Hudson Plains Ecozone + Evidence for Key Findings Summary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Maternal-Newborn Gap Analysis a Review of Low Volume, Rural, and Remote Intrapartum Services in Ontario
The Provincial Council for Maternal and Child Health Maternal-Newborn Gap Analysis A review of low volume, rural, and remote intrapartum services in Ontario. August, 2018 Project Team Vicki Van Wagner, RM, PhD Associate Professor, Ryerson University Jane Wilkinson, BSc., MD, FRCSC, CSPE Obstetrician-Gynecologist Doreen Day, MHSc Senior Program Manager, Provincial Council for Maternal and Child Health Laura Zahreddine, RN, BScN, MN Program Coordinator, Provincial Council for Maternal and Child Health Sherry Chen, MBBS, MHI Decision Support Specialist, Provincial Council for Maternal and Child Health The project team would like to thank the interview participants as well as the Better Outcomes Registry & Network (BORN) Ontario and the Institute for Clinical Evaluative Sciences for supporting the data needs of this work. © 2018 Provincial Council for Maternal and Child Health Materials contained within this publication are copyright by the Provincial Council for Maternal and Child Health. Publications are intended for dissemination within and use by clinical networks. Reproduction or use of these materials for any other purpose requires the express written consent of the Provincial Council for Maternal and Child Health. Anyone seeking consent to reproduce materials in whole or in part, must seek permission of the Provincial Council for Maternal and Child Health by contacting [email protected]. Provincial Council for Maternal and Child Health 555 University Avenue Toronto, ON, M5G 1X8 [email protected] Maternal Newborn Gap Analysis | 2 Contents -
An Overview of the Hudson Bay Marine Ecosystem
5–1 5.0 OCEANOGRAPHY Chapter Contents 5.1 CIRCULATION........................................................................................................................................................5–5 5.2 TIDES......................................................................................................................................................................5–7 5.3 WAVE CLIMATE AND STORM SURGES............................................................................................................5–10 5.4 SEA ICE ................................................................................................................................................................5–10 5.4.1 Terminology.......................................................................................................................................................5–11 5.4.2 Seasonal Changes............................................................................................................................................5–12 5.5 SALINITY, TEMPERATURE, AND MIXING .........................................................................................................5–18 5.5.1 Surface Distributions .........................................................................................................................................5–20 5.5.2 Vertical Profiles .................................................................................................................................................5–22 5.6 WATER CLARITY -
Chapter 28 Eagle's Nest: a Magmatic Ni-Sulfide Deposit in the James Bay
© 2010 Society of Economic Geologists, Inc. Special Publication 15, pp. 539–557 Chapter 28 Eagle’s Nest: A Magmatic Ni-Sulfide Deposit in the James Bay Lowlands, Ontario, Canada JAMES E MUNGALL,†,1,2 JOHN D HARVEY,2 STEVEN J BALCH,3 BRONWYN AZAR1,2 JAMES ATKINSON,2 AND MICHAEL A HAMILTON1 1 Department of Geology, University of Toronto, 22 Russell St, Toronto, Ontario, Canada M5S 3B1 2 Noront Resources Ltd, 105 Adelaide St West, Ste 110, Toronto, Ontario, Canada M5H 1P9 3 Canadian Mining Geophysics Ltd, 11500 Fifth Ln, Rockwood, Ontario, Canada N0B 2K0 Abstract The Eagle’s Nest Ni-Cu-PGE deposit was discovered in the McFaulds Lake area of the James Bay lowlands of northern Ontario, Canada, in 2007 by Noront Resources Ltd. It is a magmatic sulfide deposit hosted by mafic and ultramafic rocks interpreted to be a feeder conduit beneath an extensive complex of sills and related volcanic rocks, which range in composition from dunite through ferrogabbro to rhyolite. The complex, called the Ring of Fire, has been dated at 2734.5 ± 1.0 Ma and it was emplaced into 2773.37 ± 0.9 Ma felsic plutonic rocks. The felsic rocks form a sill complex structurally beneath metasedimentary and metavolcanic rocks con- sidered to have formed along a passive margin at ca. 2800 Ma within the Oxford-Stull domain of the North Caribou superterrane in the Archean Superior province. In its original configuration, the Eagle’s Nest deposit formed in a shallowly plunging or subhorizontal keel structure at the base of a dike-like chonolith, but subsequent deformation has turned it into a vertically plung- ing rod of sulfide mineralization along the northwestern margin of a north-south–striking dike. -
Established/Outsider Relations in Hérouxville
Space without scales: established/outsider relations in Hérouxville Tim Nieguth Aurélie Lacassagne Laurentian University Abstract: In 1965, Norbert Elias and John Scotson published a seminal study on the dynamics of established/outsider relations. Their analysis has been criticized on several grounds, including its relative inattention to space. A number of recent studies have sought to build on Elias and Scotson's model by putting greater emphasis on space. These studies represent important interventions in the development of a relational approach to local established/outsider relations. Nonetheless, such an approach would benefit from further refinement. In particular, an Eliasian approach can be especially valuable to the study of local power relations and identity constructions if it takes into account the overlapping nature of configurations, emphasizes that individuals are simultaneously embedded in a large number of configurations, recognizes that different spatial contexts are not merely external resources to be manipulated by (local) actors, and refuses to treat conflicts that happen to play out in local contexts as purely local phenomena. Keywords: Established/outsiders, scale, immigration, national identity, settler societies, urban/rural divide Résumé: En 1965, Norbert Elias et John Scotson ont publié un ouvrage dressant les bases des études sur les logiques d’exclusion. Leur analyse a fait l’objet de plusieurs critiques dont le peu d’attention accordée à la question de l’espace. En s’inspirant des travaux de Norbert Elias et de John Scotson, de nouvelles recherches ont tenté de remédier à la situation en accordant plus d’attention aux enjeux d’espace. Du coup, ces études ont grandement contribué au développement d’une sociologie relationnelle. -
KWG Resources Inc. Risk Rating: Speculative
July 10, 2013 Equity Research Initiating Coverage KWG:TSX-V $0.055 (07/09/14) Recommendation: Speculative BUY Target Price: $0.20 KWG Resources Inc. Risk Rating: Speculative A New Technology for a New Chromite District: KWG Stock Chart The New King of the Ring? Highlights: We are initiating our coverage on KWG Resources with a $0.20 target price and Speculative BUY rating. KWG is an exploration company with interests in the highly-prospective Black Horse and Big Daddy chromite deposits in the McFaulds Lake area of the Ring of Fire ("ROF") district in northwestern Ontario. More importantly, KWG recently secured control of two provisional U.S. patent applications and underlying intellectual property for the production of chromium- iron alloys directly from chromite ores and concentrates (“the Chromium IP”), which we believe represents a potential breakthrough technology that could be the key to unlocking the ROF. The Chromium IP process uses natural gas as its energy source which compares favourably to existing ferrochrome technology that is more energy-intensive as it uses electricity as its energy source and operates at higher temperatures. We believe that KWG’s most important initiative should be advancing the commercialization of this new Chromium IP process. We believe that KWG should bring in an existing ferrochrome or integrated steel producer with a strong balance sheet as a strategic partner to more quickly advance the commercialization process. Secondly, the Company needs to rationalize its option to acquire an 80% interest in the Black Horse chromite deposit into a clear path to owning 100% in order to negotiate with potential strategic partners. -
Webequie Supply Road DETAILED PROJECT DESCRIPTION
Webequie Supply Road DETAILED PROJECT DESCRIPTION Webequie First Nation The Picture is a Placeholder Only Prepared by: Prepared for: Submitted to: SNC-Lavalin Inc. Webequie First Nation Impact Assessment Agency of Canada 195 The West Mall Toronto, Ontario, M9C 5K1 www.snclavalin.com November 2019 661910 Webequie Supply Road Detailed Project Description PREFACE This Detailed Project Description for the Webequie Supply Road Project (“the Project”) has been prepared in accordance with subsection 15(1) of the Impact Assessment Act (“IAA”) and Schedule 2 of the Act’s Information and Management of Time Limits Regulations (“the Regulations”) of the Impact Assessment Act - Information Required in Detailed Description of Designated Project. In addition, the Detailed Project Description reflects the Webequie Supply Road Project Team’s recognition of issues identified in the Summary of Issues prepared by the Impact Assessment Agency of Canada (the Agency) as a result of the Agency’s invitation to Indigenous groups, federal and provincial authorities, the public and other participants to provide their perspective on any issues that they consider relevant in relation to the Project. Information provided by the Agency (posted on the Canadian Impact Assessment Registry) for this purpose included the Initial Project Description. The document that was accepted by the Agency to serve as the Initial Project Description was prepared to comply with the requirements of the Canadian Environmental Assessment Act, 2012 and was initially released for public review under the CEAA, 2012 process in July 2019, during the period when the Government of Canada was preparing to bring into force and transition to the new Impact Assessment Act. -
Assessment of the Vulnerability of Peatland Carbon in the Albany Ecodistrict of the Hudson Bay Lowlands, Ontario, Canada to Climate Change
Ministry of Natural Resources and Forestry Assessment of the vulnerability Science and Research of peatland carbon in the Albany Ecodistrict of the 46 Hudson Bay Lowlands, Ontario, CLIMATE CHANGE Canada to climate change RESEARCH REPORT CCRR-46 Responding to Climate Change Through Partnership Assessment of the vulnerability of peatland carbon in the Albany Ecodistrict of the Hudson Bay Lowlands, Ontario, Canada to climate change Jim McLaughlin, Maara Packalen, and Bharat Shrestha Forest Research and Monitoring Section Ontario Ministry of Natural Resources and Forestry 2018 Science and Research Branch • Ministry of Natural Resources and Forestry © 2018, Queen’s Printer for Ontario Printed in Ontario, Canada Single copies of this publication are available from [email protected]. Cette publication hautement spécialisée Assessment of the Vulnerability of Peatland Carbon in the Albany Ecodistrict of the Hudson Bay Lowlands, Ontario, Canada to Climate Change n’est disponible qu’en anglais conformément au Règlement 671/92, selon lequel il n’est pas obligatoire de la traduire en vertu de la Loi sur les services en français. Pour obtenir des renseignements en français, veuillez communiquer avec le ministère des Richesses naturelles et des Forêts au [email protected]. Some of the information in this document may not be compatible with assistive technologies. If you need any of the information in an alternate format, please contact [email protected]. Cite this report as: McLaughlin, J., M. Packalen and B. Shrestha. 2018. Assessment of the vulnerability of peatland carbon in the Albany Ecodistrict of the Hudson Bay Lowlands, Ontario, Canada to climate change. Ontario Ministry of Natural Resources and Forestry, Science and Research Branch, Peterborough, ON. -
Carbon Storage and Potential Methane Production in the Hudson Bay Lowlands Since Mid-Holocene Peat Initiation
ARTICLE Received 28 Aug 2013 | Accepted 9 May 2014 | Published 11 Jun 2014 DOI: 10.1038/ncomms5078 Carbon storage and potential methane production in the Hudson Bay Lowlands since mid-Holocene peat initiation Maara S. Packalen1, Sarah A. Finkelstein2 & James W. McLaughlin3 Peatlands have influenced Holocene carbon (C) cycling by storing atmospheric C and releasing methane (CH4). Yet, our understanding of contributions from the world’s second largest peatland, the Hudson Bay Lowlands (HBL), Canada, to peat-climate-C-dynamics is constrained by the paucity of dated peat records and regional C-data. Here we examine HBL peatland development in relation to Holocene C-dynamics. We show that peat initiation in the HBL is tightly coupled with glacial isostatic adjustment (GIA) through most of the record, and occurred within suitable climatic conditions for peatland development. HBL peatlands initiated most intensively in the mid-Holocene, when GIA was most rapid and climate was cooler and drier. As the peat mass developed, we estimate that the HBL potentially released 1–7 Tg CH4 per year during the late Holocene. Our results indicate that the HBL currently stores a C-pool of B30 Pg C and provide support for a peatland-derived CH4 contribution to the late Holocene atmosphere. 1 Department of Geography, University of Toronto, Toronto, Ontario, Canada M5S 3G3. 2 Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3B1. 3 Ontario Forest Research Institute, Ontario Ministry of Natural Resources, Sault Ste. Marie, Ontario, Canada P6A 2E5. Correspondence and requests for materials should be addressed to M.S.P. -
Summary of the Hudson Bay Marine Ecosystem Overview
i SUMMARY OF THE HUDSON BAY MARINE ECOSYSTEM OVERVIEW by D.B. STEWART and W.L. LOCKHART Arctic Biological Consultants Box 68, St. Norbert P.O. Winnipeg, Manitoba CANADA R3V 1L5 for Canada Department of Fisheries and Oceans Central and Arctic Region, Winnipeg, Manitoba R3T 2N6 Draft March 2004 ii Preface: This report was prepared for Canada Department of Fisheries and Oceans, Central And Arctic Region, Winnipeg. MB. Don Cobb and Steve Newton were the Scientific Authorities. Correct citation: Stewart, D.B., and W.L. Lockhart. 2004. Summary of the Hudson Bay Marine Ecosystem Overview. Prepared by Arctic Biological Consultants, Winnipeg, for Canada Department of Fisheries and Oceans, Winnipeg, MB. Draft vi + 66 p. iii TABLE OF CONTENTS 1.0 INTRODUCTION.........................................................................................................................1 2.0 ECOLOGICAL OVERVIEW.........................................................................................................3 2.1 GEOLOGY .....................................................................................................................4 2.2 CLIMATE........................................................................................................................6 2.3 OCEANOGRAPHY .........................................................................................................8 2.4 PLANTS .......................................................................................................................13 2.5 INVERTEBRATES AND UROCHORDATES.................................................................14 -
Massive Water Diversion Schemes in North America: a Solution to Water Scarcity?
Water Resources Management III 385 Massive water diversion schemes in North America: a solution to water scarcity? F. Lasserre Department of Geography, Laval University, Canada Abstract Massive water diversion projects have been proposed by engineers or public officials in the United States since 1951, but so far, only regional water transfers have been built, often at great cost and questionable economic benefit. Public opinions and governments are still worried in Canada and in the Great Lakes area that these projects could somehow be carried on. However, these massive undertakings prove to be poorly profitable compared to other means of water management, and are not necessary since water withdrawals are stabilizing in the United States, and other demand management techniques are emerging. Keywords: water supply, water diversion, aqueduct, water transfer, irrigation, water conflict, Canada, United States. 1 Massive water transfer projects were once considered Large-scale diversions of Great Lakes and Canada's waters have been discussed for several decades. Various proposals for transferring Canadian or Great Lakes water have emerged since the 1950s, beginning with the United Western Investigation in 1951, an extensive study conducted by the Bureau of Reclamation. The proposals have often been made by engineering corporations because of the obvious possibility to profit from large construction projects. Proposals to import water were also meant to satisfy rapidly growing urban areas like Phoenix and Las Vegas. According to the U.S. Census Bureau, the top five fastest-growing cities in the U.S. from 2000 to 2002 were all in Arizona and Nevada. With this great influx of people to an area with no substantial supply of freshwater, the temptation to look at the large water reserves in northern United States and in Canada was strong. -
Classification of Ecosystem Types: Experiences and Perspectives from Statistics Canada
Classification of ecosystem types: Experiences and perspectives from Statistics Canada Prepared for Forum of Experts in SEEA Experimental Ecosystem Accounting 2018 18 – 20 June 2018 Glen Cove, New York, USA Prepared by: Jennie Wang, Marcelle Grenier, Mark Henry and François Soulard,1 Environmental Accounts and Statistics Program, Statistics Canada. Working paper, June 14, 2018. 1 Corresponding author: [email protected] 1 Contents Introduction .............................................................................................................................................. 3 Initial work on measuring ecosystem extent in Canada ......................................................................... 3 Ecological classification in Canada ........................................................................................................ 3 Measuring ecosystem goods and services ............................................................................................ 6 Ecosystem extent accounts ................................................................................................................... 6 Discussion issues ...................................................................................................................................... 7 Ecological classification ......................................................................................................................... 7 Identifying ecosystem types ................................................................................................................ -
An Assessment of the Groundwater Resources of Northern Ontario
Hydrogeology of Ontario Series (Report 2) AN ASSESSMENT OF THE GROUNDWATER RESOURCES OF NORTHERN ONTARIO AREAS DRAINING INTO HUDSON BAY, JAMES BAY AND UPPER OTTAWA RIVER BY S. N. SINGER AND C. K. CHENG ENVIRONMENTAL MONITORING AND REPORTING BRANCH MINISTRY OF THE ENVIRONMENT TORONTO ONTARIO 2002 KK PREFACE This report provides a regional assessment of the groundwater resources of areas draining into Hudson Bay, James Bay, and the Upper Ottawa River in northern Ontario in terms of the geologic conditions under which the groundwater flow systems operate. A hydrologic budget approach was used to assess precipitation, streamflow, baseflow, and potential and actual evapotranspiration in seven major basins in the study area on a monthly, annual and long-term basis. The report is intended to provide basic information that can be used for the wise management of the groundwater resources in the study area. Toronto, July 2002. DISCLAIMER The Ontario Ministry of the Environment does not make any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed in this report. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the ministry. KKK TABLE OF CONTENTS Page 1. EXECUTIVE SUMMARY 1 2. INTRODUCTION 7 2.1 LOCATION OF THE STUDY AREA 7 2.2 IMPORTANCE OF SCALE IN HYDROGEOLOGIC STUDIES 7 2.3 PURPOSE AND SCOPE OF THE STUDY 8 2.4 THE SIGNIFICANCE OF THE GROUNDWATER RESOURCES 8 2.5 PREVIOUS INVESTIGATIONS 9 2.6 ACKNOWLEDGEMENTS 13 3.