Environmental Effects on the Fracture of Oxide Ceramics
Total Page:16
File Type:pdf, Size:1020Kb
UITNODIGING U bent van harte welkom bij de openbare Environmental Environmental effects on the fracture of oxide ceramics verdeding van mijn Environmental effects proefschrift Environmental on the fracture of oxide ceramics effects on the fracture of oxide ceramics De promotieplechtigheid zal plaatshebben op woensdag 18 december 2002 om 16.00 uur in het Auditorium van de Technische Universiteit Eindhoven. Aansluitend aan deze plechtigheid zal een receptie plaatsvinden waarvoor U ook van harte bent uitgenodigd. Niels van der Laag Niels van der Laag Niels van der Laag F.D. Rooseveltlaan 239 5625 AZ Eindhoven 040-2486540 [email protected] ± 170 pag. = 11mm rug f.c. glanslaminaat Environmental effects on the fracture of oxide ceramics PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr. R.A. van Santen, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op woensdag 18 december 2002 om 16.00 uur door Niels Johan van der Laag geboren te Boxmeer Dit proefschrift is goedgekeurd door de promotoren: prof.dr. G. de With en prof.dr. R.C. Bradt Copromotor: dr.ir. L.J.M.G. Dortmans Druk: Universiteitsdrukkerij, Technische Universiteit Eindhoven CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Laag, Niels J. van der Environmental effects on the fracture of oxide ceramics / by Niels J. van der Laag. Eindhoven : Technische Universiteit Eindhoven, 2002. Proefschrift. ISBN 90-386-2754-8 NUR 913 Trefwoorden: keramische materialen; breuk / vastestofchemie / spinel; magnesium aluminaat / gahniet / zink aluminaat / breukmechanica / fysisch-chemische simulatie en modellering; thermische eigenschappen Subject headings: ceramics; fracture / solid state chemistry / spinel; magnesium aluminate / gahnite / zinc aluminate / fracture mechanics / physicochemical simulation and modeling; thermal properties Aan mijn ouders Table of Contents 1 Introduction . 1 1.1 Galloping Gertie. 1 1.2 Ceramics and failure. 2 1.3 Aim and lay-out of this thesis. 3 1.4 References . 6 2 Theoretical and computational background . 7 2.1 Introduction . 7 2.2 Fracture mechanics: Stress intensity approach. 8 2.2.1 Stress concentrators 2.2.2 Stress intensity factor 2.3 Fracture mechanics: Energy approach . 11 2.3.1 Griffith energy balance 2.3.2 Mechanical energy release rate 2.3.3 Intrinsic work of fracture 2.3.4 Failure criterion 2.4 Adsorption . 15 2.4.1 Adsorption isotherm 2.4.2 Adsorption and fracture energy 2.4.3 Adsorption and fracture toughness 2.5 Subcritical crack growth. 18 2.5.1 General 2.5.2 Constitutive model 2.5.3 Empirical power law 2.5.4 Combined kinetic and adsorption model v Table of contents 2.6 Experimental mechanical tests . 23 2.6.1 Fracture toughness: SENB 2.6.2 Effect SCG in SENB test 2.6.3 Strength: Three-point bending 2.6.4 Fracture toughness - strength ratio 2.7 Computer simulations. 28 2.7.1 General 2.7.2 Bulk and surface properties 2.7.3 Potentials 2.7.3.1 Pair potentials (PP) 2.7.3.2 Density Functional Theory 2.8 References . 33 3 Water vapour influence on the fracture of commercially applied oxide ceramics. 35 3.1 Introduction . 35 3.2 Experimental . 36 3.2.1 Materials and specimens 3.2.2 Fracture toughness and strength 3.2.3 Measurement 3.3 Results and discussion . 39 3.3.1 Fractography 3.3.2 Fracture toughness 3.3.3 Relation between fracture strength and fracture toughness for Wesgo995 3.4 Conclusions . 47 3.5 Acknowledgements . 48 3.6 References . 49 4 Subcritical crack growth in calcium hydroxyapatite . 51 4.1 Introduction . 51 4.2 Experimental . 53 4.2.1 Synthesis 4.2.2 Characterisation 4.2.3 Fracture 4.3 Results and discussion . 54 4.3.1 Synthesis and characterisation 4.3.2 Fractography 4.3.3 Fracture toughness 4.3.4 Analysis vi Table of contents 4.4 Conclusions . 60 4.5 Acknowledgements . 61 4.6 References . 61 5 Fracture of magnesium aluminate spinel (MgAl2O4) . 63 5.1 Introduction . 63 5.2 Experimental . 65 5.2.1 Material preparation and characterisation 5.2.2 Mechanical testing 5.2.3 Surface investigation preparation 5.3 Results and discussion of bulk properties . 68 5.3.1 Characterisation 5.3.2 Mechanical characterisation 5.4 Results and discussion of surface properties . 73 5.4.1 EBSD 5.4.2 LEIS 5.4.3 DRIFTS 5.5 Conclusions . 79 5.6 Appendix: Fracture and EBSD. 80 5.7 Acknowledgements . 81 5.8 References . 82 6 Structural, mechanical, thermophysical and dielectric properties of zinc aluminate (ZnAl2O4) . 85 6.1 Introduction . 85 6.2 Crystallographic aspects of zinc aluminate . 86 6.3 Instrumentation. 87 6.4 Preparation . 88 6.4.1 Powder synthesis 6.4.2 Compaction and sintering 6.5 Results and discussion . 89 6.5.1 Structural properties 6.5.1.1 XRD 6.5.1.2 Composition 6.5.1.3 MAS-NMR 6.5.2 Mechanical properties vii Table of contents 6.5.3 Thermophysical properties 6.5.3.1 Heat capacity 6.5.3.2 Thermal diffusivity 6.5.3.3 Thermal conductivity 6.5.4 Dielectric properties 6.6 Conclusions . 100 6.7 Acknowledgements . 101 6.8 References . 101 7 Computational investigation of bulk and surface properties of zinc aluminate (ZnAl2O4) . 105 7.1 Introduction . 105 7.2 Experimental . 106 7.3 Computational methods . 106 7.3.1 Potentials 7.3.2 Surface energy 7.4 Results and discussion . 108 7.4.1 Structural and bulk properties 7.4.2 Surfaces (simulation) 7.4.3 Surfaces (experimental) 7.5 Conclusions . 115 7.6 Acknowledgements . 116 7.7 References . 116 8 Predictive calculation of intrinsic thermophysical properties from ab-initio phonon density of states: a case study for oxide ceramics . 119 8.1 Introduction . 119 8.2 Theory . 120 8.2.1 Phonons 8.2.2 Thermophysical properties 8.2.3 Debye model 8.2.4 Moment representation of phonon density of states 8.3 Criteria for comparison . 124 8.4 Computer simulation . 125 viii Table of contents 8.5 Results and discussion . 125 8.5.1 Density of states 8.5.2 Heat capacity 8.5.3 Entropy 8.5.4 Debye temperature 8.5.5 Moments of density of states 8.5.6 Debye temperature from elastic constants 8.6 Conclusions . 131 8.7 Acknowledgements . 131 8.8 References . 132 9 Epilogue: overview, conclusions & future work . 133 9.1 Introduction . ..