A Taxonomic Revision of Amphicarpaea (Leguminosae) Including a Pollen Morphological Comparison with Shuteria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1977 A synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Lackey, James Andrew, "A synopsis of Phaseoleae (Leguminosae, Papilionoideae) " (1977). Retrospective Theses and Dissertations. 5832. https://lib.dr.iastate.edu/rtd/5832 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
Final Report Template
Native Legumes as a Grain Crop for Diversification in Australia RIRDC Publication No. 10/223 RIRDCInnovation for rural Australia Native Legumes as a Grain Crop for Diversification in Australia by Megan Ryan, Lindsay Bell, Richard Bennett, Margaret Collins and Heather Clarke October 2011 RIRDC Publication No. 10/223 RIRDC Project No. PRJ-000356 © 2011 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-188-4 ISSN 1440-6845 Native Legumes as a Grain Crop for Diversification in Australia Publication No. 10/223 Project No. PRJ-000356 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. -
Origin of Hawaiian Endemic Species of Canavalia (Fabaceae) from Sea-Dispersed Species Revealed by Chloroplast and Nuclear DNA Sequences
J. Jpn. Bot. 86: 15–25 (2011) Origin of Hawaiian Endemic Species of Canavalia (Fabaceae) from Sea-Dispersed Species Revealed by Chloroplast and Nuclear DNA Sequences a a,† b Mohammad VATANPARAST , Koji TAKAYAMA , Mario S. SOUSA , Yoichi c a, TATEISHI and Tadashi KAJITA * aDepartment of Biology, Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522 JAPAN; bDepartamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, 04510 México, D. F., MÉXICO; cFaculty of Education, University of the Ryukyus, 1, Senbaru, Nishihara, Okinawa, 903-0129 JAPAN; †Present address: Department of Plant Systematics and Evolution, Institute of Botany, University of Vienna. Rennweg 14, A-1030 Wien, AUSTRIA *Corresponding author: [email protected] (Accepted on July 22, 2010) To reveal the origin of the Hawaiian endemic Canavalia species, phylogenetic analyses of chloroplast DNA (cpDNA) and internal transcribed spacers (ITS) of nuclear ribosomal DNA (nrDNA) sequences were performed. Phylogenetic analyses of 6 cpDNA regions (6386 bp) and of nrDNA ITS (708 bp) for all 6 species of the Hawaiian endemic subgenus Maunaloa together with samples from the other 3 subgenera of Canavalia suggested that subgenus Maunaloa is monophyletic and more closely related to subgenus Canavalia than to other subgenera. Phylogenetic analyses of multiple haplotypes of the nrDNA ITS suggested that the Hawaiian endemic species of Canavalia originated from a sea-dispersed species of subgenus Canavalia, possibly Canavalia rosea (Sw.) DC., which is a pantropical species whose seeds are spread by sea drift. A single origin for subgenus Maunaloa might be also suggested. Key words: Canavalia, chloroplast DNA, Hawaiian Islands, nrDNA ITS, phylogeny, seed dispersal. -
(Pueraria Montana Var. Lobata Willd) in North Carolina
ABSTRACT THORNTON, MELISSA ROSE. Arthopod Fauna Associated With Kudzu (Pueraria montana var. lobata Willd) In North Carolina. (Under the direction of David Orr.) The purpose of this research was to obtain background information to aid the implementation of a biological control program against the weed, kudzu (Pueraria montana var. lobata Willd). This research had several specific objectives that examined: 1) potential insect pollinators and seed production of kudzu in NC; 2) phytophagous insects and insect herbivory of kudzu foliage, seeds, vines and roots in NC; 3) abundance and diversity of foliar, vine, and root feeding insect communities on kudzu in comparison with those found on soybeans, the closest North American relative of kudzu in the United States. Kudzu is pollinated by native and naturalized insects in NC, in a pattern that varies by flower apparency rather than density. Arthropod herbivory by native generalists almost eliminated kudzu seed viability, while a naturalized Asian specialist consumed a nominal proportion of seeds. These data indicate that seed feeding arthropods would be poor candidates for importation biological control. Kudzu and soybeans shared the same foliar feeding insect communities and levels of defoliation, suggesting that foliage feeders are also poor choices for importation. No kudzu vine or root feeding insects or damage were found during the two years of this study, suggesting that future importation biological control research should focus on such feeders from Asia. ARTHROPOD FAUNA ASSOCIATED WITH KUDZU (PUERARIA MONTANA VAR. LOBATA WILLD) IN NORTH CAROLINA by MELISSA ROSE THORNTON A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Science DEPARTMENT OF ENTOMOLOGY Raleigh 2004 APPROVED BY: ______________________________ ______________________________ Dr. -
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade. -
Desmodium Cuspidatum (Muhl.) Loudon Large-Bracted Tick-Trefoil
New England Plant Conservation Program Desmodium cuspidatum (Muhl.) Loudon Large-bracted Tick-trefoil Conservation and Research Plan for New England Prepared by: Lynn C. Harper Habitat Protection Specialist Massachusetts Natural Heritage and Endangered Species Program Westborough, Massachusetts For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, 2002 SUMMARY Desmodium cuspidatum (Muhl.) Loudon (Fabaceae) is a tall, herbaceous, perennial legume that is regionally rare in New England. Found most often in dry, open, rocky woods over circumneutral to calcareous bedrock, it has been documented from 28 historic and eight current sites in the three states (Vermont, New Hampshire, and Massachusetts) where it is tracked by the Natural Heritage programs. The taxon has not been documented from Maine. In Connecticut and Rhode Island, the species is reported but not tracked by the Heritage programs. Two current sites in Connecticut are known from herbarium specimens. No current sites are known from Rhode Island. Although secure throughout most of its range in eastern and midwestern North America, D. cuspidatum is Endangered in Vermont, considered Historic in New Hampshire, and watch-listed in Massachusetts. It is ranked G5 globally. Very little is understood about the basic biology of this species. From work on congeners, it can be inferred that there are likely to be no problems with pollination, seed set, or germination. As for most legumes, rhizobial bacteria form nitrogen-fixing nodules on the roots of D. cuspidatum. It is unclear whether there have been any changes in the numbers or distribution of rhizobia capable of forming effective mutualisms with D. -
Phylogeography of a Pantropical Plant with Sea-Drifted Seeds; Canavalia Rosea (Sw.) DC., (Fabaceae) 汎熱帯海流散布植
(千葉大学学位申請論文) Phylogeography of a pantropical plant with sea‐drifted seeds; Canavalia rosea (Sw.) DC., (Fabaceae) 汎熱帯海流散布植物ナガミハマナタマメ (マメ科)の系統地理 2010 年7月 千葉大学大学院理学研究科 地球生命圏科学専攻 生物学コース Mohammad Vatanparast Phylogeography of a pantropical plant with sea‐drifted seeds; Canavalia rosea (Sw.) DC., (Fabaceae) July 2010 MOHAMMAD VATANPARAST Graduate School of Science CHIBA UNIVERSITY TABLE OF CONTENTS PAGES ABSTRACT 1 GENERAL INTRODUCTION 3 Pantropical plants with sea-drifted seeds species (PPSS) 5 A project on the phylogeography of the PPSS 6 A case study of PPSS: Hibiscus tiliaceus L. 7 Canavalia rosea: a genuine pantropical plant with sea-drifted seeds 8 Overview of this study 10 CHAPTER 1 12 PHYLOGENETIC RELATIONSHIPS AMONG CANAVALIA ROSEA AND ITS ALLIED SPECIES 12 1-1 Introduction 12 1-2 Materials and Methods 15 Taxon sampling 15 DNA extraction, PCR, and sequencing 16 Phylogenetic analyses based on cpDNA sequence data 18 Phylogenetic analyses based on ITS sequence data 19 1-3 Results 21 Phylogenetic analyses based on cpDNA sequence data 21 Phylogenetic analyses based on ITS sequence data 22 1-4 Discussion 24 Phylogenetic relationships among C. rosea and its related species 24 The phylogeographic break in the Atlantic Ocean 25 Origin of the Hawaiian endemic species 26 Future prospects for the evolutionary studies among C. rosea and its allied species 27 Tables and figures 29 i TABLE OF CONTENTS (CONTINUED) PAGES CHAPTER 2 40 GLOBAL GENETIC STRUCTURE OF CANAVALIA ROSEA; EVIDENCE FROM CHLOROPLAST DNA SEQUENCES 40 2-1 Introduction 40 2-2 Materials and Methods 44 Sampling 44 DNA extraction, PCR, and sequencing 44 Haplotype Composition and Network of C. -
Fabaceae) Subfam
J. Jpn. Bot. 92(1): 34–43 (2017) Harashuteria, a New Genus of Leguminosae (Fabaceae) Subfam. Papilionoideae Tribe Phaseoleae a a b, Kazuaki OHASHI , Koji NATA and Hiroyoshi OHASHI * aSchool of Pharmacy, Iwate Medical University, Yahaba, Iwate, 028-3694 JAPAN; bHerbarium TUS, Botanical Garden, Tohoku University, Sendai, 980-0862 JAPAN *Corresponding author: [email protected] (Accepted on November 25, 2016) A new genus, Harashuteria K. Ohashi & H. Ohashi, is proposed as a member of the tribe Phaseoleae of Leguminosae (Fabaceae) based on Shuteria hirsuta Baker by comparative morphological observation and molecular phylogenetic analysis of Shuteria and its related genera. Molecular phylogenetic analysis was performed using cpDNA (trnK/matK, trnL–trnF and rpl2 intron) markers. Our molecular phylogeny shows that Shuteria hirsuta is sister to Cologania and is distinct from Shuteria vestita or Amphicarpaea, although the species has been attributed to these genera. A new combination, Harashuteria hirsuta (Baker) K. Ohashi & H. Ohashi is proposed. Key words: Amphicarpaea, Cologania, Fabaceae, Glycininae, Harashuteria, Hiroshi Hara, new genus, Phaseoleae, Shuteria, Shuteria hirsuta. The genus Shuteria Wight & Arn. was protologue. Kurz (1877) recognized Shuteria established on the basis of S. vestita Wight & hirsuta as a member of Pueraria, because he Arn. including 4–5 species in Asia (Schrire described Pueraria anabaptista Kurz citing 2005). The genus belongs to the subtribe S. hirsuta as its synonym (hence Pueraria Glycininae in the tribe Phaseoleae and is anabaptista is superfluous). Amphicarpaea closely allied to Amphicarpaea, Cologania, lineata Chun & T. C. Chen is adopted as a and Dumasia especially in the flower structures correct species by Sa and Gilbert (2010) in the (Lackey 1981). -
Plant Pest Risk Assessment for Kudzu, Pueraria Montana 2010 (Revised 2013)
Oregon Department of Agriculture Plant Pest Risk Assessment for Kudzu, Pueraria montana 2010 (Revised 2013) Name: Kudzu, Pueraria montana; a.k.a. Japanese arrowroot, porch-vine, telephone vine; Synonym: Pueraria lobata Family: Pea, Fabaceae Findings of This Review and Assessment: Kudzu has been determined to be a category “A” noxious weed as defined by the Oregon Department of Agriculture (ODA) Noxious Weed Policy and Classification System. This determination is based on a literature review and analysis using two ODA evaluation forms. Using the Qualitative Noxious Weed Risk Assessment v.3.8, kudzu scored 63 indicating an A listing and score 17 with the ODA Noxious Weed Rating system, v.3.2. Introduction: Kudzu, Pueraria montana is a fast growing vine native to China and Japan. It was introduced and has become a major pest of the southeastern US where an estimated seven million acres are infested. Kudzu is a federally listed noxious weed and was placed on the ODA Noxious Weed List in 1995. Prior to the Oregon listing, the species was not known to occur in the Pacific Northwest. In1990 an inquiry was received by ODA to approve the importation and use of kudzu for forage. This inquiry prompted a review by ODA and ultimately a quarantine listing of kudzu in 1993 to prevent import, transport, or sale in the state. The first weedy infestation in the Pacific Northwest was found near Aurora, Oregon in 2001 and two additional sites were found in southwest Portland the following year. It was not determined how the plants where introduced, but was most likely intentionally planted as ornamental or for erosion control. -
Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S. -
A Publication of the Wyoming Native Plant Society
Castilleja A Publication of the Wyoming Native Plant Society December 2008, Volume 27, No. 4 Posted at www.uwyo.edu/wyndd/wnps/wnps_home.htm Natives Come to Campus Red osier dogwood (Cornus sericea ) comes into its own in the cold months. After the growing season’s succession of colors, we are finally able to see its vibrant red stems that were with us all along. It lends its intense color to riverways across the state. An easy way to tell if moose live nearby is by the presence of short, browsed Red osier stems that look like they’ve been attacked in over-zealous hedge trimming. Such tell-tale signs are wanting at Prexy’s Pasture, where Red osier is among the newest recruit of natives to be added to campus plantings at the University of Wyoming. It is a favorite landscaping shrub for its accents of color and thrives on moist or well-watered settings. The cultivated varieties of this native species have been selected by horticulturalists from plants in the wild for specific colors, growth forms, and climate adaptations. Propagation information is published by Dorn and Dorn (2007). Above: Cornus sericea (Red osier dogwood), from: Britton, N.L., and A. Brown. 1913. An illustrated flora of Red osier dogwood is in the featured the northern United States, Canada and the British Possessions . Vol. 2: 662. Dogwood family (p. 3, this issue). The phenology of Red osier and many other species In this issue: is profiled on the National Phenology Network Natives Come to Campus . 1 homepage (http://www.usanpn.org/), Wyoming Plant Families - The Dogwoods .