Origin of Hawaiian Endemic Species of Canavalia (Fabaceae) from Sea-Dispersed Species Revealed by Chloroplast and Nuclear DNA Sequences

Total Page:16

File Type:pdf, Size:1020Kb

Origin of Hawaiian Endemic Species of Canavalia (Fabaceae) from Sea-Dispersed Species Revealed by Chloroplast and Nuclear DNA Sequences J. Jpn. Bot. 86: 15–25 (2011) Origin of Hawaiian Endemic Species of Canavalia (Fabaceae) from Sea-Dispersed Species Revealed by Chloroplast and Nuclear DNA Sequences a a,† b Mohammad VATANPARAST , Koji TAKAYAMA , Mario S. SOUSA , Yoichi c a, TATEISHI and Tadashi KAJITA * aDepartment of Biology, Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522 JAPAN; bDepartamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, 04510 México, D. F., MÉXICO; cFaculty of Education, University of the Ryukyus, 1, Senbaru, Nishihara, Okinawa, 903-0129 JAPAN; †Present address: Department of Plant Systematics and Evolution, Institute of Botany, University of Vienna. Rennweg 14, A-1030 Wien, AUSTRIA *Corresponding author: [email protected] (Accepted on July 22, 2010) To reveal the origin of the Hawaiian endemic Canavalia species, phylogenetic analyses of chloroplast DNA (cpDNA) and internal transcribed spacers (ITS) of nuclear ribosomal DNA (nrDNA) sequences were performed. Phylogenetic analyses of 6 cpDNA regions (6386 bp) and of nrDNA ITS (708 bp) for all 6 species of the Hawaiian endemic subgenus Maunaloa together with samples from the other 3 subgenera of Canavalia suggested that subgenus Maunaloa is monophyletic and more closely related to subgenus Canavalia than to other subgenera. Phylogenetic analyses of multiple haplotypes of the nrDNA ITS suggested that the Hawaiian endemic species of Canavalia originated from a sea-dispersed species of subgenus Canavalia, possibly Canavalia rosea (Sw.) DC., which is a pantropical species whose seeds are spread by sea drift. A single origin for subgenus Maunaloa might be also suggested. Key words: Canavalia, chloroplast DNA, Hawaiian Islands, nrDNA ITS, phylogeny, seed dispersal. Approximately 90% of native plant the nearest continents, high dispersibility would species of the Hawaiian Islands are endemic be one of the key factors for the ancestors of (Baldwin and Wagner 2010). This represents endemic species to achieve successful migration an extraordinary example of high endemism in to the Hawaiian Islands. According to the most oceanic islands and has attracted the interest of recent review on studies of Hawaiian endemic many botanists. Many studies have focused on plant species, Baldwin and Wagner (2010) have the origin, speciation, and adaptive radiation suggested that the temperate and boreal regions of the endemic species in the Hawaiian Islands of North America are important sources of (reviewed in Baldwin and Wagner 2010). As the Hawaiian flora. This proposal is well supported Hawaiian Islands lie several thousand km from by molecular phylogenetic evidence (Vargas et —15— 16 植物研究雑誌 第 86 巻 第 1 号 2011 年 2 月 Fig. 1. Distribution range of Canavalia rosea and subgenus Maunaloa (drawn based on Sauer 1964). Plant creeping on beach (top left) and seed (top right) of C. rosea. al. 1998, Lindqvist and Albert 2002). Among the crop species. Species of subgenus Maunaloa species originating from North America, only are endemic to the Hawaiian Islands. Sauer a few examples (Gossypium (Malvaceae) and (1964) studied the morphological differences Jacquemontia (Convolvulaceae)) have seeds and similarities among Canavalia species and that are dispersed by the sea. In the case of the reported that the most primitive subgenus is other species, the seeds are dispersed by birds or probably Wenderothia, and subgenera Catodonia wind. Although sea dispersal is one of the most and Canavalia probably originated from this important modes of seed dispersal for shaping subgenus. He also proposed that subgenus the littoral flora of oceanic islands, detailed Maunaloa would be originated from subgenus studies on Hawaiian plants are lacking. Canavalia because of the presence of a The genus Canavalia Adans. is a good model pantropical species, Canavalia rosea (Sw.) DC., for investigations of the origin of Hawaiian in the subgenus. endemic species from sea dispersed species. Canavalia rosea is a typical member of the The genus Canavalia is distributed in the tropics plant group known as the “pantropical plants and subtropics all over the world. According with sea-drifted seeds” (Takayama et al. 2008). to the latest taxonomic revision, this genus is The members of this plant group are distributed further divided into four subgenera, namely, in littoral areas of the tropics and subtropics all Catodonia (seven species), Wenderothia (16 over the world and their main mode of seed species), Canavalia (23 species), and Maunaloa dispersal is sea dispersal (Fig. 1). In addition (six species) (Sauer 1964, St. John 1970, Schrire to C. rosea, some species of the subgenus 2005). Species of subgenera Catodonia and Canavalia also use sea dispersal to spread Wenderothia are distributed mostly in the New their seeds. Canavalia cathartica Thouars is World. Species of subgenus Canavalia are found distributed over Indo-West Pacific regions, C. in both the Old and New World, including some lineata (Thunb.) DC. is found in South East February 2011 Journal of Japanese Botany Vol. 86 No.1 17 Asia, and C. sericea A. Gray is distributed in the Materials and Methods South Pacific. The other species of Canavalia Taxon sampling whose seeds are subjected to sea dispersal is C. A total of 18 species of Canavalia were bonariensis Lindley of the subgenus Catodonia. used in this study. Data of four species were Other species of the genus Canavalia do not only for nrDNA ITS analyses and obtained have sea-drifted seeds and their main mode of from GenBank (Table 1). Species from all seed dispersal is mechanical (with the seeds 4 subgenera according to the subgeneric being thrown by dehiscent pods) or gravity delimitation of Sauer (1964) were included (Sauer 1964). Given the distribution ranges of (Table 1). Multiple accessions were sampled for the species and their modes of seed dispersal, five taxa,C. rosea (18), C. lineata (2), C. sericea Sauer (1964) and Carlquist (1966) suggested (2), C. hawaiiensis Degener & al. (2) and C. that the endemic species of the Hawaiian galeata Gaudich. (2). Dioclea reflexaHook. f., a Islands might have originated from species that species from the genus Dioclea was used as an reached the Hawaiian Islands by sea dispersal. outgroup, based on the molecular phylogenetic A good candidate species would plausibly be tree of Varela et. al. (2004). Voucher specimens the pantropical species, Canavalia rosea, as it of the newly collected samples in this study were has native distribution in Hawaii according to a deposited in the herbarium of University of the herbarium specimen (Rock s.n., ca. 1910, BISH) Ryukyus (RYU). Some samples were collected and has the widest distribution range among sea- from specimens preserved in the herbaria of dispersed species in the genus. However, this Jardim Botânico do Rio de Janeiro (JBRJ), hypothesis has never been tested using modern Universidad National Autonoma de Mexico molecular phylogenetic approaches. (MEXU), and Bishop Museum (BISH). To test the hypothesis about the origin of Hawaiian endemic species of Canavalia, we DNA extraction, PCR and sequencing employed both nuclear and chloroplast DNA Genomic DNA was extracted from dried (cpDNA) markers. These markers have been leaves or seeds using the method of Doyle successfully used to study the origin of Hawaiian and Doyle (1987). The concentration of crude endemic species in other plant groups (reviewed DNA extract was measured with a GeneQuant in Baldwin and Wagner 2010). Although a 100 electrophotometer (GE Healthcare, Life recent phylogenetic study on subtribe Diocleinae Sciences). For cpDNA sequences, after an initial based on nuclear ribosomal DNA (nrDNA) screening of 15 cpDNA candidate regions (Shaw ITS sequences (Varela et al. 2004) showed that et al. 2007), six regions including intergenic subgenus Canavalia is a sister to the subgenus spacers (IGS) and introns were chosen. The Catodonia, the taxon sampling of the study cpDNA regions and PCR primers used in this was not sufficient to reveal the phylogenetic study were for atpB-rbcL IGS (Hodges and relationships between the four subgenera and the Arnold 1994), ndhD-ndhE (Xu et al. 2000), origin of Hawaiian endemic species. We studied trnH-psbA IGS (Hamilton 1999), rps16 intron all species of the subgenus Maunaloa together (Oxelman et al. 1997), trnD-trnT (Demesure with multiple samples of C. rosea collected from et al. 1995) and trnK, which includes the its wide distribution range. Other species that matK gene (Hu et al. 2000, Lavin et al. 2000, have sea-drifted seeds and representative species Wojciechowski et al. 2004). Polymerase chain of subgenera Wenderothia and Catodonia were reactions (PCR) were performed in reaction also included in the study. volumes of 10–25 µL containing 1.25 units ExTaq (TaKaRa), and 0.2 mM dNTPs., 10× PCR buffer contains 1.5 mM MgCl2, 0.5–1 µM 18 植物研究雑誌 第 86 巻 第 1 号 2011 年 2 月 Table 1. List of Canavalia samples used in this study Oceanic DNA nrDNA Subgenus Taxon region Locality Voucher specimen sample No. ITS** Canavalia C. rosea (Sw.) DC. Indian Ocean South Africa Umdloti T. Kajita 010509 98 cloning Tanzania Dar es salaam T. Kajita 021202 184 cloning Sri Lanka Wattala, Negambo T. Kajita 000729 31S cloning Indonesia Sumatra T. Kajita 000812 500 direct Australia Headland Harbour Y. Tateishi 001123 1 direct West Pacific Marquesas Taipivai, Nuku Hiva T. Kajita & Y. Tateishi 000713 31M direct Tonga Sopu T. Kajita & al. 021024 171 direct East Pacific Mexico Sinaloa T. Kajita & al. 1998-965 965 direct Panama Veracruz T. Kajita & Y. Tateishi 011104 202 direct Ecuador Isla Jambel T. Kajita 990720 1205 direct West Atlantic Panama Cuango, Colon T. Kajita & Y. Tateishi 011031 109 direct Panama Pina, Colon T. Kajita & Y. Tateishi 011030 24 cloning Costa Rica Puerto Viejo T. Kajita 990821 346 cloning Mexico Coatzcoalcos T. Kajita & al. 981029 70M cloning Brazil Gaibu Pernanbuco T. Kajita & al. 991129 70B cloning East Atlantic Senegal Joal-Fadiout T. Kajita 001203 107, 108 cloning Ghana Busua beach Y.
Recommended publications
  • A Synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1977 A synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Lackey, James Andrew, "A synopsis of Phaseoleae (Leguminosae, Papilionoideae) " (1977). Retrospective Theses and Dissertations. 5832. https://lib.dr.iastate.edu/rtd/5832 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Effect of Cooking Methods on Available and Unavailable Carbohydrates of Some Tropical Grain Legumes
    African Journal of Biotechnology Vol. 7 (16), pp. 2940-2945, 18 August, 2008 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB08.317 ISSN 1684–5315 © 2008 Academic Journals Full Length Research Paper Effect of cooking methods on available and unavailable carbohydrates of some tropical grain legumes David F. Apata Unit of Nutritional Biochemistry, Department of Animal Production, University of Ilorin, Ilorin, Nigeria. E-mail: [email protected]. Accepted 16 May, 2008 The available and unavailable carbohydrate contents of eleven tropical legumes from different seed lines were investigated in raw, cooked and autoclaved forms. Raw legumes contained small amounts of glucose and fructose which ranged from 0.05 to 0.22 g/100 g and 0.24 to 0.90 g/100 g, respectively, sucrose varied between 1.49 g/100 g and 3.76 g/100 g. Reducing sugars were higher in bambara groundnut than other legumes. Starch was the principal carbohydrate, ranging from 35.4 to 50.0 g/100 g. African yam beans, lima beans and kidney beans had fairly high levels of oligosaccharides (raffinose + stachyose) than bambara groundnuts. Non-cellulosic polysaccharides and cellulose contents were highest in jack bean followed by pigeon pea TUc5537-1 and least in bambara groundnut KAB-3. Lignin was low and fairly uniform in all the legumes. The available carbohydrates were reduced to various extents by cooking, whereas the unavailable carbohydrates were not affected appreciably by heat treatment. Key words: Legume grains, available and unavailable carbohydrates, cooking, autoclaving. INTRODUCTION Grain legumes are foodstuffs of great nutritional signifi- where they are metabolized by the micro flora, producing cance to people in tropical developing countries.
    [Show full text]
  • Canavalia Rosea Click on Images to Enlarge
    Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Canavalia rosea Click on images to enlarge Family Fabaceae Scientific Name Canavalia rosea (Sw.) DC. Candolle, A.P. de (1825) Prodromus 2: 404. Common name Flowers. Copyright Barry Jago Bean, Beach; Coastal Jack Bean; Bean, Coastal Jacl; Bean, Mackenzie; Coastal Canavalia; Canavalia, Coastal; Beach Bean; Bean, Beach; Fire Bean; Mackenzie Bean Stem A slender vine not exceeding a stem diameter of 2 cm. Leaves Middle leaflet blade about 6.3-7 x 5-6.2 cm, stalk about 2.5-3.5 cm long, grooved on the upper surface. Lateral leaflet blades about 5.5-7.4 x 3.5-4.8 cm on stalks about 0.3-0.5 cm long. Compound leaf petiole about 3.5-5.2 cm long, grooved on the upper surface. Stipules caducous. Stipels about 2.5-3 mm long. Lateral Fruits. Copyright CSIRO veins forming loops inside the blade margin. Flowers Racemes longer than the leaves. Flowers about 20-25 mm diam. at anthesis. Calyx tube about 12-14 mm long, lobes of unequal size, about 1.6-3.5 mm long. Petals: standard about 25 mm long; wings and keel about 23 mm long. Stamens 10, all filaments +/- fused to form a tube about 15-18 mm long with free filaments projecting above the tube. Free filaments about 3-6 mm long, alternately longer and shorter. Ovary elongated, densely clothed in appressed pale (whitish) hairs.
    [Show full text]
  • From Jack Bean (Canavalia Ensiformis) Leaves
    Plant Physiol. (1975) 55, 975-977 In Vitro Synthesis of Ureidohomoserine by an Enzyme from Jack Bean (Canavalia ensiformis) Leaves Received for publication December 9, 1974 and in revised form February 19, 1975 THOMAS DENNY O'NEAL Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12181 ABSTRACT Identification of the products employed the use of one- dimensional TLC on Silica Gel G An enzyme was extensively purified from jack bean leaves plates, using phenol-H2O (Canavalia (77:23, v/v) or secbutanol-16% NH,OH, (3:1, v/v) as the ensiformis L.) which produced o-ureidohomoserine solvents. Citrulline and from L-canaline and carbamyl phosphate. The most ureidohomoserine were located by highly puri- with or fied preparations catalyzed both this reaction and citrulline syn- spraying ninhydrin Ehrlich's reagent (2% w/v p-di- thesis from ornithine and and the ratio methylaminobenzaldehyde in 5% HCI). Both ureidohomo- carbamyl phosphate, of serine and the two activities remained nearly constant during purification. citrulline had approximately the same RF value When hydrated jack bean seeds were the in either solvent, and reacted with both reagents. enzyme source, orni- The thine carbamyltransferase (EC 2.1.3.3) activity was high but enzymes were assayed at 37 C for 10 min. The assay synthesis of ureidohomoserine was barely detectable. Both contained enzyme, 3 mM L-ornithine or L-canaline, 6 mM ornithine carbamyltransferase and the ureidohomoserine syn- carbamyl phosphate, 33 mm tris-HCl buffer, pH 7.8 (for thesizing enzyme had similar Km values for carbamyl phos- CCT' or pH 8.3 (for OCT) and H20 to a final volume of phate.
    [Show full text]
  • Phylogeography of a Pantropical Plant with Sea-Drifted Seeds; Canavalia Rosea (Sw.) DC., (Fabaceae) 汎熱帯海流散布植
    (千葉大学学位申請論文) Phylogeography of a pantropical plant with sea‐drifted seeds; Canavalia rosea (Sw.) DC., (Fabaceae) 汎熱帯海流散布植物ナガミハマナタマメ (マメ科)の系統地理 2010 年7月 千葉大学大学院理学研究科 地球生命圏科学専攻 生物学コース Mohammad Vatanparast Phylogeography of a pantropical plant with sea‐drifted seeds; Canavalia rosea (Sw.) DC., (Fabaceae) July 2010 MOHAMMAD VATANPARAST Graduate School of Science CHIBA UNIVERSITY TABLE OF CONTENTS PAGES ABSTRACT 1 GENERAL INTRODUCTION 3 Pantropical plants with sea-drifted seeds species (PPSS) 5 A project on the phylogeography of the PPSS 6 A case study of PPSS: Hibiscus tiliaceus L. 7 Canavalia rosea: a genuine pantropical plant with sea-drifted seeds 8 Overview of this study 10 CHAPTER 1 12 PHYLOGENETIC RELATIONSHIPS AMONG CANAVALIA ROSEA AND ITS ALLIED SPECIES 12 1-1 Introduction 12 1-2 Materials and Methods 15 Taxon sampling 15 DNA extraction, PCR, and sequencing 16 Phylogenetic analyses based on cpDNA sequence data 18 Phylogenetic analyses based on ITS sequence data 19 1-3 Results 21 Phylogenetic analyses based on cpDNA sequence data 21 Phylogenetic analyses based on ITS sequence data 22 1-4 Discussion 24 Phylogenetic relationships among C. rosea and its related species 24 The phylogeographic break in the Atlantic Ocean 25 Origin of the Hawaiian endemic species 26 Future prospects for the evolutionary studies among C. rosea and its allied species 27 Tables and figures 29 i TABLE OF CONTENTS (CONTINUED) PAGES CHAPTER 2 40 GLOBAL GENETIC STRUCTURE OF CANAVALIA ROSEA; EVIDENCE FROM CHLOROPLAST DNA SEQUENCES 40 2-1 Introduction 40 2-2 Materials and Methods 44 Sampling 44 DNA extraction, PCR, and sequencing 44 Haplotype Composition and Network of C.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Anti-Oxidant, Skin Whitening, and Antibacterial Effects of Canavalia Gladiata Extracts
    Original Article Med Biol Sci Eng 2018;1(1):11-17 https://doi.org/10.30579/mbse.2018.1.1.11 pISSN 2586-5188ㆍeISSN 2586-5196 Anti-oxidant, skin whitening, and antibacterial effects of Canavalia gladiata extracts Ho Chan Kim*, Hae Gang Moon*, Yeong Cheol Jeong*, Jung Up Park, Young Ran Kim College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Korea Received October 25, 2017 Canavalia gladiata, a Chinese medicine known as sword bean, has been traditionally used for Revised November 13, 2017 anti-inflammatory and anti-oxidant properties. This study evaluated the pharmacologic Accepted December 1, 2017 effects of C. gladiata on anti-oxidant, skin whitening, and antibacterial activities. The 80% ethanol extracts were prepared from ripe or unripe C. gladiata. We also made activity Corresponding author comparison between ripe and unripe C. gladiata. DPPH and nitro blue tetrazolium/xanthine Young Ran Kim oxidase (XO) assays were used to evaluate the anti-oxidant activity. C. gladiata showed College of Pharmacy and Research antioxidant effect in a dose dependent manner. Next, mushroom tyrosinase activity was Institute of Drug Development, measured to evaluate the skin whitening effect. C. gladiata showed inhibitory effect on Chonnam National University, 77 tyrosinase activity in a dose dependent manner. C. gladiata extracts also inhibited XO activity. Yongbong-ro, Buk-gu, Gwangju In addition, the antibacterial effects were evaluated by using the minimum inhibitory concen- 61186, Korea tration test and disk diffusion assay. C. gladiata showed antibacterial activity to Vibrio Tel: +82-62-530-2923 vulnificus. In conclusion, C. gladiata showed the anti-oxidant, tyrosinase inhibition, and Fax: +82-62-530-2949 antibacterial activities.
    [Show full text]
  • A. Archaeological Reconnaissance Survey
    FINAL ENVIRONMENTAL ASSESSMENT ANAHOLA SOLAR PROJECT APPENDIX A A. ARCHAEOLOGICAL RECONNAISSANCE SURVEY PAGE A-1 T. S. Dye & Colleagues, Archaeologists, Inc. 735 Bishop St., Suite 315, Honolulu, Hawai‘i 96813 Archaeological Inventory Survey with Backhoe Trenching near Anahola∗ Kamalomalo‘o Ahupua‘a, Puna District, Kaua‘i Island TMK: (4) 4–7–004:002 Carl E. Sholin Thomas S. Dye February 14, 2013 Abstract At the request of Planning Solutions, Inc., T. S. Dye & Colleagues, Archaeologists conducted an archaeological inventory survey for a 60 ac. portion of TMK: (4) 4– 7–004:002, located near Anahola, in Kamalomalo‘o Ahupua‘a, Puna District, Kaua‘i Island. The Kaua‘i Island Utility Cooperative (KIUC) proposes to install a photovoltaic facility, substation, and service center at this location. The inventory survey was undertaken in support of KIUC’s request for financial assistance from the Rural Utilities Service (RUS), pursuant to Section 106 of the National Historic Preservation Act of 1966 (NHPA). The area of potential effect (APE) includes includes the area of the proposed photovoltaic facility, and a substation, service center, access roads, and storage yards. Background research indicated that the APE had been a sugarcane field for many years. The archaeological inventory survey consisted of the excavation and sampling of ten test trenches throughout the APE. Four stratigraphic layers were identified during the inventory survey: two were determined to be related to historic-era agriculture, and two were determined to be deposits of natural terrestrial sediments that developed in situ. No traditional Hawaiian cultural materials were identified during the inventory survey; however, features from use of the area as a sugarcane field, including two historic-era raised agricultural ditches, were identified within the APE.
    [Show full text]
  • Pest Management Strategic Plan for Coffee Production in Hawai'i
    Pest Management Strategic Plan for Coffee Production in Hawai‘i Summary of a workshop held on April 16–17, 2007 Honolulu, Hawai‘i Issued January 2010 Lead Authors: Mike Kawate, Cathy Tarutani, and H.C. Bittenbender Contact Person: Cathy Tarutani, Education Specialist (808) 956-2004 [email protected] This project was sponsored by the Hawai‘i Farm Bureau Federation, co-sponsored with the State of Hawai‘i Department of Agriculture, and the Western Integrated Pest Management Center, which is funded by the United States Department of Agriculture– National Institute of Food and Agriculture. Table of Contents Executive Summary ...........................................................................................................3 Work Group and Contributors ........................................................................................4 Top Pest Management Priorities in Hawai‘i Coffee Production ...................................6 General Production Information ......................................................................................8 Production Regions ................................................................................................9 Cultural Practices ................................................................................................12 Integrated Pest Management ..............................................................................15 Crop Stages ...........................................................................................................16 Pest Pressures
    [Show full text]
  • Genetic Diversity for Seed Mineral Composition in the Wild Legume Teramnus Labialis
    Plant Foods Hum Nutr (2008) 63:105–109 DOI 10.1007/s11130-008-0078-8 ORIGINAL PAPER Genetic Diversity for Seed Mineral Composition in the Wild Legume Teramnus labialis Michael A. Grusak Published online: 19 June 2008 # Springer Science + Business Media, LLC 2008 Abstract Teramnus labialis (L.) Spreng. is a wild, tropical protein, energy (in the form of carbohydrates or lipids), legume whose seeds are collected and used as a food source several vitamins, and many human essential minerals. by tribal populations. In order to assess the potential of this Various legume species have been harnessed for large-scale legume to provide dietary minerals for humans, fourteen cultivation in diverse climactic zones; however, several diverse accessions were grown under controlled, nutrient- wild legume species are also collected and consumed on a replete conditions and seeds were harvested for mineral smaller scale by rural or tribal populations [3–6]. The analysis. The germplasm originated from Indonesia, Africa, potential conversion of these wild legumes into cultivated the Caribbean, and South America. Seed concentrations of crops has received considerable attention in recent years, phosphorus (P), potassium (K), sodium (Na), iron (Fe), especially as efforts have expanded to increase the mineral copper (Cu), manganese (Mn), and zinc (Zn) were found to concentration of seed foods for humans [7]. Populations fall within the range of published values for several that are at-risk for micronutrient mineral deficiencies (e.g., cultivated grain legumes, while calcium (Ca) and magne- Fe, Zn, I) or macronutrient mineral deficiencies (e.g., Ca) sium (Mg) were higher in T. labialis seeds.
    [Show full text]
  • Centrosema Pubescens Scientific Name  Centrosema Pubescens Benth
    Tropical Forages Centrosema pubescens Scientific name Centrosema pubescens Benth. Synonyms Vegetative growth; reddish-brown tips Bradburya pubescens (Benth.) Kuntze; Centrosema Leaves trifoliolate, leaflets ovate to and young leaves (cv. Belalto) orbicular; inflorescence an axillary galeottii Fantz; Centrosema schiedeanum (Schltdl.) R.J. raceme (Mexican form) Williams & R.J. Clem.; Clitoria schiedeana Schltdl. Family/tribe Family: Fabaceae (alt. Leguminosae) subfamily: Faboideae tribe: Phaseoleae subtribe: Clitoriinae. Morphological description Perennial, trailing-climbing herb with strong tendency to With Megathrysus maximus cv. Susceptible to Cercospora leaf spot (cv. Makueni, North Queensland Australia Belalto) root at nodes of trailing stems. Leaves trifoliolate, leaflets (cv. Belalto) ovate to orbicular, ca. 3 cm long and 1.3‒2 cm broad, shortly acuminate and finely pubescent. Young leaflets and terminal portions of stolons are typically reddish. Stipules triangular-elongated, persistent. Inflorescence an axillary raceme with 3‒5 lilac to bluish-violet flowers, each flower subtended by two striate bracteoles. Calyx campanulate, 5-teethed; standard orbicular, approx. 2 cm in diameter; wings and keel much smaller than standard, directed upwards. Pod linear, compressed, approx. 13 cm long and 5‒6 mm broad, straight to slightly bent and beaked, containing up to 15 seeds. Seeds transversely oblong to very slightly reniform, approx. 5 mm long, yellowish-greenish with dark mottles. 36,000 seeds per kg. (This description refers to the C. pubescens form as represented by cv. Belalto.) Note: There are three C. pubescens forms according to geographic origin: (a) Mexico and Honduras: coarse, rather big leaves, from higher altitude, soil fertility demanding. (b) Costa Rica and Panama: smaller-leafed, stoloniferous form as represented by cv.
    [Show full text]
  • Cytotoxic Effects of Methanol Extract of Raw, Cooked and Fermented Split Beans of Canavalia on Cancer Cell Lines Mcf-7
    ISSN: 0976-3104 REGULAR ISSUE Niveditha et al. _______________________________________________________________________________________________________ www.iioab.org RESEARCH OPEN ACCESS CYTOTOXIC EFFECTS OF METHANOL EXTRACT OF RAW, COOKED AND FERMENTED SPLIT BEANS OF CANAVALIA ON CANCER CELL LINES MCF-7 AND HT-29 Vedavyas Ramakunja Niveditha1, Divana Krishna Venkatramana2, Kandikere Ramaiah Sridhar1* 1Department of Biosciences, Mangalore University, Mangalagangotri 574 199, Mangalore, Karnataka, INDIA 2Bhat Biotech India (P) Ltd., Bangalore 560 100, Karnataka, INDIA ABSTRACT Received on: 11th-Apr-2013 In vitro cytotoxicity evaluation of methanol extract of raw, cooked and solid-substrate fermented Revised on: 8th -May -2013 (Rhizopus oligosporus) split beans of wild legumes (Canavalia cathartica and C. maritima) of coastal Accepted on: 19th -May-2013 sand dunes of the Southwest India was carried out. Cytotoxic activity (ED and cytotoxicity) of methanol 50 Published on: 9th -Sept-2013 extracts was tested by (3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Differential impacts on the cancer cell lines MCF–7 and HT–29 were seen even though both plant KEY WORDS species grow in the same habitat. Methanol extract of cooked (C. maritima) and fermented (C. cathartica) split beans showed better in vitro anticancer activities compared to the raw beans. It is concluded that active principles of methanol extract of cooked and fermented Canavalia beans have potential to inhibit Cytotoxicity; Canavalia; Wild cancer cell lines MCF-7 and HT-29. Besides, it is possible to use extracts of cooked/fermented beans to legumes; Solid-substrate control colon cancer by diet management. fermentation; Rhizopus oligosporus; Cancer cell lines *Corresponding author: Email: [email protected]; Tel: +91-824 2287 261; Fax: +91 824 2287 367 [I] INTRODUCTION Out of 7.6 million deaths worldwide, cancer is one of the prototype.
    [Show full text]