathway: Physiological Feedback and Drug Response Christine A. Pratilas1,2 and David B. Solit3,4 Abstract Mitogen-activated protein kinase (MAPK) pathway activation is a frequent event in human cancer and is often the result of activating mutations in the BRAF and RAS oncogenes. Targeted inhibitors of BRAF and its downstream effectors are in various stages of preclinical and clinical development. These agents offer the possibility of greater efficacy and less toxicity than current therapies for tumors driven by oncogenic mutations in the MAPK pathway. Early clinical results with the BRAF-selective in- hibitor PLX4032 suggest that this strategy will prove successful in a select group of patients whose tu- mors are driven by V600E BRAF. Relief of physiologic feedback upon pathway inhibition may, however, attenuate drug response and contribute to the development of acquired resistance. An im- proved understanding of the adaptive response of cancer cells to MAPK pathway inhibition may thus aid in the identification of those patients most likely to respond to targeted pathway inhibitors and provide a rational basis for tailored combination strategies. Clin Cancer Res; 16(13); 3329–34. ©2010 AACR. Background these genetic alterations activate common downstream effectors of transformation. One of the central regulators of growth factor-induced Activating BRAF mutations are found clustered within cell proliferation and survival in both normal and cancer the P-loop (exon 11) and activation segment (exon 15) cells is the RAS protein.
    [Show full text]
  • N-Glycan Trimming in the ER and Calnexin/Calreticulin Cycle
    Neurotransmitter receptorsGABA and A postsynapticreceptor activation signal transmission Ligand-gated ion channel transport GABAGABA Areceptor receptor alpha-5 alpha-1/beta-1/gamma-2 subunit GABA A receptor alpha-2/beta-2/gamma-2GABA receptor alpha-4 subunit GABAGABA receptor A receptor beta-3 subunitalpha-6/beta-2/gamma-2 GABA-AGABA receptor; A receptor alpha-1/beta-2/gamma-2GABA receptoralpha-3/beta-2/gamma-2 alpha-3 subunit GABA-A GABAreceptor; receptor benzodiazepine alpha-6 subunit site GABA-AGABA-A receptor; receptor; GABA-A anion site channel (alpha1/beta2 interface) GABA-A receptor;GABA alpha-6/beta-3/gamma-2 receptor beta-2 subunit GABAGABA receptorGABA-A receptor alpha-2receptor; alpha-1 subunit agonist subunit GABA site Serotonin 3a (5-HT3a) receptor GABA receptorGABA-C rho-1 subunitreceptor GlycineSerotonin receptor subunit3 (5-HT3) alpha-1 receptor GABA receptor rho-2 subunit GlycineGlycine receptor receptor subunit subunit alpha-2 alpha-3 Ca2+ activated K+ channels Metabolism of ingested SeMet, Sec, MeSec into H2Se SmallIntermediateSmall conductance conductance conductance calcium-activated calcium-activated calcium-activated potassium potassium potassiumchannel channel protein channel protein 2 protein 1 4 Small conductance calcium-activatedCalcium-activated potassium potassium channel alpha/beta channel 1 protein 3 Calcium-activated potassiumHistamine channel subunit alpha-1 N-methyltransferase Neuraminidase Pyrimidine biosynthesis Nicotinamide N-methyltransferase Adenosylhomocysteinase PolymerasePolymeraseHistidine basic
    [Show full text]
  • YAP and TAZ Mediators at the Crossroad Between Metabolic and Cellular Reprogramming
    H OH metabolites OH Review YAP and TAZ Mediators at the Crossroad between Metabolic and Cellular Reprogramming Giorgia Di Benedetto, Silvia Parisi , Tommaso Russo and Fabiana Passaro * Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 40, 80138 Napoli, Italy; [email protected] (G.D.B.); [email protected] (S.P.); [email protected] (T.R.) * Correspondence: [email protected] Abstract: Cell reprogramming can either refer to a direct conversion of a specialized cell into another or to a reversal of a somatic cell into an induced pluripotent stem cell (iPSC). It implies a peculiar modification of the epigenetic asset and gene regulatory networks needed for a new cell, to better fit the new phenotype of the incoming cell type. Cellular reprogramming also implies a metabolic rearrangement, similar to that observed upon tumorigenesis, with a transition from oxidative phosphorylation to aerobic glycolysis. The induction of a reprogramming process requires a nexus of signaling pathways, mixing a range of local and systemic information, and accumulating evidence points to the crucial role exerted by the Hippo pathway components Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ). In this review, we will first provide a synopsis of the Hippo pathway and its function during reprogramming and tissue regeneration, then we introduce the latest knowledge on the interplay between YAP/TAZ Citation: Di Benedetto, G.; Parisi, S.; and metabolism and, finally, we discuss the possible role of YAP/TAZ in the orchestration of the Russo, T.; Passaro, F. YAP and TAZ metabolic switch upon cellular reprogramming.
    [Show full text]
  • IGF2BP1 Is a Targetable SRC/MAPK-Dependent Driver Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.19.159905; this version posted June 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 IGF2BP1 is a targetable SRC/MAPK-dependent driver of invasive growth in ovarian 2 cancer 3 4 Authors: Nadine Bley1*$#, Annekatrin Schott1*, Simon Müller1, Danny Misiak1, Marcell 5 Lederer1, Tommy Fuchs1, Chris Aßmann1, Markus Glaß1, Christian Ihling2, Andrea Sinz2, 6 Nikolaos Pazaitis3, Claudia Wickenhauser3, Martina Vetter4, Olga Ungurs4, Hans-Georg 7 Strauss4, Christoph Thomssen4, Stefan Hüttelmaier1$. 8 9 10 Addresses: 11 1 Sect. Molecular Cell Biology, Inst. of Molecular Medicine, Charles Tanford Protein Center, 12 Medical Faculty, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3A, 06120 Halle, 13 Germany 14 2 Dept. of Pharmaceutical Chemistry & Bioanalytics, Inst. of Pharmacy, Charles Tanford 15 Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes Str. 3A, 06120 Halle, 16 Germany 17 3 Inst. of Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger 18 Str. 14, 06112 Halle, Germany 19 4 Clinics for Gynecology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst- 20 Grube-Str. 40, 06120 Halle, Germany 21 22 23 * These authors contributed equally to this work 24 $ shared corresponding authorship 25 # Correspondence: should be addressed to Nadine Bley 26 Running title: IGF2BP1-directed AJ disassembly depends on SRC activation 27 Disclosure of Potential Conflicts of Interests: the authors declare no conflicts of interest.
    [Show full text]
  • MAPK4 Overexpression Promotes Tumor Progression Via Noncanonical Activation of AKT/Mtor Signaling
    The Journal of Clinical Investigation RESEARCH ARTICLE MAPK4 overexpression promotes tumor progression via noncanonical activation of AKT/mTOR signaling Wei Wang,1 Tao Shen,1 Bingning Dong,1 Chad J. Creighton,2,3 Yanling Meng,1 Wolong Zhou,1 Qing Shi,1 Hao Zhou,1 Yinjie Zhang,1 David D. Moore,1 and Feng Yang1 1Department of Molecular and Cellular Biology, 2Department of Medicine, and 3Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA. MAPK4 is an atypical MAPK. Currently, little is known about its physiological function and involvement in diseases, including cancer. A comprehensive analysis of 8887 gene expression profiles in The Cancer Genome Atlas (TCGA) revealed that MAPK4 overexpression correlates with decreased overall survival, with particularly marked survival effects in patients with lung adenocarcinoma, bladder cancer, low-grade glioma, and thyroid carcinoma. Interestingly, human tumor MAPK4 overexpression also correlated with phosphorylation of AKT, 4E-BP1, and p70S6K, independent of the loss of PTEN or mutation of PIK3CA. This led us to examine whether MAPK4 activates the key metabolic, prosurvival, and proliferative kinase AKT and mTORC1 signaling, independent of the canonical PI3K pathway. We found that MAPK4 activated AKT via a novel, concerted mechanism independent of PI3K. Mechanistically, MAPK4 directly bound and activated AKT by phosphorylation of the activation loop at threonine 308. It also activated mTORC2 to phosphorylate AKT at serine 473 for full activation. MAPK4 overexpression induced oncogenic outcomes, including transforming prostate epithelial cells into anchorage-independent growth, and MAPK4 knockdown inhibited cancer cell proliferation, anchorage-independent growth, and xenograft growth. We concluded that MAPK4 can promote cancer by activating the AKT/mTOR signaling pathway and that targeting MAPK4 may provide a novel therapeutic approach for cancer.
    [Show full text]
  • HHS Public Access Author Manuscript
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptBreast Cancer Author Manuscript Res Treat Author Manuscript . Author manuscript; available in PMC 2016 June 01. Published in final edited form as: Breast Cancer Res Treat. 2015 June ; 151(2): 453–463. doi:10.1007/s10549-015-3401-8. Body mass index associated with genome-wide methylation in breast tissue Brionna Y. Hair1, Zongli Xu2, Erin L. Kirk1, Sophia Harlid2, Rupninder Sandhu3, Whitney R. Robinson1,3, Michael C. Wu4, Andrew F. Olshan1, Kathleen Conway1,3, Jack A. Taylor2, and Melissa A. Troester1 1 Department of Epidemiology, University of North Carolina at Chapel Hill, CB #7435, 2101 McGavran-Greenberg Hall, Chapel Hill, NC 27599-7435, USA 2 Epidemiology Branch, and Epigenomics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIH), Research Triangle Park, NC, USA 3 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 4 Fred Hutchinson Cancer Research Center, Seattle, WA, USA Abstract Gene expression studies indicate that body mass index (BMI) is associated with molecular pathways involved in inflammation, insulin-like growth factor activation, and other carcinogenic processes in breast tissue. The goal of this study was to determine whether BMI is associated with gene methylation in breast tissue and to identify pathways that are commonly methylated in association with high BMI. Epigenome-wide methylation profiles were determined using the Illumina HumanMethylation450 BeadChip array in the non-diseased breast tissue of 81 women undergoing breast surgery between 2009 and 2013 at the University of North Carolina Hospitals. Multivariable, robust linear regression was performed to identify methylation sites associated with BMI at a false discovery rate q value <0.05.
    [Show full text]
  • Table 1 Top 100 Phosphorylated Substrates and Their Corresponding Kinases in Chondrosarcoma Cultures As Used for IPA Analysis
    Table 1 Top 100 phosphorylated substrates and their corresponding kinases in chondrosarcoma cultures as used for IPA analysis. Average Fold Adj intensity in Change p- chondrosarcoma Corresponding MSC value cultures Substrate Protein Psite kinase (log2) MSC 1043.42 RKKKVSSTKRH Cytohesin-1 S394 PKC 1.83 0.001 746.95 RKGYRSQRGHS Vitronectin S381 PKC 1.00 0.056 709.03 RARSTSLNERP Tuberin S939 AKT1 1.64 0.008 559.42 SPPRSSLRRSS Transcription elongation factor A-like1 S37 PKC; GSK3 0.18 0.684 515.29 LRRSLSRSMSQ Telethonin S157 Titin 0.77 0.082 510.00 MQPDNSSDSDY CD5 T434 PKA -0.35 0.671 476.27 GGRGGSRARNL Heterogeneous nuclear ribonucleoprotein K S302 PKCdelta 1.03 0.028 455.97 LKPGSSHRKTK Bruton's tyrosine kinase S180 PKCbeta 1.55 0.001 444.65 RRRMASMQRTG E1A binding protein p300 S1834 AKT; p70S6 kinase; pp90Rsk 0.53 0.195 Guanine nucleotide binding protein, alpha Z 440.26 HLRSESQRQRR polypeptide S27 PKC 0.88 0.199 6-phosphofructo-2-kinase/fructose-2,6- 424.12 RPRNYSVGSRP biphosphatase 2 S483 AKT 1.32 0.003 419.61 KKKIATRKPRF Metabotropic glutamate receptor 1 T695 PKC 1.75 0.001 391.21 DNSSDSDYDLH CD5 T453 Lck; Fyn -2.09 0.001 377.39 LRQLRSPRRAQ Ras associated protein Rab4 S204 CDC2 0.63 0.091 376.28 SSQRVSSYRRT Desmin S12 Aurora kinase B 0.56 0.255 369.05 ARIGGSRRERS EP4 receptor S354 PKC 0.29 0.543 RPS6 kinase alpha 3; PKA; 367.99 EPKRRSARLSA HMG14 S7 PKC -0.01 0.996 Peptidylglycine alpha amidating 349.08 SRKGYSRKGFD monooxygenase S930 PKC 0.21 0.678 347.92 RRRLSSLRAST Ribosomal protein S6 S236 PAK2 0.02 0.985 346.84 RSNPPSRKGSG Connexin
    [Show full text]
  • Galectin-1 Promotes Lung Cancer Progression and Chemoresistance by Upregulating P38 MAPK, ERK, and Cyclooxygenase-2
    Published OnlineFirst June 13, 2012; DOI: 10.1158/1078-0432.CCR-11-3348 Clinical Cancer Human Cancer Biology Research Galectin-1 Promotes Lung Cancer Progression and Chemoresistance by Upregulating p38 MAPK, ERK, and Cyclooxygenase-2 Ling-Yen Chung1, Shye-Jye Tang6, Guang-Huan Sun3, Teh-Ying Chou4, Tien-Shun Yeh2, Sung-Liang Yu5, and Kuang-Hui Sun1 Abstract Purpose: This study is aimed at investigating the role and novel molecular mechanisms of galectin-1 in lung cancer progression. Experimental Design: The role of galectin-1 in lung cancer progression was evaluated both in vitro and in vivo by short hairpin RNA (shRNA)-mediated knockdown of galectin-1 in lung adenocarcinoma cell lines. To explore novel molecular mechanisms underlying galectin-1–mediated tumor progression, we analyzed gene expression profiles and signaling pathways using reverse transcription PCR and Western blotting. A tissue microarray containing samples from patients with lung cancer was used to examine the expression of galectin-1 in lung cancer. Results: We found overexpression of galectin-1 in non–small cell lung cancer (NSCLC) cell lines. Suppression of endogenous galectin-1 in lung adenocarcinoma resulted in reduction of the cell migration, invasion, and anchorage-independent growth in vitro and tumor growth in mice. In particular, COX-2 was downregulated in galectin-1–knockdown cells. The decreased tumor invasion and anchorage-independent growth abilities were rescued after reexpression of COX-2 in galectin-1–knockdown cells. Furthermore, we found that TGF-b1 promoted COX-2 expression through galectin-1 interaction with Ras and subsequent activation of p38 mitogen-activated protein kinase (MAPK), extracellular signal–regulated kinase (ERK), and NF-kB pathway.
    [Show full text]
  • Roles of P38α and P38β Mitogen‑Activated Protein Kinase Isoforms in Human Malignant Melanoma A375 Cells
    INTERNATIONAL JOURNAL OF MOleCular meDICine 44: 2123-2132, 2019 Roles of p38α and p38β mitogen‑activated protein kinase isoforms in human malignant melanoma A375 cells SU-YING WEN1,2, SHI-YANN CHENG3,4, SHANG-CHUAN NG5, RITU ANEJA6, CHIH-JUNG CHEN7, CHIH-YANG HUANG8-12* and WEI-WEN KUO5* 1Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei 106; 2Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei 112; 3Department of Medical Education and Research and Department of Obstetrics and Gynecology, China Medical University Beigang Hospital, Yunlin 65152; 4Obstetrics and Gynecology, School of Medicine, China Medical University; 5Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 404, Taiwan, R.O.C.; 6Department of Biology, Georgia State University, Atlanta, GA 30303, USA; 7Division of Breast Surgery, Department of Surgery, China Medical University Hospital; 8Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404; 9Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation; 10Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970; 11Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404; 12Department of Biotechnology, Asia University, Taichung 413, Taiwan, R.O.C. Received March 29, 2019; Accepted September 12, 2019 DOI: 10.3892/ijmm.2019.4383 Abstract. Skin cancer is one of the most common cancers vimentin, while mesenchymal-epithelial transition markers, worldwide. Melanoma accounts for ~5% of skin cancers but such as E-cadherin, were upregulated. Of note, the results causes the large majority of skin cancer-related deaths.
    [Show full text]
  • Knockdown of Mitogen-Activated Protein Kinase Kinase 3 Negatively Regulates Hepatitis a Virus Replication
    International Journal of Molecular Sciences Article Knockdown of Mitogen-Activated Protein Kinase Kinase 3 Negatively Regulates Hepatitis A Virus Replication Tatsuo Kanda 1,* , Reina Sasaki-Tanaka 1, Ryota Masuzaki 1 , Naoki Matsumoto 1, Hiroaki Okamoto 2 and Mitsuhiko Moriyama 1 1 Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; [email protected] (R.S.-T.); [email protected] (R.M.); [email protected] (N.M.); [email protected] (M.M.) 2 Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-3972-8111 Abstract: Zinc chloride is known to be effective in combatting hepatitis A virus (HAV) infection, and zinc ions seem to be especially involved in Toll-like receptor (TLR) signaling pathways. In the present study, we examined this involvement in human hepatoma cell lines using a human TLR signaling target RT-PCR array. We also observed that zinc chloride inhibited mitogen-activated protein kinase kinase 3 (MAP2K3) expression, which could downregulate HAV replication in human hepatocytes. It is possible that zinc chloride may inhibit HAV replication in association with its inhibition of MAP2K3. In that regard, this study set out to determine whether MAP2K3 could be considered a modulating factor in the development of the HAV pathogen-associated molecular pattern (PAMP) Citation: Kanda, T.; Sasaki-Tanaka, and its triggering of interferon-β production.
    [Show full text]